3V/5V, 4 , Wideband Quad 2:1 Analog Multiplexer

General Description

The MAX4674 is a low-voltage CMOS analog switch containing four 2:1 multiplexers/demultiplexer. When powered from a single +5 V supply, it features a low 4Ω max on-resistance (RON), 0.4Ω max RON matching between channels, and 0.8Ω RON flatness over the entire signal range. Off-leakage current is only 0.5 nA max at $+25^{\circ} \mathrm{C}$.
The MAX4674 features fast turn-on (ton) and turn-off (toff) times of 18 ns and 6 ns, respectively, and is available in QFN, QSOP, TSSOP, and SO packages.
This low-voltage multiplexer operates with a +1.8 V to +5.5 V single supply. All digital inputs have +0.8 V and +2.4 V logic thresholds, ensuring TTL/CMOS-logic compatibility with +5 V operation.

Applications
10/100 Base-T
ATM Switching
Audio and Video Signal Routing
Low-Voltage Data-Acquisition Systems
Communications Circuits
Relay Replacement

Guaranteed On-Resistance
4Ω max (+5 V Supply)
6Ω max $(+3 \mathrm{~V}$ Supply)
0 Guaranteed Match Between Channels
0.4Ω max
Guaranteed Flatness Over Signal Range
0.8Ω max
1.8 V Operation

- Guaranteed Low Leakage Currents $0.5 n A$ max at $+25^{\circ} \mathrm{C}$
- Single-Supply Operation from +1.8 V to +5.5 V
- Rail-to-Rail Signal Handling
- TTL/CMOS-Logic Compatible
- Crosstalk: -114dB (1MHz)
- Off-Isolation: -67dB (1MHz)
- $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ QFN Package

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	PKG CODE
MAX4674EEE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 QSOP	E16-4
MAX4674EUE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 TSSOP	U16-2
MAX4674ESE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Narrow SO	S16-2
MAX4674EGE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 QFN-EP*	G1644-1
MAX4674EGP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 QFN-EP*	G2044-3

${ }^{*} E P=$ Exposed pad.

Pin Configuration/Functional Diagram/Truth Table

3V/5V, 4 Ω, Wideband Quad 2:1 Analog Multiplexer

ABSOLUTE MAXIMUM RATINGS

V+, AO, EN
..........-0.3V to +6 V
COM_, NO_, NC_(Note1) \qquad -0.3 V to $(\mathrm{V}+0.3 \mathrm{~V})$
Continuous Current COM_, NO_, NC \qquad $\pm 100 \mathrm{~mA}$
Peak Current (COM_, NO_, NC_)
(pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle) .$\pm 300 \mathrm{~mA}$
Continuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$
16-Pin QSOP (derate $8.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)
667 mW
16 -Pin TSSOP (derate $6.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)
.533 mW

Note 1: Signals on NO_, NC_, and COM_ exceeding V+ or GND are clamped by internal diodes. Limit forward-diode current to maximum current rating.
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS-Single +5 V Supply

$\left(\mathrm{V}+=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	$\mathrm{V}_{\mathrm{COM}}, \mathrm{V}_{\text {NO_ }}$, V_{NC}			0		V+	V
On-Resistance	Ron	$\begin{aligned} & \mathrm{V}_{+}=4.5 \mathrm{~V}, \mathrm{ICOM}_{-}=10 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\text {NC_ }}=0 \text { to } \mathrm{V}_{+} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		2.2	4	Ω
			$\begin{aligned} & T_{A}=T_{\text {MIN }} \text { to } \\ & T_{\text {MAX }} \end{aligned}$			5	
On-Resistance Match Between Channels (Notes 4, 5)	$\triangle \mathrm{RON}$	$\begin{aligned} & \mathrm{V}_{+}=4.5 \mathrm{~V}, \mathrm{ICOM}_{-}=10 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=0 \\ & 0 \text { to } \mathrm{V}+ \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.15	0.4	Ω
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}} \text { to }$ TMAX			0.5	
On-Resistance Flatness (Note 6)	RFLAT (ON)	$\begin{aligned} & \mathrm{V}_{+}=4.5 \mathrm{~V}, \mathrm{ICOM}_{-}=10 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\text {NC_ }}=0 \text { to } \mathrm{V}+ \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.5	0.8	Ω
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}} \text { to }$ TMAX			1	
NO_, NC_ Off-Leakage Current (Note 7)	INO_(OFF), INC_(OFF)	$\begin{aligned} & \mathrm{V}+=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{COM}_{-}}=1 \mathrm{~V}, \\ & 4.5 \mathrm{~V} ; \mathrm{V}_{\text {NO_}} \text { or } \mathrm{V}_{\mathrm{NC}_{-}}=4.5 \mathrm{~V}, \\ & 1 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.5	± 0.01	+0.5	nA
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }} \text { to }$ TMAX	-1		+1	
COM_ Off-Leakage Current (Note 7)	ICOM_(OFF)	$\begin{aligned} & \mathrm{V}_{+}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{COM}_{-}}=1 \mathrm{~V}, \\ & 4.5 \mathrm{~V} ; \mathrm{V}_{\text {NO_ } \text { or } \mathrm{V}_{\mathrm{NC}}^{-}}=4.5 \mathrm{~V}, \\ & 1 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.5	± 0.01	+0.5	nA
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}} \text { to }$ TMAX	-1		+1	
COM_ On-Leakage Current (Note 7)	ICOM_(ON)	$\begin{aligned} & \mathrm{V}_{+}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{COM}_{-}}=1 \mathrm{~V}, \\ & 4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}_{-}}=1 \text {, } \\ & 4.5 \mathrm{~V} \text {, or floating } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.5	± 0.01	+0.5	nA
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}} \text { to }$ $T_{\text {MAX }}$	-1		+1	
DIGITAL I/O (A0, $\overline{\mathrm{EN}}$)							
Input Logic High	V_{IH}			2.4			V
Input Logic Low	$\mathrm{V}_{\text {IL }}$					0.8	V
Input Leakage Current	IIN	$\mathrm{V}_{\mathrm{IN}}=0$ or +5.5 V		-0.5	± 1	+0.5	$\mu \mathrm{A}$
DYNAMIC							
Turn-On Time (Note 7)	ton	$\begin{aligned} & V_{N O} \text { or } V_{N C_{-}}=3 V, \\ & R_{L}=100 \Omega, C_{L}=35 \mathrm{pF}, \end{aligned}$ Figure 2	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		10	18	ns
			$\begin{aligned} & T_{A}=T_{\text {MIN }} \text { to } \\ & T_{\text {MAX }} \end{aligned}$			20	

3V/5V, 4 Ω, Wideband Quad 2:1 Analog Multiplexer

ELECTRICAL CHARACTERISTICS-Single +5 V Supply (continued)

$\left(\mathrm{V}+=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)($ Notes 2,3$)$

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Turn-Off Time (Note 7)	toff	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}}{ }_{-} \text {or } \mathrm{V}_{\mathrm{NC}_{-}}=3 \mathrm{~V}, \\ & \mathrm{RL}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \text {, } \\ & \text { Figure } 2 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		4	6	ns
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to TMAX			8	
Break-Before-Make (Note 7)	tBBM	$\begin{aligned} & V_{N O_{-}} \text {or } V_{N C_{-}}=3 V \\ & R_{L}=100 \Omega, C_{L}=35 p F, \end{aligned}$ Figure 3	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		5		ns
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}} \text { to }$ TMAX	1			
Charge Injection	Q	$V_{G E N}=4 \mathrm{~V}, \mathrm{RGEN}^{\text {a }}=0, \mathrm{CL}=1.0 \mathrm{nF}$, Figure 4		10			pC
Off-Isolation (Note 8)	VISO	$\begin{aligned} & C L=5 p F, R_{L}=100 \Omega, \\ & f=10 \mathrm{MHz} \text {, Figure } 5 \end{aligned}$	$\mathrm{f}=10 \mathrm{MHz}$		-47		dB
			$\mathrm{f}=1 \mathrm{MHz}$		-67		
Crosstalk (Note 9)	V_{CT}	$\begin{aligned} & C L=5 \mathrm{pF}, R_{L}=100 \Omega, \\ & f=10 \mathrm{MHz} \text {, Figure } 5 \end{aligned}$	$\mathrm{f}=10 \mathrm{MHz}$		-68		dB
			$f=1 \mathrm{MHz}$		-114		
Total Harmonic Distortion	THD	$\mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{f}=20 \mathrm{~Hz}$ to 20 kHz			0.015		\%
NO_, NC_ Off-Capacitance	CNo_(OFF), CNC_(OFF)	$\mathrm{V}_{\text {NO_ }}, \mathrm{V}_{\text {NC_ }}=\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}$, Figure 6		10			pF
COM_ Off-Capacitance	CCOM_(OFF)	$\mathrm{V}_{\text {COM }}=\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}$, Figure 6			20		pF
COM_ On-Capacitance	C(ON)	$\mathrm{V}_{\text {COM_ }}=\mathrm{V}_{\text {NO_}}, \mathrm{V}_{\text {NC_ }}=\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}$, Figure 6			30		pF
SUPPLY							
Supply Range	V+			1.8		5.5	V
Positive Supply Current	I+	$\mathrm{V}+=+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0$ or V			0.001	1.0	$\mu \mathrm{A}$

ELECTRICAL CHARACTERISTICS-Single +3V Supply

$\left(\mathrm{V}+=+2.7 \mathrm{~V}\right.$ to $+3.3 \mathrm{~V}, \mathrm{~V}_{I H}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)($ Notes 2,3$)$

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	$\mathrm{V}_{\mathrm{COM}}, \mathrm{V}_{\mathrm{NO}}$, V_{NC}			0		V+	V
On-Resistance	Ron	$\begin{aligned} & \mathrm{V}_{+}=2.7 \mathrm{~V}, \mathrm{ICOM}_{-}=10 \mathrm{~mA}, \\ & \mathrm{~V}_{\text {NO_ }} \text { or } \mathrm{V}_{\text {NC_ }}=0 \text { to } \mathrm{V}_{+} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		4	6	Ω
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }} \text { to } \\ & \mathrm{T}_{\text {MAX }} \\ & \hline \end{aligned}$			8	
On-Resistance Match Between Channels (Notes 4, 5)	$\triangle \mathrm{RON}$	$\begin{aligned} & \mathrm{V}_{+}=2.7 \mathrm{~V}, \mathrm{ICOM}_{-}=10 \mathrm{~mA}, \\ & \mathrm{~V}_{\text {NO_ }} \text { or } \mathrm{V}_{\text {NC_ }}=0 \text { to } \mathrm{V}+ \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.15	0.4	Ω
			$\begin{aligned} & T_{A}=T_{\text {MIN }} \text { to } \\ & T_{\text {MAX }} \end{aligned}$			0.5	
On-Resistance Flatness (Note 6)	RFLAT(ON)	$\begin{aligned} & \mathrm{V}_{+}=2.7 \mathrm{~V}, \mathrm{ICOM}_{-}=10 \mathrm{~mA}, \\ & \mathrm{~V}_{\text {NO_ }} \text { or } \mathrm{V}_{\text {NC_ }}=0 \text { to } \mathrm{V}+ \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		2	3	Ω
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }} \text { to } \\ & \mathrm{T}_{\text {MAX }} \end{aligned}$			4	
NO_, NC_ Off-Leakage Current (Note 7)	INO_(OFF), INC_(OFF)	$\begin{aligned} & \mathrm{V}_{+}=3.3 \mathrm{~V} ; \mathrm{V}_{\text {COM }}=1 \mathrm{~V}, 3 \mathrm{~V} \text {; } \\ & \mathrm{V}_{\mathrm{NO}_{-} \text {or }} \mathrm{V}_{\mathrm{NC}_{-}}=3 \mathrm{~V}, 1 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.5	± 0.01	+0.5	nA
			$\begin{aligned} & T_{A}=T_{\text {MIN }} \text { to } \\ & T_{\text {MAX }} \end{aligned}$	-1		+1	

3V/5V, 4 , Wideband Quad 2:1 Analog Multiplexer

ELECTRICAL CHARACTERISTICS—Single +3V Supply (continued)

$\left(\mathrm{V}+=+2.7 \mathrm{~V}\right.$ to $+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)($ Notes 2,3$)$

Note 2: The algebraic convention, where the most negative value is a minimum and the most positive value a maximum, is used in this data sheet.
Note 3: Parts are tested at the maximum hot-rated temperature. Limits across the entire temperature range are guaranteed by design and correlation.
Note 4: Δ RON $=$ RON(MAX) - RON(MIN).
Note 5: Δ Ron matching specifications for QFN packaged parts are guaranteed by design.
Note 6: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal range.
Note 7: Guaranteed by design.
Note 8: Off-Isolation = 20log $10\left(\mathrm{~V}_{\mathrm{COM}} / \mathrm{V}_{\mathrm{NO}}\right), \mathrm{V}_{\mathrm{COM}}=$ output, $\mathrm{V}_{\mathrm{NO}}=$ input to off switch.
Note 9: Between any two switches.

3V/5V, 4 Ω, Wideband Quad 2:1 Analog Multiplexer

Typical Operating Characteristics
($\mathrm{V}+=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Charge injection

TURN-ON/-OFF TIME vs. TEMPERATURE

ON-RESISTANCE vs. Vcom

OFF-ISOLATION, ON-RESPONSE, AND CROSSTALK vs. FREQUENCY

ON/OFF-LEAKAGE CURRENT
vs. TEMPERATURE

TURN-ON/-OFF TIME vs. SUPPLY VOLTAGE

TOTAL HARMONIC DISTORTION vs. FREQUENCY

3V/5V, 4 Ω, Wideband Quad 2:1 Analog Multiplexer

PIN			NAME	
QSOP/TSSOP/SO	$\mathbf{2 0}$ QFN	$\mathbf{1 6}$ QFN		
1	20	15	A0	Address Input
2	1	16	NC1	Normally Closed Terminal
3	2	1	NO1	Normally Open Terminal
4	3	2	COM1	Analog Switch Common Terminal
5	4	3	NC2	Normally Closed Terminal
6	5	4	NO2	Normally Open Terminal
7	6	5	COM2	Analog Switch Common Terminal
-	$7,9,17,19$	-	N.C.	No Connection
8	8	6	GND	Ground
9	10	7	COM3	Analog Switch Common Terminal
10	11	8	NO3	Normally Open Terminal
11	12	9	NC3	Normally Closed Terminal
12	13	10	COM4	Analog Switch Common Terminal
13	14	11	NO4	Normally Open Terminal
14	15	12	NC4	Normally Closed Terminal
15	16	13	EN	Output Enable, Active Low
16	18	14	V+	Positive Supply Voltage
-	EP	EP	EP	Exposed Pad. Connect to GND.

Detailed Description
The MAX4674 is a low on-resistance (Ron), low-voltage, quad 2:1 analog multiplexer/demultiplexer that operates from a +1.8 V to +5.5 V single supply. The MAX4674 features very fast switching speed (ton = 18 ns max, tOFF $=6 n s$ max) and guaranteed break-before-make switching. Its low Ron allows high continuous currents to be switched in a variety of applications.

Digital Interface
AO and $\overline{E N}$ are CMOS digital inputs that meet TTL logic levels when $\mathrm{V}+=5 \mathrm{~V}$. Note that AO and $\overline{\mathrm{EN}}$ can exceed the voltage at $\mathrm{V}+$ to a maximum of +5.5 V . This feature allows operation of the MAX4674 from a +3.3 V supply while controlling it with 5 V CMOS logic signals.
The Pin Configuration/Functional Diagram/Truth Table located on the first page of this data sheet details the operation of the MAX4674.

Applications Information

Power-Supply Considerations

Overview

The MAX4674 construction is typical of most CMOS analog switches. It has two supply pins, V+ and GND, used to drive the internal CMOS switches and set the limits of the analog voltage on any switches. Reverse ESD-protection diodes are internally connected between each analog-signal pin and both V_{+}and GND. If any analog signal exceeds $V+$ and GND, one of these diodes conducts. During normal operation, these and other reverse-biased ESD diodes leak, forming the only current drawn from VCC or GND.
Virtually all the analog leakage current comes from the ESD diodes. Although the ESD diodes on a given signal pin are identical and therefore fairly well balanced, they are reverse biased differently. Each is biased by either $\mathrm{V}+$ or GND and the analog signal. This means

3V/5V, 4 Ω, Wideband Quad 2:1 Analog Multiplexer

their leakages will vary as the signal varies. The difference in the two-diode leakages to the $V+$ and GND pins constitutes the analog-signal-path leakage current. All analog leakage current flows between each pin and one of the supply terminals, not to the other switch terminal, which is why both sides of a given switch can show leakage currents of either the same or opposite polarity.
V+ and GND power the internal logic and set the input logic limits. Logic inputs have ESD-protection diodes to ground.
The logic-level thresholds are TTL/CMOS compatible when $V+$ is +5 V . As $V+$ rises, the threshold increases; as $V+$ falls, the threshold decreases. For example, when $\mathrm{V}+=+3 \mathrm{~V}$, the guaranteed minimum logic-high threshold decreases to 2.0V.

Low-Voltage Operation

The MAX4674 operates from a single supply between +1.8 V and +5.5 V . At room temperature, it actually "works" with a single supply near or below +1.7 V ; as supply voltage decreases, however, switch on-resistance becomes very high.

Overvoltage Protection

Proper power-supply sequencing is recommended for all CMOS devices. Do not exceed the absolute maximum ratings because stresses beyond the listed rat-

Figure 1. Overvoltage Protection Using External Blocking Diodes
ings can cause permanent damage to the device. Always sequence $\mathrm{V}+$ on first, followed by the logic inputs and analog signals. If power-supply sequencing is not possible, add two small signal diodes (D1, D2) in series with the supply pins for overvoltage protection (Figure 1).
Adding diodes reduces the analog-signal range to one diode drop below $V+$ and one diode drop above GND, but does not affect the device's low switch resistance and low leakage characteristics. Device operation is unchanged, and the difference between V+ and GND should not exceed 6V. These protection diodes are not recommended if signal levels must extend to ground.

High-Frequency Performance
In 50Ω systems, signal response is reasonably flat up to 50 MHz (see the Typical Operating Characteristics). Above 20 MHz , the on response has several minor peaks that are highly layout dependent. The problem is not turning the switch on, but turning it off. The off-state switch acts like a capacitor and passes higher frequencies with less attenuation. At 10 MHz , off-isolation is about -50 dB in 50Ω systems, becoming worse (approximately 20 dB per decade) as frequency increases. Higher circuit impedances also degrade off-isolation. Adjacent channel attenuation is about 3dB above that of a bare IC socket and is entirely due to capacitive coupling.

Chip Information
TRANSISTOR COUNT: 478

3V/5V, 4 , Wideband Quad 2:1 Analog Multiplexer

Test Circuits/Timing Diagrams

Figure 2. Turn-On and Turn-Off Times

Figure 3. Break-Before-Make Interval

Figure 4. Charge Injection

3V/5V, 4 Ω, Wideband Quad 2:1 Analog Multiplexer

Test Circuits/Timing Diagrams (continued)

NOTES: MEASUREMENTS ARE STANDARDIZED AGAINST SHORTS AT SOCKET TERMINALS.
OFF-ISOLATION IS MEASURED BETWEEN COM AND "OFF" NO TERMINAL ON EACH SWITCH
ON-LOSS IS MEASURED BETWEEN COM AND "ON" NO TERMINAL ON EACH SWITCH.
CROSSTALK IS MEASURED FROM ONE CHANNEL TO ALL OTHER CHANNELS.
SIGNAL DIRECTION THROUGH SWITCH IS REVERSED; WORST VALUES ARE RECORDED

Figure 5. Off-Isolation, On-Loss, and Crosstalk

Figure 6. Capacitance

3V/5V, 4 , Wideband Quad 2:1 Analog Multiplexer

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

3V/5V, 4 Ω, Wideband Quad 2:1 Analog Multiplexer

Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

3V/5V, 4 , Wideband Quad 2:1 Analog Multiplexer

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

3V/5V, 4 Ω, Wideband Quad 2:1 Analog Multiplexer

Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Revision History

Pages changed at Rev 3: 1-7, 10-13
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
© 2006 Maxim Integrated Products
ММХІМ is a registered trademark of Maxim Integrated Products, Inc.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Maxim Integrated:
$\underline{M A X 4674 E E E+}$ MAX4674EEE+T MAX4674ESE + MAX4674ESE +T MAX4674ETE+ MAX4674ETE+T
MAX4674EUE + MAX4674EUE+T

