

60MHz, Rail-to-Rail Output, 1.9nV/√Hz, 1.2mA Op Amp Family

FEATURES

Low Noise Voltage: 1.9nV/√Hz
 Low Supply Current: 1.2mA/Amp Max
 Low Offset Voltage: 350uV Max

■ Gain-Bandwidth Product: LT6233: 60MHz; $A_V \ge 1$ LT6233-10: 375MHz; $A_V \ge 10$

Wide Supply Range: 3V to 12.6VOutput Swings Rail-to-Rail

Common Mode Rejection Ratio: 115dB Typ

Output Current: 30mA

■ Operating Temperature Range: -40°C to 85°C

LT6233 Shutdown to 10μA Maximum

■ LT6233/LT6233-10 in a Low Profile (1mm) ThinSOTTM Package

Dual LT6234 in 8-Pin SO and Tiny DFN Packages

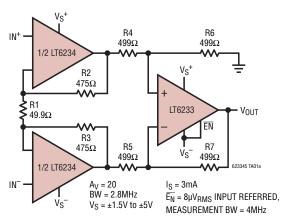
■ LT6235 in a 16-Pin SSOP Package

APPLICATIONS

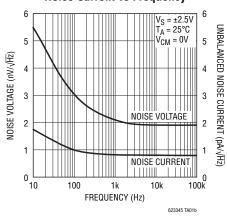
- Ultrasound Amplifiers
- Low Noise, Low Power Signal Processing
- Active Filters
- Driving A/D Converters
- Rail-to-Rail Buffer Amplifiers

DESCRIPTION

The LT®6233/LT6234/LT6235 are single/dual/quad low noise, rail-to-rail output unity-gain stable op amps that feature 1.9nV/ $\sqrt{\text{Hz}}$ noise voltage and draw only 1.2mA of supply current per amplifier. These amplifiers combine very low noise and supply current with a 60MHz gain-bandwidth product, a 17V/ μ s slew rate and are optimized for low supply voltage signal conditioning systems. The LT6233-10 is a single amplifier optimized for higher gain applications resulting in higher gain bandwidth and slew rate. The LT6233 and LT6233-10 include an enable pin that can be used to reduce the supply current to less than 10 μ A.


The amplifier family has an output that swings within 50mV of either supply rail to maximize the signal dynamic range in low supply applications and is specified on 3.3V, 5V and \pm 5V supplies. The $e_n \cdot \sqrt{I_{SUPPLY}}$ product of 2.1 per amplifier is among the most noise efficient of any op amp.

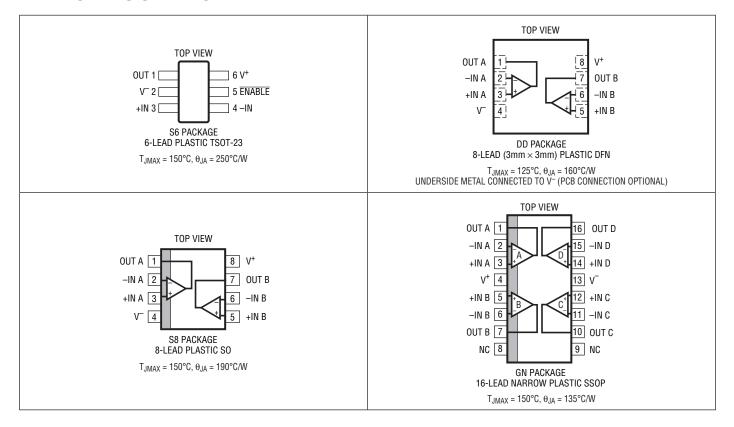
The LT6233/LT6233-10 are available in the 6-lead SOT-23 package and the LT6234 dual is available in the 8-pin SO package with standard pinouts. For compact layouts, the dual is also available in a tiny dual fine pitch leadless package (DFN). The LT6235 is available in the 16-pin SSOP package.


∠T, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. ThinSOT is a trademark of Linear Technology Corporation. All other trademarks are the property of their respective owners.

TYPICAL APPLICATION

Low Noise Low Power Instrumentation Amplifier

Noise Voltage and Unbalanced Noise Current vs Frequency



ABSOLUTE MAXIMUM RATINGS (Note 1)

Total Supply Voltage (V+ to V-)	12.6V
Input Current (Note 2)	±40mA
Output Short-Circuit Duration (Note 3)	Indefinite
Operating Temperature Range (Note 4)40	O°C to 85°C
Specified Temperature Range (Note 5)40	O°C to 85°C
Junction Temperature	150°C

Junction Temperature (DD Package)	125°C
Storage Temperature Range65°C to	150°C
Storage Temperature Range	
(DD Package)65°C to	125°C
Lead Temperature (Soldering, 10 sec)	300°C

PIN CONFIGURATION

ORDER INFORMATION

LEAD FREE FINISH	TAPE AND REEL	PART MARKING*	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE
LT6233CS6#PBF	LT6233CS6#TRPBF	LTAFL	6-Lead Plastic TS0T-23	0°C to 70°C
LT6233IS6#PBF	LT6233IS6#TRPBF	LTAFL	6-Lead Plastic TS0T-23	-40°C to 85°C
LT6233CS6-10#PBF	LT6233CS6-10#TRPBF	LTAFM	6-Lead Plastic TS0T-23	0°C to 70°C
LT6233IS6-10#PBF	LT6233IS6-10#TRPBF	LTAFM	6-Lead Plastic TS0T-23	-40°C to 85°C
LT6234CS8#PBF	LT6234CS8#TRPBF	6234	8-Lead Plastic SO	0°C to 70°C
LT6234IS8#PBF	LT6234IS8#TRPBF	62341	8-Lead Plastic SO	-40°C to 85°C
LT6234CDD#PBF	LT6234CDD#TRPBF	LAET	8-Lead (3mm × 3mm) Plastic DFN	0°C to 70°C
LT6234IDD#PBF	LT6234IDD#TRPBF	LAET	8-Lead (3mm × 3mm) Plastic DFN	-40°C to 85°C
LT6235CGN#PBF	LT6235CGN#TRPBF	6235	16-Lead Narrow Plastic SSOP	0°C to 70°C
LT6235IGN#PBF	LT6235IGN#TRPBF	62351	16-Lead Narrow Plastic SSOP	-40°C to 85°C

Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container. Consult LTC Marketing for information on non-standard lead based finish parts.

For more information on lead free part marking, go to: http://www.linear.com/leadfree/ For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/

ELECTRICAL CHARACTERISTICS $T_A = 25^{\circ}C$, $V_S = 5V$, OV; $V_S = 3.3V$, OV; $V_{CM} = V_{OUT} = half supply$, $\overline{\text{ENABLE}} = \text{OV}$, unless otherwise noted.

SYMBOL UNITS **PARAMETER** CONDITIONS MIN TYP MAX V_{OS} 500 Input Offset Voltage LT6233S6, LT6233S6-10 100 μV LT6234S8, LT6235GN 50 350 μV LT6234DD 75 450 μV Input Offset Voltage Match 80 600 μV (Channel-to-Channel) (Note 6) Input Bias Current 1.5 3 μΑ I_B 0.04 I_B Match (Channel-to-Channel) (Note 6) 0.3 μΑ 0.04 0.3 Input Offset Current μΑ I_{0S} $\mathsf{nV}_{\mathsf{P}\text{-}\mathsf{P}}$ Input Noise Voltage 0.1Hz to 10Hz 220 $f = 10kHz, V_S = 5V$ nV/√Hz Input Noise Voltage Density 1.9 3 e_n pA/√Hz Input Noise Current Density, Balanced Source $f = 10kHz, V_S = 5V, R_S = 10k$ 0.43 in Input Noise Current Density, Unbalanced Source $f = 10kHz, V_S = 5V, R_S = 10k$ 0.78 pA/√Hz Input Resistance Common Mode 22 $M\Omega$ Differential Mode 25 kΩ 2.5 CIN Input Capacitance Common Mode pF 4.2 Differential Mode pF $V_S=5$ V, $V_0=0.5$ V to 4.5 V, $R_L=10$ k to $V_S/2$ $V_S=5$ V, $V_0=0.5$ V to 4.5 V, $R_L=1$ k to $V_S/2$ A_{VOL} Large-Signal Gain 73 140 V/mV 18 35 V/mV $V_S = 3.3V$, $V_0 = 0.65V$ to 2.65V, $R_L = 10k$ to $V_S/2$ 53 100 V/mV $V_S = 3.3V$, $V_0 = 0.65V$ to 2.65V, $R_L = 1k$ to $V_S/2$ 11 V/mV V_{CM} Input Voltage Range Guaranteed by CMRR, $V_S = 5V$, 0V1.5 V Guaranteed by CMRR, V_S = 3.3V, 0V 1.15 2.65 ٧ $V_S = 5V$, $V_{CM} = 1.5V$ to 4V

 $V_S = 3.3V$, $V_{CM} = 1.15V$ to 2.65V

 $V_S = 5V$, $V_{CM} = 1.5V$ to 4V

Common Mode Rejection Ratio

CMRR Match (Channel-to-Channel) (Note 6)

dB

dΒ

dB

90

85

115

110

115

CMRR

ELECTRICAL CHARACTERISTICS $T_A = 25^{\circ}C$, $V_S = 5V$, 0V; $V_S = 3.3V$, 0V; $V_{CM} = V_{OUT} = half supply, ENABLE = <math>0V$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
PSRR	Power Supply Rejection Ratio	V _S = 3V to 10V	90	115		dB
	PSRR Match (Channel-to-Channel) (Note 6)	V _S = 3V to 10V	84	115		dB
	Minimum Supply Voltage (Note 7)		3			V
V _{OL}	Output Voltage Swing Low (Note 8)	No Load $I_{SINK} = 5mA$ $V_S = 5V$, $I_{SINK} = 15mA$ $V_S = 3.3V$, $I_{SINK} = 10mA$		4 75 165 125	40 180 320 240	mV mV mV
V _{OH}	Output Voltage Swing High (Note 8)	No Load I _{SOURCE} = 5mA V _S = 5V, I _{SOURCE} = 15mA V _S = 3.3V, I _{SOURCE} = 10mA		5 85 220 165	50 195 410 310	mV mV mV
I _{SC}	Short-Circuit Current	V _S = 5V V _S = 3.3V	±40 ±35	±55 ±50		mA mA
I _S	Supply Current per Amplifier Disabled Supply Current per Amplifier	ENABLE = V ⁺ – 0.35V		1.05 0.2	1.2 10	mA μA
I _{ENABLE}	ENABLE Pin Current	ENABLE = 0.3V		-25	-75	μА
V_L	ENABLE Pin Input Voltage Low				0.3	V
V_{H}	ENABLE Pin Input Voltage High		V+ - 0.35			V
	Output Leakage Current	$\overline{\text{ENABLE}} = V^+ - 0.35V$, $V_0 = 1.5V$ to 3.5V		0.2	10	μА
t _{ON}	Turn-On Time	$\overline{\text{ENABLE}}$ = 5V to 0V, R _L = 1k, V _S = 5V		500		ns
t _{OFF}	Turn-Off Time	$\overline{\text{ENABLE}}$ = 0V to 5V, R _L = 1k, V _S = 5V		76		μѕ
GBW	Gain-Bandwidth Product	Frequency = 1MHz, V _S = 5V LT6233-10		55 320		MHz MHz
SR	Slew Rate	$V_S = 5V$, $A_V = -1$, $R_L = 1k$, $V_0 = 1.5V$ to $3.5V$	10	15		V/µs
		LT6233-10, $V_S = 5V$, $A_V = -10$, $R_L = 1k$, $V_0 = 1.5V$ to 3.5V		80		V/µs
FPBW	Full-Power Bandwidth	V _S = 5V, V _{OUT} = 3V _{P-P} (Note 9)	1.06	1.6		MHz
		LT6233-10, HD2 = HD3 ≤ 1%		2.2		MHz
t _S	Settling Time (LT6233, LT6234, LT6235)	0.1% , $V_S = 5V$, $V_{STEP} = 2V$, $A_V = -1$, $R_L = 1k$		175		ns

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNIT
V _{OS}	Input Offset Voltage	LT6233CS6, LT6233CS6-10 LT6234CS8, LT6235CGN LT6234CDD	•			600 450 550	μV μV μV
	Input Offset Voltage Match (Channel-to-Channel) (Note 6)		•			800	μV
V _{OS} TC	Input Offset Voltage Drift (Note 10)	V _{CM} = Half Supply	•		0.5	3.0	μV/°C
I _B	Input Bias Current		•			3.5	μА
	I _B Match (Channel-to-Channel) (Note 6)		•			0.4	μА
I _{OS}	Input Offset Current		•			0.4	μА
A _{VOL}	Large-Signal Gain	$V_S = 5V$, $V_0 = 0.5V$ to 4.5V, $R_L = 10k$ to $V_S/2$ $V_S = 5V$, $V_0 = 0.5V$ to 4.5V, $R_L = 1k$ to $V_S/2$	•	47 12			V/mV V/mV
		$\begin{array}{c} V_S = 3.3 \text{V, } V_0 = 0.65 \text{V to } 2.65 \text{V, } R_L = 10 \text{k to } V_S/2 \\ V_S = 3.3 \text{V, } V_0 = 0.65 \text{V to } 2.65 \text{V, } R_L = 1 \text{k to } V_S/2 \end{array}$	•	40 7.5			V/mV V/mV
V _{CM}	Input Voltage Range	Guaranteed by CMRR V _S = 5V, 0V Vs = 3.3V, 0V	•	1.5 1.15		4 2.65	V
CMRR	Common Mode Rejection Ratio	V _S = 5V, V _{CM} = 1.5V to 4V V _S = 3.3V, V _{CM} = 1.15V to 2.65V	•	90 85			dB dB
	CMRR Match (Channel-to-Channel) (Note 6)	$V_S = 5V$, $V_{CM} = 1.5V$ to 4V	•	84			dB
PSRR	Power Supply Rejection Ratio	V _S = 3V to 10V	•	90			dB
	PSRR Match (Channel-to-Channel) (Note 6)	V _S = 3V to 10V	•	84			dB
	Minimum Supply Voltage (Note 7)		•	3			V
V _{0L}	Output Voltage Swing Low (Note 8)	No Load I _{SINK} = 5mA V _S = 5V, I _{SINK} = 15mA V _S = 3.3V, I _{SINK} = 10mA	• • •			50 195 360 265	mV mV mV
V _{OH}	Output Voltage Swing High (Note 8)	No Load I _{SOURCE} = 5mA V _S = 5V, I _{SOURCE} = 15mA V _S = 3.3V, I _{SOURCE} = 10mA	•			60 205 435 330	mV mV mV
I _{SC}	Short-Circuit Current	V _S = 5V V _S = 3.3V	•	±35 ±30			mA mA
I _S	Supply Current per Amplifier Disabled Supply Current per Amplifier	<u>ENABLE</u> = V+ – 0.25V	•		1	1.45	mA μA
I _{ENABLE}	ENABLE Pin Current	ENABLE = 0.3V	•			-85	μА
V_L	ENABLE Pin Input Voltage Low		•			0.3	V
V_{H}	ENABLE Pin Input Voltage High		•	V+ - 0.25			V
	Output Leakage Current	$\overline{\text{ENABLE}} = V^+ - 0.25V$, $V_0 = 1.5V$ to 3.5V	•		1		μА
t _{ON}	Turn-On Time	$\overline{\text{ENABLE}}$ = 5V to 0V, R _L = 1k, V _S = 5V	•		500		ns
t _{OFF}	Turn-Off Time	$\overline{\text{ENABLE}}$ = 0V to 5V, R _L = 1k, V _S = 5V	•		120		μs
SR	Slew Rate	$V_S = 5V$, $A_V = -1$, $R_L = 1k$, $V_0 = 1.5V$ to $3.5V$	•	9			V/µs
		LT6233-10, $A_V = -10$, $R_L = 1k$, $V_0 = 1.5V$ to 3.5V	•		75		V/µs
FPBW	Full-Power Bandwidth (Note 9)	V _S = 5V, V _{OUT} = 3V _{P-P} ; LT6233C, LT6234C, LT6235C	•	955			kHz

ELECTRICAL CHARACTERISTICS The ullet denotes the specifications which apply over the $-40^{\circ}\text{C} < T_A < 85^{\circ}\text{C}$ temperature range. $V_S = 5V$, OV; $V_S = 3.3V$, OV; $V_{CM} = V_{OUT} = \text{half supply, ENABLE} = OV$, unless otherwise noted. (Note 5)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
V _{OS}	Input Offset Voltage	LT6233IS6, LT6233IS6-10 LT6234IS8, LT6235IGN LT6234IDD	•			700 550 650	μV μV μV
	Input Offset Voltage Match (Channel-to-Channel) (Note 6)		•			1000	μV
V _{OS} TC	Input Offset Voltage Drift (Note 10)	V _{CM} = Half Supply	•		0.5	3	μV/°C
I_{B}	Input Bias Current		•			4	μA
	I _B Match (Channel-to-Channel) (Note 6)		•			0.4	μA
los	Input Offset Current		•			0.5	μΑ
A_{VOL}	Large-Signal Gain	$V_S = 5V$, $V_0 = 0.5V$ to 4.5V, $R_L = 10k$ to $V_S/2$ $V_S = 5V$, $V_0 = 0.5V$ to 4.5V, $R_L = 1k$ to $V_S/2$	•	45 11			V/mV V/mV
		$V_S = 3.3 \text{V}, V_0 = 0.65 \text{V}$ to 2.65 V, $R_L = 10 \text{k}$ to $V_S/2$ $V_S = 3.3 \text{V}, V_0 = 0.65 \text{V}$ to 2.65 V, $R_L = 1 \text{k}$ to $V_S/2$	•	38 7			V/mV V/mV
V _{CM}	Input Voltage Range	Guaranteed by CMRR $V_S = 5V$, $0V$ $V_S = 3.3V$, $0V$	•	1.5 1.15		4 2.65	V V
CMRR	Common Mode Rejection Ratio	$V_S = 5V$, $V_{CM} = 1.5V$ to 4V $V_S = 3.3V$, $V_{CM} = 1.15V$ to 2.65V	•	90 85			dB dB
	CMRR Match (Channel-to-Channel) (Note 6)	$V_S = 5V$, $V_{CM} = 1.5V$ to 4V	•	84			dB
PSRR	Power Supply Rejection Ratio	V _S = 3V to 10V	•	90			dB
	PSRR Match (Channel-to-Channel) (Note 6)	V _S = 3V to 10V	•	84			dB
	Minimum Supply Voltage (Note 7)		•	3			V
V _{OL}	Output Voltage Swing Low (Note 8)	No Load $I_{SINK} = 5mA$ $V_S = 5V$, $I_{SINK} = 15mA$ $V_S = 3.3V$, $I_{SINK} = 10mA$	• • •			50 195 370 275	mV mV mV
V _{OH}	Output Voltage Swing High (Note 6)	No Load I _{SOURCE} = 5mA V _S = 5V, I _{SOURCE} = 15mA V _S = 3.3V, I _{SOURCE} = 10mA	•			60 210 445 335	mV mV mV
I _{SC}	Short-Circuit Current	$V_S = 5V V_S = 3.3V$	•	±30 ±20			mA mA
I _S	Supply Current per Amplifier Disabled Supply Current per Amplifier	<u>ENABLE</u> = V ⁺ − 0.2V	•		1	1.5	mA μA
IENABLE	ENABLE Pin Current	ENABLE = 0.3V	•			-100	μA
V_L	ENABLE Pin Input Voltage Low		•			0.3	V
V_{H}	ENABLE Pin Input Voltage High		•	V ⁺ - 0.2			V
	Output Leakage Current	$\overline{\text{ENABLE}} = V^+ - 0.2V$, $V_0 = 1.5V$ to 3.5V	•		1		μА
t _{ON}	Turn-On Time	$\overline{\text{ENABLE}}$ = 5V to 0V, R _L = 1k, V _S = 5V	•		500		ns
t _{OFF}	Turn-Off Time	$\overline{\text{ENABLE}}$ = 0V to 5V, R _L = 1k, V _S = 5V	•		135		μѕ
SR	Slew Rate	$V_S = 5V$, $A_V = -1$, $R_L = 1k$, $V_0 = 1.5V$ to $3.5V$	•	8			V/µs
		LT6233-10, $A_V = -10$, $R_L = 1k$, $V_0 = 1.5V$ to 3.5V	•		70		V/µs
FPBW	Full-Power Bandwidth (Note 9)	V _S = 5V, V _{OUT} = 3V _{P-P} ; LT6233I, LT6234I, LT6235I	•	848			kHz

$\textbf{ELECTRICAL CHARACTERISTICS} \quad \textbf{T}_{A} = 25^{\circ}\text{C}, \ \textbf{V}_{S} = \pm 5 \text{V}, \ \textbf{V}_{CM} = \textbf{V}_{OUT} = 0 \text{V}, \ \overline{\textbf{ENABLE}} = 0 \text{V}, \ unless otherwise noted}.$

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
V _{OS}	Input Offset Voltage	LT6233S6, LT6233S6-10 LT6234S8, LT6235GN LT6234DD		100 50 75	500 350 450	μV μV μV
	Input Offset Voltage Match (Channel-to-Channel) (Note 6)			100	600	μV
I _B	Input Bias Current			1.5	3	μА
-	I _B Match (Channel-to-Channel) (Note 6)			0.04	0.3	μА
I _{OS}	Input Offset Current			0.04	0.3	μА
	Input Noise Voltage	0.1Hz to 10Hz		220		nV _{P-P}
e _n	Input Noise Voltage Density	f = 10kHz		1.9	3.0	nV/√Hz
i _n	Input Noise Current Density, Balanced Source Input Noise Current Density, Unbalanced Source	f = 10kHz, R _S = 10k f = 10kHz, R _S = 10k		0.43 0.78		pA/√Hz pA/√Hz
	Input Resistance	Common Mode Differential Mode		22 25		MΩ kΩ
C _{IN}	Input Capacitance	Common Mode Differential Mode		2.1 3.7		pF pF
A _{VOL}	Large-Signal Gain	$V_0 = \pm 4.5 V$, $R_L = 10 k$ $V_0 = \pm 4.5 V$, $R_L = 1 k$	97 28	180 55		V/mV V/mV
V_{CM}	Input Voltage Range	Guaranteed by CMRR	-3		4	V
CMRR	Common Mode Rejection Ratio	$V_{CM} = -3V$ to 4V	90	110		dB
	CMRR Match (Channel-to-Channel) (Note 6)	$V_{CM} = -3V \text{ to } 4V$	84	120		dB
PSRR	Power Supply Rejection Ratio	$V_S = \pm 1.5 V \text{ to } \pm 5 V$	90	115		dB
	PSRR Match (Channel-to-Channel) (Note 6)	$V_S = \pm 1.5 V \text{ to } \pm 5 V$	84	115		dB
V_{OL}	Output Voltage Swing Low (Note 8)	No Load I _{SINK} = 5mA I _{SINK} = 15mA		4 75 165	40 180 320	mV mV mV
V _{OH}	Output Voltage Swing High (Note 8)	No Load I _{SOURCE} = 5mA I _{SOURCE} = 15mA		5 85 220	50 195 410	mV mV mV
I _{SC}	Short-Circuit Current		±40	±55		mA
I _S	Supply Current per Amplifier Disabled Supply Current per Amplifier	ENABLE = 4.65V		1.15 0.2	1.4 10	mA μA
I _{ENABLE}	ENABLE Pin Current	ENABLE = 0.3V		-35	-85	μА
V_L	ENABLE Pin Input Voltage Low				0.3	V
V_{H}	ENABLE Pin Input Voltage High		4.65			V
	Output Leakage Current	$\overline{\text{ENABLE}} = 4.65 \text{V}, V_0 = \pm 1 \text{V}$		0.2	10	μА
t _{ON}	Turn-On Time	$\overline{\text{ENABLE}}$ = 5V to 0V, R _L = 1k		900		ns
t _{OFF}	Turn-Off Time	$\overline{\text{ENABLE}}$ = 0V to 5V, R _L = 1k		100		μѕ
GBW	Gain-Bandwidth Product	Frequency = 1MHz LT6233-10	42 260	60 375		MHz MHz
SR	Slew Rate	$A_V = -1$, $R_L = 1k$, $V_0 = -2V$ to $2V$	12	17		V/µs
		LT6233-10, $A_V = -10$, $R_L = 1k$, $V_0 = -2V$ to $2V$		115		V/µs
FPBW	Full-Power Bandwidth	V _{OUT} = 3V _{P-P} (Note 9)	1.27	1.8		MHz
		LT6233-10, HD2 = HD3 ≤ 1%		2.2		MHz
t_S	Settling Time (LT6233, LT6234, LT6235)	0.1% , $V_{STEP} = 2V$, $A_V = -1$, $R_L = 1k$		170		ns

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over the 0°C < T_A < 70°C temperature range. $V_S = \pm 5V$, $V_{CM} = V_{OUT} = 0V$, $\overline{ENABLE} = 0V$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
V _{OS}	Input Offset Voltage	LT6233CS6, LT6233CS6-10 LT6234CS8, LT6235CGN LT6234CDD	•			600 450 550	μV μV μV
	Input Offset Voltage Match (Channel-to-Channel) (Note 6)		•			800	μV
V _{OS} TC	Input Offset Voltage Drift (Note 10)		•		0.5	3	μV/°C
I _B	Input Bias Current		•			3.5	μА
	I _B Match (Channel-to-Channel) (Note 6)		•			0.4	μА
I _{OS}	Input Offset Current		•			0.4	μА
A _{VOL}	Large-Signal Gain	$V_0 = \pm 4.5 \text{V}, R_L = 10 \text{k}$ $V_0 = \pm 4.5 \text{V}, R_L = 1 \text{k}$	•	75 22			V/mV V/mV
V _{CM}	Input Voltage Range	Guaranteed by CMRR	•	-3		4	V
CMRR	Common Mode Rejection Ratio	$V_{CM} = -3V \text{ to } 4V$	•	90			dB
	CMRR Match (Channel-to-Channel) (Note 6)	$V_{CM} = -3V \text{ to } 4V$	•	84			dB
PSRR	Power Supply Rejection Ratio	$V_S = \pm 1.5 V \text{ to } \pm 5 V$	•	90			dB
	PSRR Match (Channel-to-Channel) (Note 6)	$V_S = \pm 1.5 V \text{ to } \pm 5 V$	•	84			dB
V _{OL}	Output Voltage Swing Low (Note 8)	No Load I _{SINK} = 5mA I _{SINK} = 15mA	•			50 195 360	mV mV mV
V _{OH}	Output Voltage Swing High (Note 8)	No Load SOURCE = 5mA SOURCE = 15mA	•			60 205 435	mV mV mV
I _{SC}	Short-Circuit Current		•	±35			mA
I _S	Supply Current per Amplifier Disabled Supply Current per Amplifier	ENABLE = 4.75V	•		1	1.7	mA μA
I _{ENABLE}	ENABLE Pin Current	ENABLE = 0.3V	•			-95	μА
V_L	ENABLE Pin Input Voltage Low		•			0.3	V
V_{H}	ENABLE Pin Input Voltage High		•	4.75			V
	Output Leakage Current	$\overline{\text{ENABLE}} = 4.75 \text{V}, V_0 = \pm 1 \text{V}$	•		1		μА
t _{ON}	Turn-On Time	ENABLE = 5V to 0V, R _L = 1k	•		900		ns
t _{OFF}	Turn-Off Time	ENABLE = 0V to 5V, R _L = 1k	•		150		μs
SR	Slew Rate	$A_V = -1$, $R_L = 1k$, $V_0 = -2V$ to $2V$	•	11			V/µs
		LT6233-10, $A_V = -10$, $R_L = 1k$, $V_0 = -2V$ to $2V$	•		105		V/µs
FPBW	Full-Power Bandwidth (Note 9)	V _{OUT} = 3V _{P-P} ; LT6233C, LT6234C, LT6235C	•	1.16			MHz

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over the $-40^{\circ}C < T_A < 85^{\circ}C$ temperature range. $V_S = \pm 5V$, $V_{CM} = V_{OUT} = 0V$, ENABLE = 0V, unless otherwise noted. (Note 5)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
V _{OS}	Input Offset Voltage	LT6233IS6, LT6233IS6-10 LT6234IS8, LT6235IGN LT6234IDD	•			700 550 650	μV μV μV
	Input Offset Voltage Match (Channel-to-Channel) (Note 6)		•			1000	μV
V _{OS} TC	Input Offset Voltage Drift (Note 10)		•		0.5	3	μV/°C
I _B	Input Bias Current		•			4	μA
	I _B Match (Channel-to-Channel) (Note 6)		•			0.4	μА
I _{OS}	Input Offset Current		•			0.5	μΑ
A _{VOL}	Large-Signal Gain	$V_0 = \pm 4.5V$, $R_L = 10k$ $V_0 = \pm 4.5V$, $R_L = 1k$	•	68 20			V/mV V/mV
V _{CM}	Input Voltage Range	Guaranteed by CMRR	•	-3		4	V
CMRR	Common Mode Rejection Ratio	$V_{CM} = -3V$ to $4V$	•	90			dB
	CMRR Match (Channel-to-Channel) (Note 6)	$V_{CM} = -3V$ to 4V	•	84			dB
PSRR	Power Supply Rejection Ratio	$V_S = \pm 1.5V$ to $\pm 5V$	•	90			dB
	PSRR Match (Channel-to-Channel) (Note 6)	$V_S = \pm 1.5 V \text{ to } \pm 5 V$	•	84			dB
V _{OL}	Output Voltage Swing Low (Note 8)	No Load S _{INK} = 5mA S _{INK} = 15mA	•			50 195 370	mV mV mV
V _{OH}	Output Voltage Swing High (Note 8)	No Load Source = 5mA Source = 15mA	•			70 210 445	mV mV mV
I _{SC}	Short-Circuit Current		•	±30			mA
I _S	Supply Current per Amplifier Disabled Supply Current per Amplifier	ENABLE = 4.8V	•		1	1.75	mA μA
I _{ENABLE}	ENABLE Pin Current	ENABLE = 0.3V	•			-110	μА
V_L	ENABLE Pin Input Voltage Low		•			0.3	V
V_{H}	ENABLE Pin Input Voltage High		•	4.8			V
	Output Leakage Current	$\overline{\text{ENABLE}} = 4.8\text{V}, V_0 = \pm 1\text{V}$	•		1		μΑ
t _{ON}	Turn-On Time	$\overline{\text{ENABLE}}$ = 5V to 0V, R _L = 1k	•		900		ns
t _{OFF}	Turn-Off Time	$\overline{\text{ENABLE}} = 0 \text{V to 5V}, R_{\text{L}} = 1 \text{k}$	•		160		μѕ
SR	Slew Rate	$A_V = -1$, $R_L = 1k$, $V_0 = -2V$ to $2V$	•	10			V/µs
		LT6233-10, $A_V = -10$, $R_L = 1k$, $V_0 = -2V$ to $2V$	•		95		V/µs
FPBW	Full-Power Bandwidth (Note 9)	V _{OUT} = 3V _{P-P} ; LT62331, LT62341, LT62351	•	1.06			MHz

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

Note 2: Inputs are protected by back-to-back diodes. If the differential input voltage exceeds 0.7V, the input current must be limited to less than 40mA.

Note 3: A heat sink may be required to keep the junction temperature below the absolute maximum rating when the output is shorted indefinitely.

Note 4: The LT6233C/LT6233I the LT6234C/LT6234I, and LT6235C/LT6235I are guaranteed functional over the temperature range of -40° C to 85°C.

Note 5: The LT6233C/LT6234C/LT6235C are guaranteed to meet specified performance from 0°C to 70°C. The LT6233C/LT6234C/LT6235C are designed, characterized and expected to meet specified performance from -40°C to 85°C, but are not tested or QA sampled at these temperatures. The LT6233I/LT6234I/LT6235I are guaranteed to meet specified performance from -40°C to 85°C.

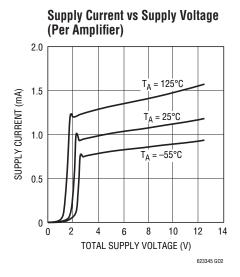
Note 6: Matching parameters are the difference between the two amplifiers A and D and between B and C of the LT6235; between the two amplifiers of the LT6234. CMRR and PSRR match are defined as follows: CMRR and PSRR are measured in $\mu V/V$ on the matched amplifiers. The difference is calculated between the matching sides in $\mu V/V$. The result is converted to dB.

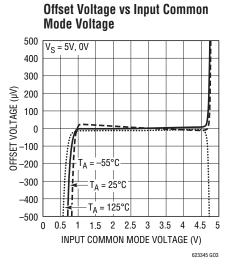
623345fd

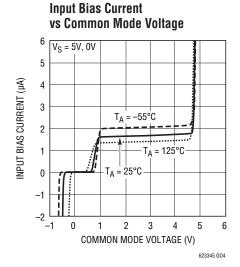
ELECTRICAL CHARACTERISTICS

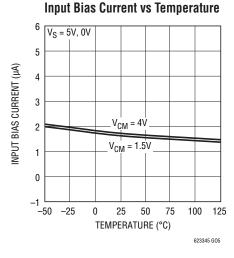
Note 7: Minimum supply voltage is guaranteed by power supply rejection ratio test.

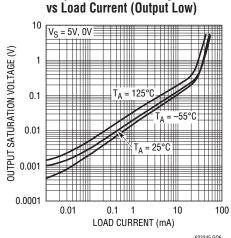
Note 8: Output voltage swings are measured between the output and power supply rails.

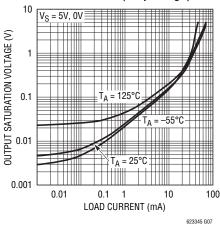

Note 9: Full-power bandwidth is calculated from the slew rate: FPBW = $SR/2\pi V_P$

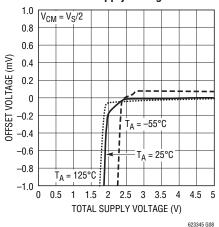

Note 10: This parameter is not 100% tested.


TYPICAL PERFORMANCE CHARACTERISTICS

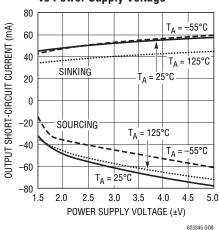

(LT6233/LT6234/LT6235)

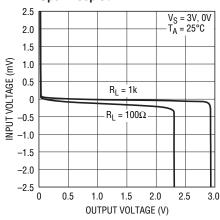

Vos Distribution V_S = 5V, 0V V_{CM} = V⁺/2 S8 50 NUMBER OF UNITS 40 30 20 10 -200 -150 -100 -50 150 200 0 50 100 INPUT OFFSET VOLTAGE (µV) 623345 GO1

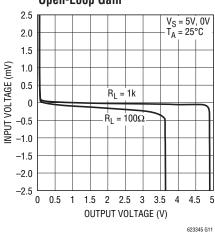


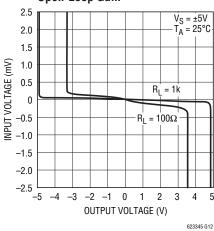

Output Saturation Voltage

(LT6233/LT6234/LT6235)

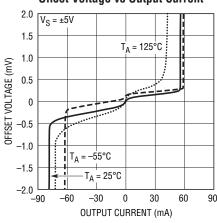

Output Saturation Voltage vs Load Current (Output High)


Minimum Supply Voltage

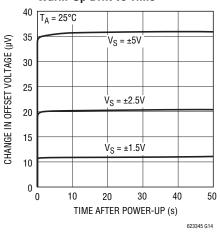

Output Short-Circuit Current vs Power Supply Voltage


Open-Loop Gain

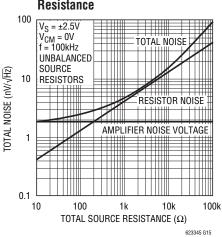
Open-Loop Gain

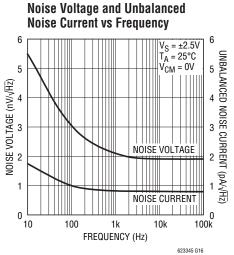


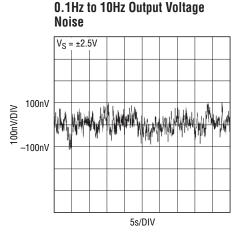
Open-Loop Gain

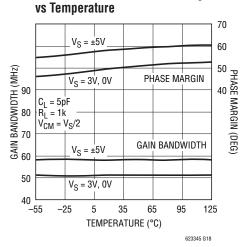


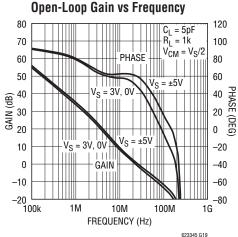
Offset Voltage vs Output Current

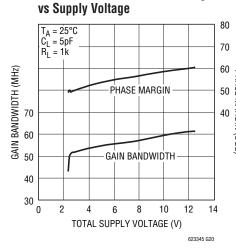

623345 G10

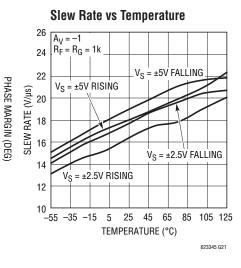

Warm-Up Drift vs Time

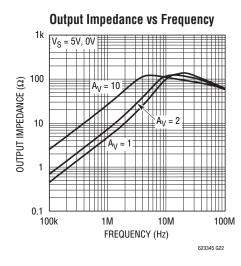


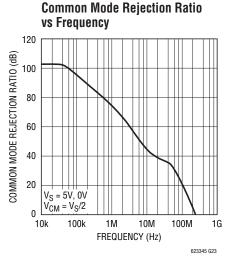

Total Noise vs Total Source Resistance

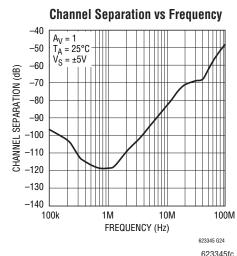

(LT6233/LT6234/LT6235)



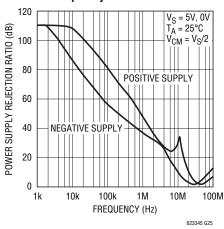

Gain Bandwidth and Phase Margin

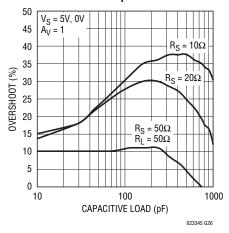




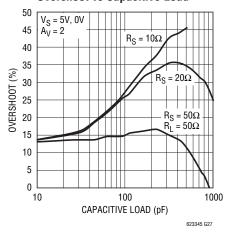

Gain Bandwidth and Phase Margin

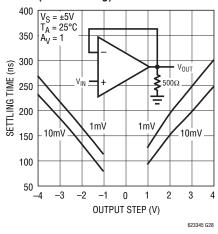
623345 G17

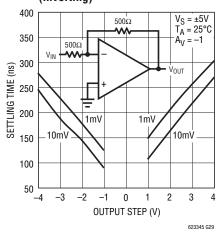


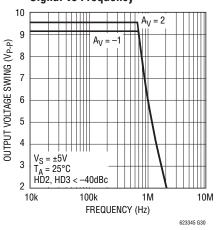


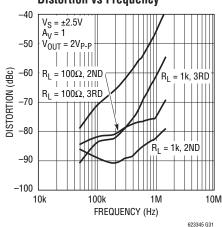
(LT6233/LT6234/LT6235)

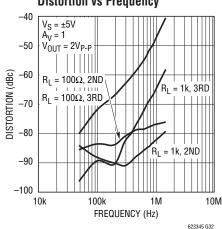

Power Supply Rejection Ratio vs Frequency

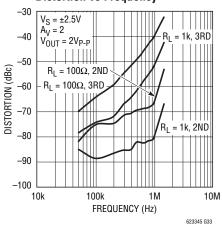

Series Output Resistance and Overshoot vs Capacitive Load


Series Output Resistance and Overshoot vs Capacitive Load

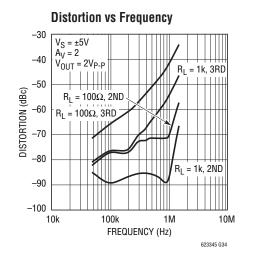

Settling Time vs Output Step (Noninverting)

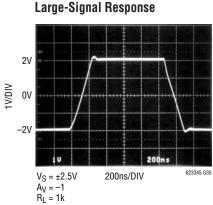

Settling Time vs Output Step (Inverting)

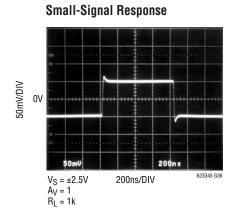

Maximum Undistorted Output Signal vs Frequency

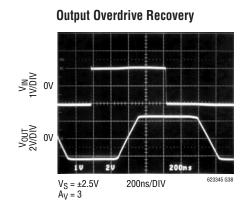

Distortion vs Frequency

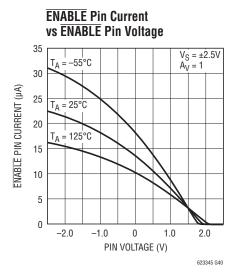
Distortion vs Frequency

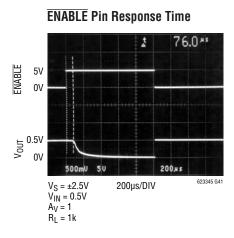



Distortion vs Frequency

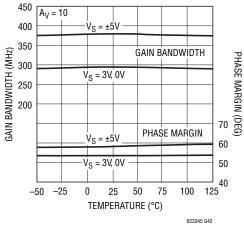


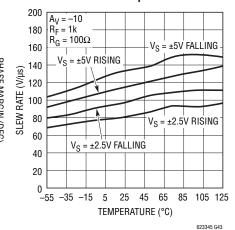

(LT6233/LT6234/LT6235)



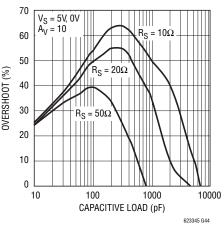


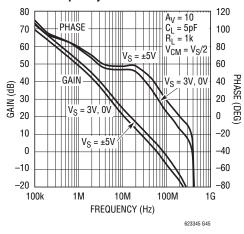
(LT6233) ENABLE Characteristics

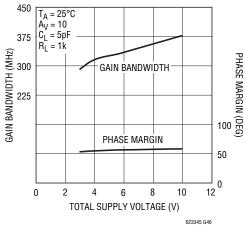


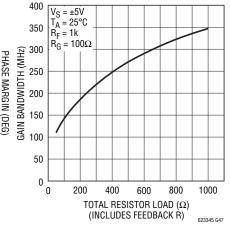


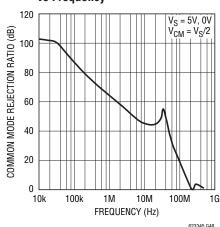
(LT6233-10)

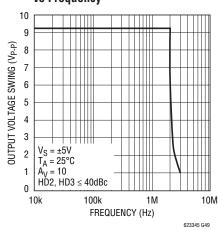

Gain Bandwidth and Phase Margin vs Temperature

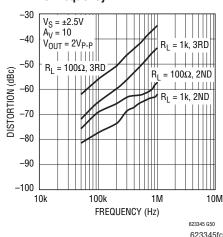

Slew Rate vs Temperature


Series Output Resistor and Overshoot vs Capacitive Load

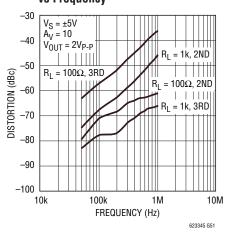

Open-Loop Gain and Phase vs Frequency


Gain Bandwidth and Phase Margin vs Supply Voltage

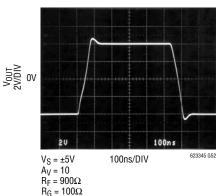

Gain Bandwidth vs Resistor Load


Common Mode Rejection Ratio vs Frequency

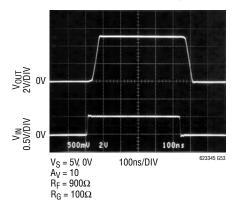
Maximum Undistorted Output vs Frequency

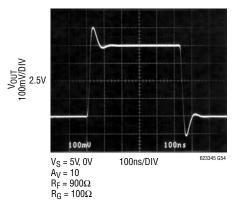


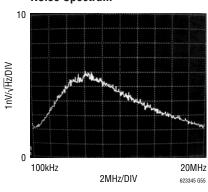
2nd and 3rd Harmonic Distortion vs Frequency



(LT6233-10)


2nd and 3rd Harmonic Distortion vs Frequency


Large-Signal Response


Output-Overload Recovery

Small-Signal Response

Input Referred High Frequency Noise Spectrum

APPLICATIONS INFORMATION

Amplifier Characteristics

Figure 1 is a simplified schematic of the LT6233/LT6234/LT6235, which has a pair of low noise input transistors Q1 and Q2. A simple current mirror Q3/Q4 converts the differential signal to a single-ended output, and these transistors are degenerated to reduce their contribution to the overall noise.

Capacitor C1 reduces the unity-cross frequency and improves the frequency stability without degrading the gain bandwidth of the amplifier. Capacitor C_M sets the overall amplifier gain bandwidth. The differential drive generator supplies current to transistors Q5 and Q6 that swing the output from rail-to-rail.

Input Protection

There are back-to-back diodes, D1 and D2 across the + and – inputs of these amplifiers to limit the differential input voltage to ±0.7V. The inputs of the LT6233/LT6234/LT6235 do not have internal resistors in series with the input transistors. This technique is often used to protect the input devices from overvoltage that causes excessive current to flow. The addition of these resistors would significantly degrade the low noise voltage of these amplifiers. For instance, a 100Ω resistor in series with each input would generate $1.8\text{nV}/\sqrt{\text{Hz}}$ of noise, and the total amplifier noise voltage would rise from $1.9\text{nV}/\sqrt{\text{Hz}}$ to $2.6\text{nV}/\sqrt{\text{Hz}}$. Once the input differential voltage exceeds ±0.7V, steady-state current conducted through the protection diodes should

be limited to ± 40 mA. This implies 25Ω of protection resistance is necessary per volt of overdrive beyond ± 0.7 V. These input diodes are rugged enough to handle transient currents due to amplifier slew rate overdrive and clipping without protection resistors.

The photo of Figure 2 shows the output response to an input overdrive with the amplifier connected as a voltage follower. With the input signal low, current source I_1 saturates and the differential drive generator drives Q6 into saturation so the output voltage swings all the way to V^- . The input can swing positive until transistor Q2 saturates into current mirror Q3/Q4. When saturation occurs, the output tries to phase invert, but diode D2 conducts current from the signal source to the output through the feedback connection. The output is clamped a diode drop below the input. In this photo, the input signal generator is limiting at about 20mA.

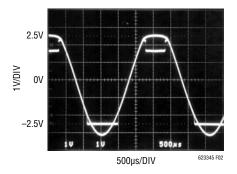


Figure 2. $V_S = \pm 2.5V$, $A_V = 1$ with Large Overdrive

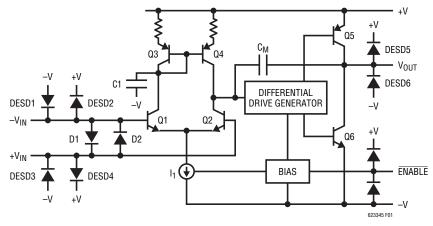


Figure 1. Simplified Schematic

APPLICATIONS INFORMATION

With the amplifier connected in a gain of $A_V \ge 2$, the output can invert with very heavy overdrive. To avoid this inversion, limit the input overdrive to 0.5V beyond the power supply rails.

ESD

The LT6233/LT6234/LT6235 have reverse-biased ESD protection diodes on all inputs and outputs as shown in Figure 1. If these pins are forced beyond either supply, unlimited current will flow through these diodes. If the current is transient and limited to one hundred milliamps or less, no damage to the device will occur.

Noise

The noise voltage of the LT6233/LT6234/LT6235 is equivalent to that of a 225 Ω resistor, and for the lowest possible noise it is desirable to keep the source and feedback resistance at or below this value, i.e., $R_S + R_G||R_{FB} \le 225\Omega$. With $R_S + R_G||R_{FB} = 225\Omega$ the total noise of the amplifier is:

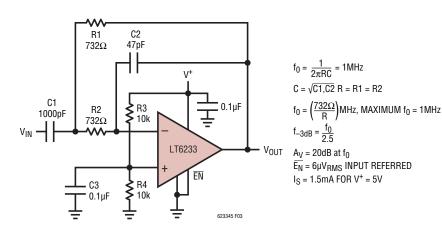
$$e_N = \sqrt{(1.9 \text{nV})^2 + (1.9 \text{nV})^2} = 2.69 \text{nV}/\sqrt{\text{Hz}}$$

Below this resistance value, the amplifier dominates the noise, but in the region between 225Ω and about 30k, the noise is dominated by the resistor thermal noise. As the total resistance is further increased beyond 30k, the amplifier noise current multiplied by the total resistance eventually dominates the noise.

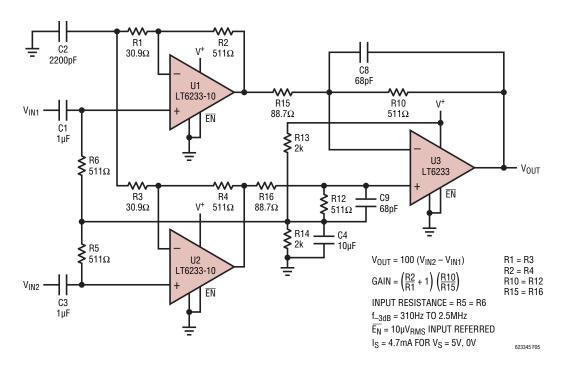
The product of $e_N \cdot \sqrt{I_{SUPPLY}}$ is an interesting way to gauge low noise amplifiers. Most low noise amplifiers with low e_N have high I_{SUPPLY} current. In applications that require low noise voltage with the lowest possible supply current, this product can prove to be enlightening. The LT6233/LT6234/LT6235 have an $e_N \cdot \sqrt{I_{SUPPLY}}$ product of only 2.1 per amplifier, yet it is common to see amplifiers with similar noise specifications to have $e_N \cdot \sqrt{I_{SUPPLY}}$ as high as 13.5.

For a complete discussion of amplifier noise, see the LT1028 data sheet.

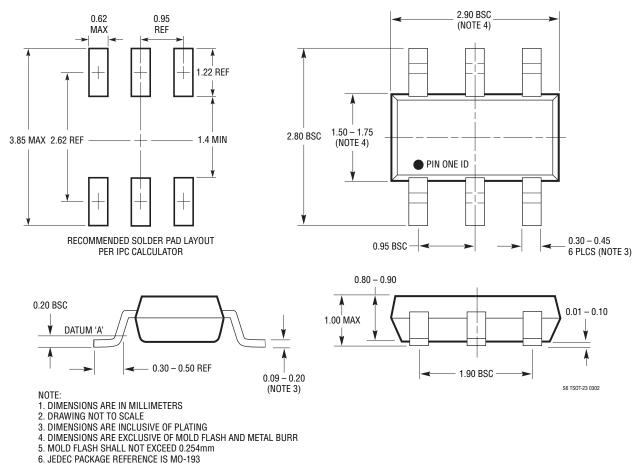
Enable Pin


The LT6233 and LT6233-10 include an ENABLE pin that shuts down the amplifier to 10µA maximum supply current. The ENABLE pin must be driven low to operate the amplifier with normal supply current. The ENABLE pin must be driven high to within 0.35V of V+ to shut down the supply current. This can be accomplished with simple gate logic; however care must be taken if the logic and the LT6233 operate from different supplies. If this is the case, then open-drain logic can be used with a pull-up resistor to ensure that the amplifier remains off. See Typical Performance Characteristics.


The output leakage current when disabled is very low; however, current can flow into the input protection diodes D1 and D2 if the output voltage exceeds the input voltage by a diode drop.


TYPICAL APPLICATIONS

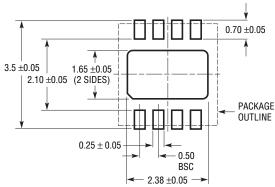
Single Supply, Low Noise, Low Power, Bandpass Filter with Gain = 10

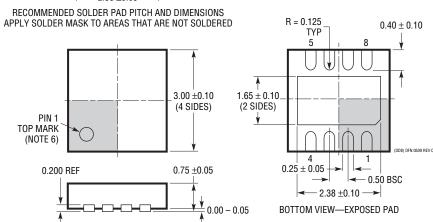

Low Power, Low Noise, Single Supply, Instrumentation Amplifier with Gain = 100

PACKAGE DESCRIPTION

S6 Package 6-Lead Plastic TSOT-23

(Reference LTC DWG # 05-08-1636)



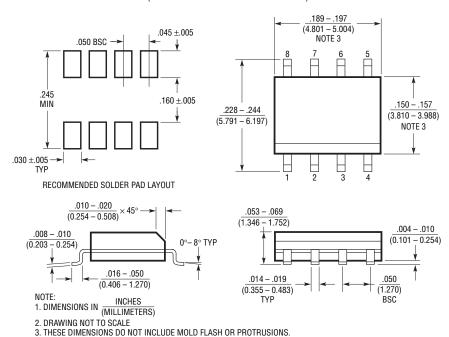

- 6. JEDEC PACKAGE REFERENCE IS MO-193

PACKAGE DESCRIPTION

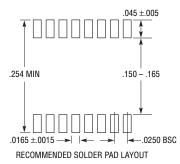
$\begin{array}{c} \textbf{DD Package} \\ \textbf{8-Lead Plastic DFN (3mm} \times 3mm) \end{array}$

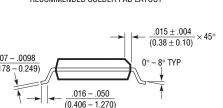
(Reference LTC DWG # 05-08-1698 Rev C)

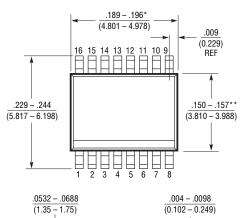
NOTE:


- 1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE MO-229 VARIATION OF (WEED-1)
- 2. DRAWING NOT TO SCALE
- 3. ALL DIMENSIONS ARE IN MILLIMETERS
- DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE
- 5. EXPOSED PAD SHALL BE SOLDER PLATED
- SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION
 ON TOP AND BOTTOM OF PACKAGE

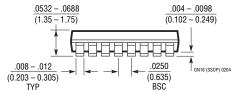
PACKAGE DESCRIPTION


S8 Package 8-Lead Plastic Small Outline (Narrow .150 Inch)


(Reference LTC DWG # 05-08-1610)


GN Package 16-Lead Plastic SSOP (Narrow .150 Inch) (Reference LTC DWG # 05-08-1641)

MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)

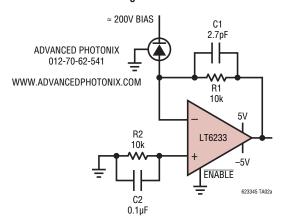


- .007 .0098(0.178 - 0.249)(0.406 - 1.270)
 - NOTE: 1. CONTROLLING DIMENSION: INCHES
 - 2. DIMENSIONS ARE IN $\frac{\mathsf{INCHES}}{\mathsf{(MILLIMETERS)}}$
 - 3. DRAWING NOT TO SCALE
 - *DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE
 - **DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE

S08 0303

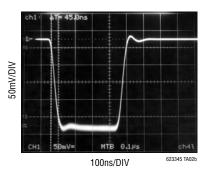
REVISION HISTORY (Revision history begins at Rev C)

REV	DATE	DESCRIPTION	PAGE NUMBER
С	1/11	Revised y-axis lable on curve G40 in Typical Performance Characteristics	14
		Updated ENABLE Pin section in Applications Information	18


TYPICAL APPLICATIONS

The LT6233 is applied as a transimpedance amplifier with an I-to-V conversion gain of $10k\Omega$ set by R1. The LT6233 is ideally suited to this application because of its low input offset voltage and current, and its low noise. This is because the 10k resistor has an inherent thermal noise of $13nV/\sqrt{Hz}$ or $1.3pA/\sqrt{Hz}$ at room temperature, while the LT6233 contributes only 2nV and $0.8pA/\sqrt{Hz}$. So, with respect to both voltage and current noises, the LT6233 is actually quieter than the gain resistor.

The circuit uses an avalanche photodiode with the cathode biased to approximately 200V. When light is incident on


the photodiode, it induces a current I_{PD} which flows into the amplifier circuit. The amplifier output falls negative to maintain balance at its inputs. The transfer function is therefore $V_{OUT} = -I_{PD} \bullet 10k$. C1 ensures stability and good settling characteristics. Output offset was measured at better than $500\mu V$, so low in part because R2 serves to cancel the DC effects of bias current. Output noise was measured at below $1mV_{P-P}$ on a 20MHz measurement bandwidth, with C2 shunting R2's thermal noise. As shown in the scope photo, the rise time is 45ns, indicating a signal bandwidth of 7.8MHz.

Low Power Avalanche Photodiode Transimpedance Amplifier $I_S = 1.2 \text{mA}$

OUTPUT OFFSET = 500µV TYPICAL BANDWIDTH = 7.8MHz OUTPUT NOISE = 1mV_{P.P} (20MHz MEASUREMENT BW)

Photodiode Amplifier Time Domain Response

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1028	Single, Ultralow Noise 50MHz Op Amp	0.85nV/√Hz
LT1677	Single, Low Noise Rail-to-Rail Amplifier	3V Operation, 2.5mA, 4.5nV/√Hz, 60μV Max V _{OS}
LT1806/LT1807	Single/Dual, Low Noise 325MHz Rail-to-Rail Amplifier	2.5V Operation, 550µV Max V _{OS} , 3.5nV/√Hz
LT6200/LT6201	Single/Dual, Low Noise 165MHz	0.95nV√Hz, Rail-to-Rail Input and Output
LT6202/LT6203/LT6204	Single/Dual/Quad, Low Noise, Rail-to-Rail Amplifier	1.9nV/√Hz, 3mA Max, 100MHz Gain Bandwidth