$1 \mu A$ Supply Current, 1Mbps, 3.0V to 5.5V, RS-232 Transceivers with AutoShutdown Plus

General Description

The MAX3224-MAX3227/MAX3244/MAX3245 are 3Vpowered EIA/TIA-232 and V.28/V. 24 communications interfaces with automatic shutdown/wakeup features and high data-rate capabilities.
All devices achieve a $1 \mu \mathrm{~A}$ supply current using Maxim's revolutionary AutoShutdown Plus ${ }^{\text {TM }}$ feature. These devices automatically enter a low-power shutdown mode when the RS-232 cable is disconnected or the transmitters of the connected peripherals are inactive, and the UART driving the transmitter inputs is inactive for more than 30 seconds. They turn on again when they sense a valid transition at any transmitter or receiver input. AutoShutdown Plus saves power without changes to the existing BIOS or operating system.
The MAX3225/MAX3227/MAX3245 also feature MegaBaud ${ }^{\text {TM }}$ operation, guaranteeing 1 Mbps for highspeed applications such as communicating with ISDN modems. The MAX3224/MAX3226/MAX3244 guarantee 250 kbps operation. The transceivers have a proprietary low-dropout transmitter output stage enabling true RS232 performance from $\mathrm{a}+3.0 \mathrm{~V}$ to +5.5 V supply with a dual charge pump. The charge pump requires only four small $0.1 \mu \mathrm{~F}$ capacitors for operation from a 3.3 V supply. The MAX3224-MAX3227 feature a logic-level output (READY) that asserts when the charge pump is regulating and the device is ready to begin transmitting.
All devices are available in a space-saving TQFN, TSSOP, and SSOP packages.

Applications

Notebook, Subnotebook, and Palmtop Computers
Cellular Phones
Battery-Powered Equipment
Handheld Equipment
Peripherals
Printers

_Next Generation Device Features

- For Smaller Packaging:

MAX3228/MAX3229: +2.5V to +5.5V RS-232
Transceivers in UCSP ${ }^{\text {™ }}$

- For Low-Voltage or Data Cable Applications: MAX3380E/MAX3381E: +2.35 V to $+5.5 \mathrm{~V}, 1 \mu \mathrm{~A}$, 2 Tx/2 Rx RS-232 Transceivers with $\pm 15 k V$ ESDProtected I/O and Logic Pins
- For Integrated ESD Protection:

MAX3222E/MAX3232E/MAX3237E/MAX3241E/ MAX3246E: $\pm 15 k V$ ESD-Protected, Down to 10nA, +3.0 V to +5.5 V , Up to 1 Mbps , True RS-232 Transceivers (MAX3246E Available in UCSP)

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX3224CPP +	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 PDIP
MAX3224CAP +	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 SSOP
MAX3224CTP +	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$20 \mathrm{TQFN-EP*}{ }^{*}$
MAX3224CUP +	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 TSSOP
MAX3224EPP +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 PDIP
MAX3224EAP +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 SSOP
MAX3224ETP +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$20 \mathrm{TQFN-EP*}$
MAX3224EUP +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 TSSOP

+Denotes a lead(Pb)-free/RoHS-compliant package.
*EP = Exposed pad.
Ordering Information continued at end of data sheet.

Selector Guide

PART	NO. OF DRIVERS/ RECEIVERS	GUARANTEED DATA RATE (bps)	READY OUTPUT	AutoShutdown Plus
MAX3224	2/2	250k	\checkmark	\checkmark
MAX3225	2/2	1M	\checkmark	\checkmark
MAX3226	1/1	250k	\checkmark	\checkmark
MAX3227	1/1	1M	\checkmark	\checkmark
MAX3244	3/5	250k	-	\checkmark
MAX3245	3/5	1M	-	\checkmark

AutoShutdown Plus, MegaBaud, and UCSP are trademarks of Maxim Integrated Products, Inc.

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maximintegrated.com.

MAX3224-MAX3227/MAX3244/MAX3245 $1 \mu A$ Supply Current, 1 Mbps, 3.0V to 5.5V, RS-232 Transceivers with AutoShutdown Plus

ABSOLUTE MAXIMUM RATINGS

VCC to GND	-0.3V to +6V
V+ to GND (Note 1) ...-0.3V to +7V	
V- to GND (Note 1) ... +0.3 V to -7V	
V+ + V-\| (Note 1) ..+13V	
Input Voltages	
T_IN, FORCEON, $\overline{\text { FORCEOFF }}$ to GND -0.3V to +6V	
R_IN to GND	$\pm 25 \mathrm{~V}$
Output Voltages	
T_OUT to GND... 13.2 V	
R_OUT, INVALID, READY to GND-0.3V to (VCC +0.3 V)	
Short-Circuit Duration	
T_OUT to GND	Continuous

Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
16-Pin SSOP (derate $7.14 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) $\ldots571 \mathrm{~mW}$
20-Pin PDIP (derate $11.11 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 889 mW
20-Pin TQFN (derate $21.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)....... 1702.1 mW
20-Pin SSOP (derate $8.00 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)....... .640 mW
20-Pin TSSOP (derate $7.00 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) $\ldots559 \mathrm{~mW}$
28-Pin SO (W) (derate $12.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 1 W
28-Pin SSOP (derate $9.52 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 762 mW
Operating Temperature Ranges
MAX32_ _C_ _.. $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
MAX32_ _E_ _ .. $40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $300^{\circ} \mathrm{C}$
Soldering Temperature (reflow) $260^{\circ} \mathrm{C}$

Note 1: $\mathrm{V}+$ and V - can have maximum magnitudes of 7 V , but their absolute difference cannot exceed 13 V .
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(V_{C C}=+3 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{C} 1-\mathrm{C} 4=0.1 \mu \mathrm{~F}$, tested at $3.3 \mathrm{~V} \pm 10 \% ; \mathrm{C} 1=0.047 \mu \mathrm{~F}, \mathrm{C} 2-\mathrm{C} 4=0.33 \mu \mathrm{~F}$, tested at $5.0 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DC CHARACTERISTICS ($\mathrm{V}_{\text {CC }}=3.3 \mathrm{~V}$ or $\left.5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right)$						
Supply Current, AutoShutdown Plus		$\text { FORCEON = GND, } \overline{\text { FORCEOFF }}=V_{C C},$ all R_IN idle, all T_IN idle		1	10	$\mu \mathrm{A}$
Supply Current, Shutdown		$\overline{\text { FORCEOFF }}=$ GND		1	10	$\mu \mathrm{A}$
Supply Current, AutoShutdown Plus Disabled		FORCEON $=\overline{\text { FORCEOFF }}=\mathrm{V}_{\mathrm{cc}}$, no load		0.3	1	mA

LOGIC INPUTS AND RECEIVER OUTPUTS

Input Logic Threshold Low	T_IN, FORCEON, $\overline{\text { FORCEOFF }}$			0.8	V
Input Logic Threshold High	T_IN, FORCEON, FORCEOFF	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	2		V
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	2.4		
Transmitter Input Hysteresis			0.5		V
Input Leakage Current	T_IN, FORCEON, F-FORCEOFF		± 0.01	± 1	$\mu \mathrm{A}$
Output Leakage Current	R_OUT (MAX3244/MAX3245), receivers disabled		± 0.05	± 10	$\mu \mathrm{A}$
Output Voltage Low	IOUT $=1.6 \mathrm{~mA}$			0.4	V
Output Voltage High	IOUT $=-1.0 \mathrm{~mA}$		$V_{C C}-0.6 V_{\text {CC }}-0.1$		V

RECEIVER INPUTS

Input Voltage Range			-25		+25	V
Input Threshold Low	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$\mathrm{V}_{C C}=3.3 \mathrm{~V}$	0.6	1.2		V
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	0.8	1.5		
Input Threshold High	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$\mathrm{V}_{\text {CC }}=3.3 \mathrm{~V}$		1.5	2.4	V
		V CC $=5.0 \mathrm{~V}$		1.8	2.4	
Input Hysteresis				0.5		V
Input Resistance	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		3	5	7	k Ω

MAX3224-MAX3227/MAX3244/MAX3245 1بA Supply Current, 1 Mbps, 3.0V to 5.5V, RS-232 Transceivers with AutoShutdown Plus

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=+3 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{C} 1-\mathrm{C} 4=0.1 \mu \mathrm{~F}$, tested at $3.3 \mathrm{~V} \pm 10 \% ; \mathrm{C} 1=0.047 \mu \mathrm{~F}, \mathrm{C} 2-\mathrm{C} 4=0.33 \mu \mathrm{~F}$, tested at $5.0 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

MAX3224-MAX3227/MAX3244/MAX3245

 $1 \mu A$ Supply Current, 1 Mbps, 3.0V to 5.5V, RS-232 Transceivers with AutoShutdown Plus
TIMING CHARACTERISTICS—MAX3224/MAX3226/MAX3244

$\left(\mathrm{V}_{C C}=+3 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{C} 1-\mathrm{C} 4=0.1 \mu \mathrm{~F}$, tested at $3.3 \mathrm{~V} \pm 10 \% ; \mathrm{C} 1=0.047 \mu \mathrm{~F}, \mathrm{C} 2-\mathrm{C} 4=0.33 \mu \mathrm{~F}$, tested at $5.0 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

TIMING CHARACTERISTICS—MAX3225/MAX3227/MAX3245

$\left(\mathrm{V}_{\mathrm{CC}}=+3 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{C} 1-\mathrm{C} 4=0.1 \mu \mathrm{~F}$, tested at $3.3 \mathrm{~V} \pm 10 \% ; \mathrm{C} 1=0.047 \mu \mathrm{~F}, \mathrm{C} 2-\mathrm{C} 4=0.33 \mu \mathrm{~F}$, tested at $5.0 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Maximum Data Rate		$R_{L}=3 k \Omega, C_{L}=1000 \mathrm{pF},$ one transmitter switching	250			kbps
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} \text { to } 4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega \text {, } \\ & \mathrm{C}_{\mathrm{L}}=250 \mathrm{pF} \text {, one transmitter switching } \end{aligned}$	1000			
		$\begin{aligned} & \mathrm{V}_{C C}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega \text {, } \\ & \mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF} \text {, one transmitter switching } \end{aligned}$	1000			
Receiver Propagation Delay	tPHL	R_IN to R_OUT, CL = 150pF	0.15			$\mu \mathrm{s}$
	tPLH			0.15		
Receiver Output Enable Time		Normal operation (MAX3245 only)		200		ns
Receiver Output Disable Time		Normal operation (MAX3245 only)		200		ns
Transmitter Skew	tPHL - tPLH	(Note 3)		25		ns
Receiver Skew	tPHL - tPLH			50		ns
Transition-Region Slew Rate		$\mathrm{V}_{\mathrm{C}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, $R_{L}=3 \mathrm{k} \Omega$ to $7 \mathrm{k} \Omega, C_{L}=150 \mathrm{pF}$ to 1000 pF , measured from +3 V to -3 V or -3 V to +3 V	24		150	V/us

Note 2: A transmitter/receiver edge is defined as a transition through the transmitter/receiver input logic thresholds.
Note 3: Transmitter skew is measured at the transmitter zero cross points.

MAX3224-MAX3227/MAX3244/MAX3245 $1 \mu A$ Supply Current, 1 Mbps, 3.0V to 5.5V, RS-232 Transceivers with AutoShutdown Plus

Typical Operating Characteristics
$\left(\mathrm{V}_{C C}=+3.3 \mathrm{~V}, 250 \mathrm{kbps}\right.$ data rate, $\mathrm{C} 1-\mathrm{C} 4=0.1 \mu \mathrm{~F}$, all transmitters loaded with $3 \mathrm{k} \Omega$ and $\mathrm{C}_{\mathrm{L}}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

MAX3224-MAX3227/MAX3244/MAX3245

 1 1 AA Supply Current, 1 Mbps, 3.0V to 5.5V,\qquad Typical Operating Characteristics (continued)
$\left(\mathrm{V}_{C C}=+3.3 \mathrm{~V}, 250 \mathrm{kbps}\right.$ data rate, $\mathrm{C} 1-\mathrm{C} 4=0.1 \mu \mathrm{~F}$, all transmitters loaded with $3 \mathrm{k} \Omega$ and $\mathrm{C}_{\mathrm{L}}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

MAX3224-MAX3227/MAX3244/MAX3245
 1^A Supply Current, 1Mbps, 3.0V to 5.5V, RS-232 Transceivers with AutoShutdown Plus

Pin Description

PIN				NAME	FUNCTION
MAX3224 MAX3225		$\begin{aligned} & \text { MAX3226 } \\ & \text { MAX3227 } \end{aligned}$	$\begin{aligned} & \text { MAX3244 } \\ & \text { MAX3245 } \end{aligned}$		
$\begin{aligned} & \text { PDIP/ } \\ & \text { SSIP/ } \\ & \text { TSSOP } \end{aligned}$	TQFNEP				
1	19	1	-	READY	Ready to Transmit Output, Active High. READY is enabled high when V- goes below -4V and the device is ready to transmit.
2	1	2	28	C1+	Positive Terminal of Voltage-Doubler Charge-Pump Capacitor
3	20	3	27	V+	+5.5V Generated By the Charge Pump
4	2	4	24	C1-	Negative Terminal of Voltage-Doubler Charge-Pump Capacitor
5	3	5	1	C2+	Positive Terminal of Inverting Charge-Pump Capacitor
6	4	6	2	C2-	Negative Terminal of Inverting Charge-Pump Capacitor
7	5	7	3	V-	-5.5V Generated By the Charge Pump
8, 17	6, 15	13	9, 10, 11	T_OUT	RS-232 Transmitter Outputs
9, 16	7, 14	8	4-8	R_IN	RS-232 Receiver Inputs
10, 15	8, 13	9	15-19	R_OUT	TTL/CMOS Receiver Outputs
11	9	10	21	$\overline{\text { INVALID }}$	Valid Signal Detector Output, Active Low. A logic-high indicates that a valid RS-232 level is present on a receiver input.
12, 13	10, 11	11	12, 13, 14	T_IN	TTL/CMOS Transmitter Inputs
14	12	12	23	FORCEON	Force-On Input, Active High. Drive high to override AutoShutdown Plus, keeping transmitters and receivers on (FORCEOFF must be high) (Table 1).
18	16	14	25	GND	Ground
19	17	15	26	VCC	+3.0V to +5.5V Single Supply Voltage
20	18	16	22	FORCEOFF	Force-Off Input, Active Low. Drive low to shut down transmitters, receivers (except R2OUTB), and charge pump. This overrides AutoShutdown Plus and FORCEON (Table 1).
-	-	-	20	R2OUTB	TTL/CMOS Noninverting Complementary Receiver Outputs. Always active.
-	-	-	-	EP	Exposed Pad (TQFN only). Solder the exposed pad to the ground, or leave unconnected.

Detailed Description

Dual Charge-Pump Voltage Converter

The MAX3224-MAX3227/MAX3244/MAX3245's internal power supply consists of a regulated dual charge pump that provides output voltages of +5.5 V (doubling charge pump) and -5.5 V (inverting charge pump), over the +3.0 V to +5.5 V range. The charge pump operates in discontinuous mode: if the output voltages are less
than 5.5 V , the charge pump is enabled; if the output voltages exceed 5.5 V , the charge-pump is disabled. Each charge pump requires a flying capacitor (C1, C2) and a reservoir capacitor ($\mathrm{C} 3, \mathrm{C} 4$) to generate the $\mathrm{V}+$ and V - supplies.
The READY output (MAX3224-MAX3227) is low when the charge pumps are disabled in shutdown mode. The READY signal asserts high when V - goes below -4 V .

MAX3224-MAX3227/MAX3244/MAX3245

$1 \mu A$ Supply Current, 1 Mbps, 3.0V to 5.5V, RS-232 Transceivers with AutoShutdown Plus

Figure 1. Interface Under Control of PMU

RS-232 Transmitters
The transmitters are inverting level translators that convert CMOS-logic levels to 5.OV EIA/TIA-232 levels. The MAX3224/MAX3226/MAX3244 guarantee a 250kbps data rate (1Mbps for the MAX3225/MAX3227/ MAX3245) with worst-case loads of $3 \mathrm{k} \Omega$ in parallel with 1000 pF , providing compatibility with PC-to-PC communication software (such as LapLink ${ }^{\circledR}$). Transmitters can be paralleled to drive multiple receivers. Figure 1 shows a complete system connection.
When $\overline{\text { FORCEOFF }}$ is driven to ground or when the AutoShutdown Plus circuitry senses that all receiver and transmitter inputs are inactive for more than 30sec, the transmitters are disabled and the outputs go into a highimpedance state. When powered off or shut down, the outputs can be driven to $\pm 12 \mathrm{~V}$. The transmitter inputs do not have pull-up resistors. Connect unused inputs to GND or Vcc.

Figure 2. The MAX3244/MAX3245 detect RS-232 activity when the UART and interface are shut down.

[^0]
MAX3224-MAX3227/MAX3244/MAX3245 1ヶA Supply Current, 1 Mbps, 3.0V to 5.5V, RS-232 Transceivers with AutoShutdown Plus

Table 1. Output Control Truth Table

OPERATION STATUS	FORCEON	$\overline{\text { FORCEOFF }}$	VALID RECEIVER LEVEL	RECEIVER OR TRANSMITTER EDGE WITHIN 30sec	T_OUT	R_OUT (MAX3224/ MAX3225/ MAX3226/ MAX3227)	R OUT (MAX3244) MAX3245)	R2OUTB (MAX3244) MAX3245)
Shutdown (Forced Off)	X	0	X	X	High-Z	Active	High-Z	Active
Normal Operation (Forced On)	1	1	X	X	Active	Active	Active	Active
Normal Operation (AutoShutdown Plus)	0	1	X	Yes	Active	Active	Active	Active
Shutdown (AutoShutdown Plus)	0	1	X	No	High-Z	Active	Active	Active
Normal Operation	$\overline{\text { INVALID* }}$	1	Yes	X	Active	Active	Active	Active
Normal Operation	$\overline{\text { INVALID* }}$	1	X	Yes	Active	Active	Active	Active
Shutdown	$\overline{\text { INVALID }}$	1	No	No	High-Z	Active	Active	Active
Normal Operation (AutoShutdown)	$\overline{\text { INVALID* }}$	$\overline{\text { INVALID** }}$	Yes	X	Active	Active	Active	Active
$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Shutdown } \\ \text { (AutoShutdown™ } \end{array} \end{array}$	$\overline{\text { INVALID* }}$	INVALID ${ }^{*}$	No	X	High-Z	Active	High-Z	Active

$X=$ Don't care

* $\overline{\text { NVALID }}$ connected to FORCEON
** $\overline{I N V A L I D}$ connected to FORCEON and $\overline{F O R C E O F F}$

RS-232 Receivers

The receivers convert RS-232 signals to CMOS-logic output levels. The MAX3224-MAX3227 feature inverting outputs that always remain active (Table 1). The MAX3244/MAX3245 have inverting three-state outputs that are high impedance when shut down (FORCEOFF = GND) (Table 1).
The MAX3244/MAX3245 feature an extra, always active, noninverting output, R2OUTB. R2OUTB output monitors receiver activity while the other receivers are high impedance, allowing Ring Indicator applications to be monitored without forward biasing other devices connected to the receiver outputs. This is ideal for systems where V_{CC} is set to ground in shutdown to accommodate peripherals such as UARTs (Figure 2).

The MAX3224-MAX3227/MAX3244/MAX3245 feature an INVALID output that is enabled low when no valid RS-232 voltage levels have been detected on all receiver inputs. Because INVALID indicates the receiver input's condition, it is independent of FORCEON and FORCEOFF states (Figures 3 and 4).

AutoShutdown Plus Mode

The MAX3224-MAX3227/MAX3244/MAX3245 achieve a $1 \mu \mathrm{~A}$ supply current with Maxim's AutoShutdown Plus feature, which operates when FORCEOFF is high and a FORCEON is low. When these devices do not sense a valid signal transition on any receiver and transmitter input for 30 sec, the on-board charge pumps are shut down, reducing supply current to $1 \mu \mathrm{~A}$. This occurs if the RS-232 cable is disconnected or if the connected

AutoShutdown is a trademark of Maxim Integrated Products, Inc.

MAX3224-MAX3227/MAX3244/MAX3245
 $1 \mu A$ Supply Current, 1 Mbps, 3.0V to 5.5V, RS-232 Transceivers with AutoShutdown Plus

$\overline{\operatorname{INVALID}}$ ASSERTED IF ALL RECEIVER INPUTS ARE BETWEEN $+0.3 V$ AND -0.3V FOR AT LEAST 30 Hs .

Figure 3a. $\overline{I N V A L I D ~ F u n c t i o n a l ~ D i a g r a m, ~} \overline{I N V A L I D}$ Low

$\overline{I N V A L I D ~ D E A S S E R T E D ~ I F ~ A N Y ~ R E C E I V E R ~ I N P U T ~ H A S ~ B E E N ~ B E T W E E N ~+2.7 V ~ A N D ~-2.7 V ~}$ FOR LESS THAN 30 MS .

Figure 3b. $\overline{\text { INVALID }}$ Functional Diagram, $\overline{\text { INVALID }}$ High

Table 2. $\overline{\text { INVALID }}$ Truth Table

RS-232 SIGNAL PRESENT AT ANY RECEIVER INPUT	INVALID OUTPUT
Yes	High
No	Low

peripheral transmitters are turned off, and the UART driving the transmitter inputs is inactive. The system turns on again when a valid transition is applied to any RS-232 receiver or transmitter input. As a result, the system saves power without changes to the existing BIOS or operating system.
Figures 3a and 3b depict valid and invalid RS-232 receiver voltage levels. INVALID indicates the receiver input's condition, and is independent of FORCEON and FORCEOFF states. Figure 3 and Tables 1 and 2 summarize the operating modes of the MAX3224MAX3227/MAX3244/MAX3245 devices. FORCEON and FORCEOFF override AutoShutdown Plus circuitry. When neither control is asserted, the IC selects

Figure 3c. AutoShutdown Plus Logic

* $\overline{\text { POWERDOWN IS ONLY AN INTERNAL SIGNAL. }}$

IT CONTROLS THE OPERATIONAL STATUS OF
THE TRANSMITTERS AND THE POWER SUPPLIES.

Figure 3d. Power-Down Logic

Figure 4a. Receiver Positive/Negative Thresholds for INVALID
between these states automatically based on the last receiver or transmitter input edge received.
When shut down, the device's charge pumps turn off, V + is pulled to V_{CC}, V - is pulled to ground, the transmitter outputs are high impedance, and READY (MAX3224-MAX3227) is driven low. The time required to exit shutdown is typically $100 \mu \mathrm{~s}$ (Figure 6).

MAX3224-MAX3227/MAX3244/MAX3245 1нA Supply Current, 1Mbps, 3.0V to 5.5V, RS-232 Transceivers with AutoShutdown Plus

Figure 4b. AutoShutdown Plus, $\overline{I N V A L I D, ~ a n d ~ R E A D Y ~ T i m i n g ~ D i a g r a m ~}$
By connecting FORCEON to INVALID, the MAX3224MAX3227/MAX3244/MAX3245 shut down when no valid receiver level and no receiver or transmitter edge is detected for 30 sec, and wake up when a valid receiver level or receiver or transmitter edge is detected.
By connecting FORCEON and FORCEOFF to INVALID, the MAX3224-MAX3227/MAX3244/MAX3245 shutdown when no valid receiver level is detected and wake up when a valid receiver level is detected (same functionality as AutoShutdown feature on MAX3221/MAX3223/ MAX3243).
A mouse or other system with AutoShutdown Plus may need time to wake up. Figure 5 shows a circuit that forces the transmitters on for 100 ms , allowing enough time for the other system to realize that the MAX3244/ MAX3245 is awake. If the other system outputs valid RS-232 signal transitions within that time, the RS-232 ports on both systems remain enabled.

Figure 5. AutoShutdown Plus Initial Turn-On to Wake Up a Mouse or Another System

MAX3224-MAX3227/MAX3244/MAX3245 $1 \mu A$ Supply Current, 1 Mbps, 3.0V to 5.5V, RS-232 Transceivers with AutoShutdown Plus

Software-Controlled Shutdown

If direct software control is desired, use INVALID to indicate DTR or Ring Indicator signal. Tie FORCEOFF and FORCEON together to bypass the AutoShutdown Plus so the line acts like a SHDN input.

Applications Information

Capacitor Selection

The capacitor type used for C1-C4 is not critical for proper operation; polarized or nonpolarized capacitors can be used. The charge pump requires $0.1 \mu \mathrm{~F}$ capacitors for 3.3 V operation. For other supply voltages, see Table 3 for required capacitor values. Do not use values smaller than those listed in Table 3. Increasing the capacitor values (e.g., by a factor of 2) reduces ripple on the transmitter outputs and slightly reduces power consumption. C2, C3, and C4 can be increased without changing C1's value. However, do not increase C1 without also increasing the values of C2, C3, C4, and $C_{B Y P A S S}$, to maintain the proper ratios (C1 to the other capacitors).
When using the minimum required capacitor values, make sure the capacitor value does not degrade excessively with temperature. If in doubt, use capacitors with a larger nominal value. The capacitor's equivalent series resistance (ESR), which usually rises at low temperatures, influences the amount of ripple on $\mathrm{V}+$ and V -.

Power-Supply Decoupling

In most circumstances, a $0.1 \mu \mathrm{~F}$ VCC bypass capacitor is adequate. In applications that are sensitive to powersupply noise, use a capacitor of the same value as charge-pump capacitor C1. Connect bypass capacitors as close to the IC as possible.

Transmitter Outputs when Exiting Shutdown

Figure 6 shows two transmitter outputs when exiting shutdown mode. As they become active, the two transmitter outputs are shown going to opposite RS-232 levels (one transmitter input is high; the other is low). Each

Table 3. Required Minimum Capacitance Values

VCC $\mathbf{(V)}$	C1, CBYPASS $\mathbf{(\boldsymbol { \mu F })}$	$\mathbf{C 2 , ~ C 3 , ~ C 4 ~}$ $\mathbf{(\boldsymbol { \mu })}$
3.0 to 3.6	0.1	0.1
4.5 to 5.5	0.047	0.33
3.0 to 5.5	0.22	1

transmitter is loaded with $3 k \Omega$ in parallel with 1000pF. The transmitter outputs display no ringing or undesirable transients as they come out of shutdown. Note that the transmitters are enabled only when the magnitude of V - exceeds approximately -3 V .

Figure 6. Transmitter Outputs when Exiting Shutdown or Powering Up

Figure 7. Loopback Test Circuit

MAX3224-MAX3227/MAX3244/MAX3245 $1 \mu A$ Supply Current, 1 Mbps, 3.0V to 5.5V, RS-232 Transceivers with AutoShutdown Plus

High Data Rates
The MAX3224/MAX3226/MAX3244 maintain the RS-232 $\pm 5.0 \mathrm{~V}$ minimum transmitter output voltage even at high data rates. Figure 7 shows a transmitter loopback test circuit. Figure 8 shows a loopback test result at 120 kbps , and Figure 9 shows the same test at 250 kbps . For Figure 8, all transmitters were driven simultaneously at 120kbps into RS-232 loads in parallel with 1000 pF. For Figure 9, a single transmitter was driven at 250 kbps , and all transmitters were loaded with an RS-232 receiver in parallel with 250 pF .

Figure 8. MAX3224/MAX3226/MAX3244 Loopback Test Result at 120 kbps

Figure 9. MAX3224/MAX3226/MAX3244 Loopback Test Result at 250 kbps

The MAX3225/MAX3227/MAX3245 maintain the RS-232 $\pm 5.0 \mathrm{~V}$ minimum transmitter output voltage at data rates up to 1 Mbps (MegaBaud). Figure 10 shows a loopback test result with a single transmitter driven at 1 Mbps and all transmitters loaded with an RS-232 receiver in parallel with 250 pF .

Mouse Driveability
The MAX3244/MAX3245 are specifically designed to power serial mice while operating from low-voltage power supplies. They have been tested with leading mouse brands from manufacturers such as Microsoft and Logitech. The MAX3244/MAX3245 successfully

Figure 10. MAX3225/MAX3227/MAX3245 Loopback Test Result at 1 Mbps

Figure 11a. MAX324_ Transmitter Output Voltage vs. Load Current per Transmitter

MAX3224-MAX3227/MAX3244/MAX3245 $1 \mu A$ Supply Current, 1 Mbps, 3.0V to 5.5V, RS-232 Transceivers with AutoShutdown Plus

Figure 11b. Mouse Driver Test Circuit

MAX3224-MAX3227/MAX3244/MAX3245 $1 \mu A$ Supply Current, 1 Mbps, 3.0V to 5.5V, RS-232 Transceivers with AutoShutdown Plus

drove all serial mice tested and met their respective current and voltage requirements. The MAX3244/ MAX3245 dual charge pump ensures the transmitters will supply at least $\pm 5 \mathrm{~V}$ during worst-case conditions. Figure 11a shows the transmitter output voltages under increasing load current. Figure 11b shows a typical mouse connection.

Interconnection with 3V and 5V Logic
The MAX3224-MAX3227/MAX3244/MAX3245 can directly interface with various 5 V logic families, including ACT and HCT CMOS. See Table 4 for more information on possible combinations of interconnections.
Table 5 lists other Maxim 3.0 V to 5.5 V powered transceivers.

Table 4. Logic Family Compatibility with Various Supply Voltages

SYSTEM POWER-SUPPLY VOLTAGE (V)	VCc SUPPLY VOLTAGE $\mathbf{(V)}$	COMPATIBILITY
3.3	3.3	Compatible with all CMOS families
5	5	Compatible with all TTL and CMOS families
5	3.3	Compatible with ACT and HCT CMOS, and with AC, HC, or CD4000 CMOS

Table 5. 3.0V to 5.5V Powered RS-232 Transceivers from Maxim

PART	SUPPLY VOLTAGE RANGE $\mathbf{(V)}$	NO. OF Tx/Rx	SUPPLY CURRENT $(\boldsymbol{\mu A)}$	Auto- Shutown Plus	Auto- Shutdown	GUARANTEED DATA RATE (bps)
MAX3241	+3.0 to +5.5	$3 / 5$	300	-	-	120 k
MAX3243	+3.0 to +5.5	$3 / 5$	1	-	Yes	120 k
MAX3244	+3.0 to +5.5	$3 / 5$	1	Yes	-	250 k
MAX3245	+3.0 to +5.5	$3 / 5$	1	Yes	-	1 M
MAX3232	+3.0 to +5.5	$2 / 2$	300	-	-	120 k
MAX3222	+3.0 to +5.5	$2 / 2$	300	-	-	120 k
MAX3223	+3.0 to +5.5	$2 / 2$	1	-	Yes	120 k
MAX3224	+3.0 to +5.5	$2 / 2$	1	Yes	-	250 k
MAX3225	+3.0 to +5.5	$2 / 2$	1	Yes	-	1 M
MAX3221	+3.0 to +5.5	$1 / 1$	1	-	Yes	120 k
MAX3226	+3.0 to +5.5	$1 / 1$	1	Yes	-	250 k
MAX3227	+3.0 to +5.5	$1 / 1$	1	Yes	-	1 M

MAX3224-MAX3227/MAX3244/MAX3245

1 $\mu \mathrm{A}$ Supply Current, 1 Mbps, 3.0V to 5.5V,
RS-232 Transceivers with AutoShutdown Plus
Typical Operating Circuits

MAX3224-MAX3227/MAX3244/MAX3245 $1 \mu A$ Supply Current, 1 Mbps, 3.0V to 5.5V, RS-232 Transceivers with AutoShutdown Plus

TOP VIEW

*CONNECT EP TO GND.

MAX3224-MAX3227/MAX3244/MAX3245

$1 \mu A$ Supply Current, 1 Mbps, 3.0V to 5.5V, RS-232 Transceivers with AutoShutdown Plus

_Ordering Information (continued)

PART	TEMP RANGE	PIN-PACKAGE
MAX3225CPP+	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 PDIP
MAX3225CAP+	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 SSOP
MAX3225CTP+	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 TQFN-EP*
MAX3225CUP+	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 TSSOP
MAX3225EPP+	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 PDIP
MAX3225EAP+	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 SSOP
MAX3225ETP+	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 TQFN-EP*
MAX3225EUP+	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 TSSOP
MAX3225EUPN+	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 TSSOP
MAX3226CAE+	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 SSOP
MAX3226EAE+	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 SSOP
MAX3227CAE+	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 SSOP
MAX3227EAE+	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 SSOP
MAX3244CWI+	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 SO (W)
MAX3244CAI+	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 SSOP
MAX3244EWI+	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 SO (W)
MAX3244EAI+	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 SSOP
MAX3245CWI+	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 SO (W)
MAX3245CAI+	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 SSOP
MAX3245EWI+	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 SO (W)
MAX3245EAI+	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 SSOP

+Denotes a lead(Pb)-free/RoHS-compliant package.
*EP = Exposed pad.
N denotes an automotive qualified part.

Chip Information

PROCESS: BiCMOS

Package Information

For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
16 SSOP	$\mathrm{A} 16+2$	$\underline{\underline{21-0056}}$	$\underline{\underline{90-0106}}$
20 SSOP	$\mathrm{A} 20+2$	$\underline{21-0056}$	$\underline{\underline{90-0094}}$
20 TQFN-EP	$\mathrm{T} 2055+5$	$\underline{\underline{21-0140}}$	$\underline{\underline{90-0010}}$
20 TSSOP	$\mathrm{U} 20+2$	$\underline{\underline{21-0066}}$	$\underline{\underline{90-0116}}$
20 PDIP	$\mathrm{P} 20+3$	$\underline{\underline{21-0043}}$	-
28 SO (W)	$\mathrm{W} 28+6$	$\underline{21-0042}$	$\underline{90-0109}$
28 SSOP	$\mathrm{A} 28+1$	$\underline{21-0056}$	$\underline{90-0095}$

MAX3224-MAX3227/MAX3244/MAX3245
 $1 \mu A$ Supply Current, 1Mbps, 3.0V to 5.5V, RS-232 Transceivers with AutoShutdown Plus

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
3	$5 / 05$	Added new packaging types	-
4	$10 / 08$	Added automotive qualified product information	1,18
5	$2 / 11$	Changed all the parts in the Ordering Information to lead-free	1,18

maxim
integrated $_{\text {m }}$

[^1]
Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Maxim Integrated:

[^0]: LapLink is a registered trademark of Laplink Software, Inc.

[^1]: Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

