Effective July 2017 Supersedes March 2007

HCF1305 High frequency, high current power inductors

Product features

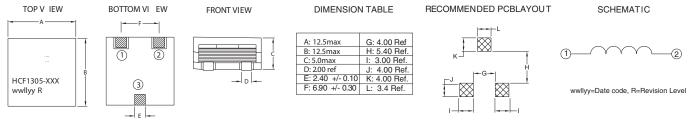
- 12.5 mm x 12.5 mm x 5.0 mm surface mount package
- Ferrite core material
- Inductors designed for higher speed switch mode applications requiring low voltage and high current
- Design utilizes ferrite core with high DC bias
- resistance and low core loss $\,$ Inductance range from 0.47 μH to 4.7 μH
- Current range from 36.0 A to 10.4 A
- Frequency range 100 kHz to 1 MHz

Applications

- Next generation processors
- High current DC-DC converters
- VRM, multi-phase buck regulators
- PC Workstations, Routers, Servers
- Telecom soft switches
- Base stations

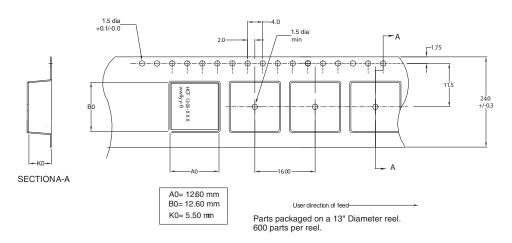
Environmental data

- Storage temperature range (component): -40 °C to +125 °C
- Operating temperature range: -40 °C to +125 °C (ambient plus self-temperature rise)
- Solder reflow temperature: J-STD-020 (latest revision) compliant


Product specifications

Part Number	Rated	OCL (1)	Irms (2)	lsat (3)	Isat2 (4)	DCR	DCR	K-factor
	Inductance	μH ± 20%	Amperes	Amperes	Amperes	mΩ@20°C	mΩ@20°C	(5)
	(µH)		-			(Typical)	(Maximum)	
HCF1305-R47-R	0.47	0.47	32.0	36.0	30.0	0.83	1.00	21
HCF1305-R56-R	0.56	0.56	32.0	30.0	22.5	0.83	1.00	21
HCF1305-1R0-R	1.00	1.00	22.0	24.0	20.0	1.58	1.90	14
HCF1305-1R2-R	1.20	1.20	22.0	20.0	15.0	1.58	1.90	14
HCF1305-1R8-R	1.80	1.80	16.3	18.0	15.0	2.58	3.10	10
HCF1305-2R2-R	2.20	2.20	16.3	15.0	11.2	2.58	3.10	10
HCF1305-3R0-R	3.00	3.00	13.2	14.4	12.0	4.08	4.90	8.3
HCF1305-3R3-R	3.30	3.30	13.2	12.5	9.0	4.08	4.90	8.3
HCF1305-4R0-R	4.00	4.00	10.9	12.0	10.0	6.0	7.2	6.9
HCF1305-4R7-R	4.70	4.70	10.9	10.4	7.5	6.0	7.2	6.9

OCL: Open Circuit Inductance test parameters: 100 kHz, 0.1 Vrms, 0.0 Adc. OCL@-40 °C can be lower than OCL@+20 °C by 15% max.
 Irms: DC current for an approximate DT of 40 °C without core loss. Derating is necessary for AC currents. PCB layout, trace thickness and width, air-flow, and proximity of other heat generating components will affect the temperature rise. It is recommended that the temperature of the part not exceed +125 °C under worst case operating conditions verified in the ord particular particular temperature is a second particular temperature of the part not exceed +125 °C under worst case operating conditions verified in the ord particular temperature is a second particular temperature of the part not exceed +125 °C under worst case operating conditions verified in the ord particular temperature is a second particular temperature is a second particular temperature of the part not exceed +125 °C under worst case operating conditions verified in the ord particular temperature is a second particular temperatemente


the end application.
isat1: Amperes Peak for approximately 30% rolloff (@+25 °C)
Isat2: Amperes Peak for approximately 30% rolloff (@+125 °C)

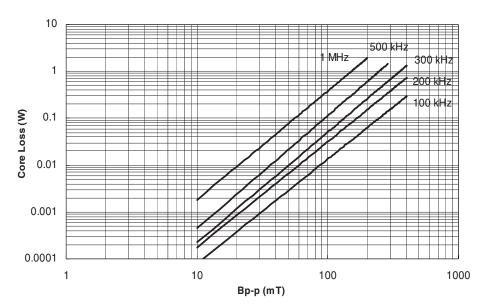
Dimensions- mm

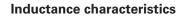
Do not route traces or vias underneath the inductor

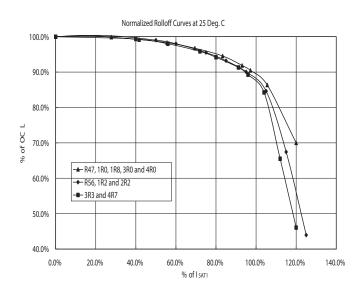
Packaging information - mm

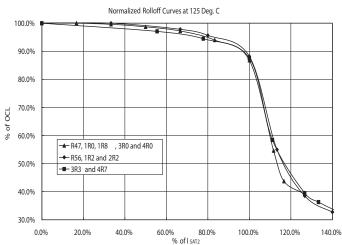
5) K-factor: Used to determine B p-p for core loss (see graph). B p-p = $K^*L^*\Delta I$ B p-p: (MT), K: (K factor from table), L: (Inductance in μ H), Δ I (Peak to peak ripple current in Amps).

Part number definition: HCF1305-XXX-R HCF1305 = Product code and size XXX = Inductance value in uH.

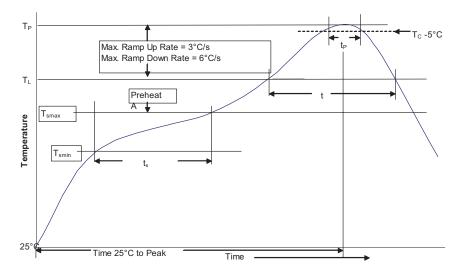

R = Decimal point. If no R is present, third character = #of zeros -R suffix indicates RoHS compliant


HCF1305 High frequency, high current power inductor


Temperature rise vs total loss



Core loss vs Bp-p



Solder Reflow Profile

Table 1 - Sta	ndard Snl	Pb Solder (T _C)	
	Volume	Volume	
Package	mm ³	mm ³	
Thickness	<350	≥350	
<2.5mm	235°C	220°C	
> 0 Emm	220°C	220°C	
≥2.5mm			
Table 2 - Lea	d (Pb) Fre	ee Solder (T _c)	
	d (Pb) Fre Volume	ee Solder (T _C) Volume	Volume
			Volume mm ³
Table 2 - Lea	Volume	Volume	
Table 2 - Lea Package	Volume mm ³	Volume mm ³	mm ³
Table 2 - Lea Package Thickness	Volume mm ³ <350 260°C	Volume mm ³ 350 - 2000	mm ³ >2000

Reference JDEC J-STD-020

Profile Feature		Standard SnPb Solder	Lead (Pb) Free Solder	
Preheat and Soak	 Temperature min. (T_{smin}) 	100°C	150°C	
	 Temperature max. (T_{smax}) 	150°C	200°C	
	 Time (T_{smin} to T_{smax}) (t_s) 	60-120 Seconds	60-120 Seconds	
Average ramp up rate T _{smax} to T _p		3°C/ Second Max.	3°C/ Second Max.	
Liquidous temperature (TL)		183°C	217°C	
Time at liquidous (t _L)		60-150 Seconds	60-150 Seconds	
Peak package body temperature (TP)*		Table 1	Table 2	
Time $(t_p)^{\star\star}$ within 5 °C of the specified classification temperature (T_c)		20 Seconds**	30 Seconds**	
Average ramp-down rate (Tp to Tsmax)		6°C/ Second Max.	6°C/ Second Max.	
Time 25°C to Peak Temperature		6 Minutes Max.	8 Minutes Max.	

 * Tolerance for peak profile temperature (T_p) is defined as a supplier minimum and a user maximum.

** Tolerance for time at peak profile temperature (t_p) is defined as a supplier minimum and a user maximum.

Life Support Policy: Eaton does not authorize the use of any of its products for use in life support devices or systems without the express written approval of an officer of the Company. Life support systems are devices which support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

Eaton reserves the right, without notice, to change design or construction of any products and to discontinue or limit distribution of any products. Eaton also reserves the right to change or update, without notice, any technical information contained in this bulletin.

Eaton Electronics Division 1000 Eaton Boulevard Cleveland, OH 44122 United States www.eaton.com/electronics

© 2017 Eaton All Rights Reserved Printed in USA Publication No. 4133 July 2017

Eaton is a registered trademark.

All other trademarks are property of their respective owners.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Eaton:

<u>HCF1305-R47-R</u> <u>HCF1305-R56-R</u> <u>HCF1305-1R0-R</u> <u>HCF1305-1R2-R</u> <u>HCF1305-1R8-R</u> <u>HCF1305-2R2-R</u> HCF1305-3R0-R HCF1305-3R3-R HCF1305-4R0-R HCF1305-4R7-R