feATURES

- Low Noise Voltage: $1.9 n \mathrm{~V} / \sqrt{\mathrm{Hz}}$
- Low Supply Current: 1.2mA/Amp Max
- Low Offset Voltage: $350 \mu \mathrm{~V}$ Max
- Gain-Bandwidth Product:

LT6233: 60MHz; $A_{v} \geq 1$
LT6233-10: $375 \mathrm{MHz} ; \mathrm{A}_{\mathrm{v}} \geq 10$

- Wide Supply Range: 3 V to 12.6 V
- Output Swings Rail-to-Rail
- Common Mode Rejection Ratio: 115dB Typ
- Output Current: 30 mA
- Operating Temperature Range: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- LT6233 Shutdown to $10 \mu \mathrm{~A}$ Maximum
- LT6233/LT6233-10 in a Low Profile (1mm)

ThinSOTTM Package

- Dual LT6234 in 8-Pin SO and Tiny DFN Packages
- LT6235 in a 16-Pin SSOP Package

APPLICATIONS

- Ultrasound Amplifiers
- Low Noise, Low Power Signal Processing
- Active Filters
- Driving A/D Converters
- Rail-to-Rail Buffer Amplifiers

DESCRIPTIOn

The LT『 $6233 /$ /L6234/LT6235 are single/dual/quad low noise, rail-to-rail output unity-gain stable op amps that feature $1.9 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ noise voltage and draw only 1.2 mA of supply current per amplifier. These amplifiers combine very low noise and supply current with a 60MHz gainbandwidth product, a $17 \mathrm{~V} / \mu \mathrm{s}$ slew rate and are optimized for low supply voltage signal conditioning systems. The LT6233-10 is a single amplifier optimized for higher gain applications resulting in higher gain bandwidth and slew rate. The LT6233 and LT6233-10 include an enable pin that can be used to reduce the supply current to less than $10 \mu \mathrm{~A}$.
The amplifierfamily has an outputthat swings within 50 mV of either supply rail to maximize the signal dynamic range in low supply applications and is specified on $3.3 \mathrm{~V}, 5 \mathrm{~V}$ and $\pm 5 \mathrm{~V}$ supplies. The $e_{n} \bullet \sqrt{\text { SUPPLY }}$ product of 2.1 peramplifier is among the most noise efficient of any op amp.
The LT6233/LT6233-10 are available in the 6-lead SOT-23 package and the LT6234 dual is available in the 8 -pin SO package with standard pinouts. For compact layouts, the dual is also available in a tiny dual fine pitch leadless package (DFN). The LT6235 is available in the 16 -pin SSOP package.

[^0]
TYPICAL APPLICATION

Low Noise Low Power Instrumentation Amplifier

ABSOLUTE MAXIMUM RATINGS (Note 1)

Total Supply Voltage (V^{+}to V^{-}) \qquad 12.6V

Input Current (Note 2) \qquad $\pm 40 \mathrm{~mA}$ Output Short-Circuit Duration (Note 3) \qquad Indefinite Operating Temperature Range (Note 4).... $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ Specified Temperature Range (Note 5) $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ Junction Temperature \qquad $150^{\circ} \mathrm{C}$

Junction Temperature (DD Package) \qquad $125^{\circ} \mathrm{C}$
Storage Temperature Range \qquad $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Storage Temperature Range (DD Package) \qquad $-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec)................... $300^{\circ} \mathrm{C}$

PIn CONFIGURATIOn

| |
| :--- | :--- | :--- |

ORDER INFORMATION

LEAD FREE FINISH	TAPE AND REEL	PART MARKING*	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE
LT6233CS6\#PBF	LT6233CS6\#TRPBF	LTAFL	6-Lead Plastic TSOT-23	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LT6233IS6\#PBF	LT6233IS6\#TRPBF	LTAFL	6-Lead Plastic TSOT-23	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT6233CS6-10\#PBF	LT6233CS6-10\#TRPBF	LTAFM	6-Lead Plastic TSOT-23	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LT6233IS6-10\#PBF	LT6233IS6-10\#TRPBF	LTAFM	6-Lead Plastic TSOT-23	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT6234CS8\#PBF	LT6234CS8\#TRPBF	6234	8 -Lead Plastic S0	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LT6234IS8\#PBF	LT6234IS8\#TRPBF	$6234 I$	8 -Lead Plastic S0	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT6234CDD\#PBF	LT6234CDD\#TRPBF	LAET	8-Lead (3mm $\times 3 \mathrm{~mm})$ Plastic DFN	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LT6234IDD\#PBF	LT6234IDD\#TRPBF	LAET	8-Lead (3mm $\times 3 \mathrm{~mm})$ Plastic DFN	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT6235CGN\#PBF	LT6235CGN\#TRPBF	6235	16-Lead Narrow Plastic SSOP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LT6235IGN\#PBF	LT6235IGN\#TRPBF	$6235 I$	16-Lead Narrow Plastic SSOP	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container. Consult LTC Marketing for information on non-standard lead based finish parts.
For more information on lead free part marking, go to: http://www.linear.com/leadfree/
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/

ELECTRICAL CHARACTERISTICS
 $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{S}}=3.3 \mathrm{~V}, \mathrm{OV} ; \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{0 U T}=$ half supply,
 $\overline{\text { ENABLE }}=0 \mathrm{~V}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\begin{aligned} & \text { LT6233S6, LT6233S6-10 } \\ & \text { LT6234S8, LT6235GN } \\ & \text { LT6234DD } \end{aligned}$		$\begin{aligned} & 100 \\ & 50 \\ & 75 \end{aligned}$	$\begin{aligned} & 500 \\ & 350 \\ & 450 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V}$
	Input Offset Voltage Match (Channel-to-Channel) (Note 6)			80	600	$\mu \mathrm{V}$
I_{B}	Input Bias Current			1.5	3	$\mu \mathrm{A}$
	IB Match (Channel-to-Channel) (Note 6)			0.04	0.3	$\mu \mathrm{A}$
Ios	Input Offset Current			0.04	0.3	$\mu \mathrm{A}$
	Input Noise Voltage	0.1 Hz to 10Hz		220		$\mathrm{n} \mathrm{V}_{\mathrm{P}-\mathrm{P}}$
e_{n}	Input Noise Voltage Density	$\mathrm{f}=10 \mathrm{kHz}, \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$		1.9	3	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Input Noise Current Density, Balanced Source Input Noise Current Density, Unbalanced Source	$\begin{aligned} & f=10 \mathrm{kHz}, V_{S}=5 \mathrm{~V}, R_{S}=10 \mathrm{k} \\ & \mathrm{f}=10 \mathrm{kHz}, V_{S}=5 \mathrm{~V}, R_{S}=10 \mathrm{k} \end{aligned}$		$\begin{aligned} & 0.43 \\ & 0.78 \end{aligned}$		$\begin{aligned} & \mathrm{pA} / \sqrt{\mathrm{Hz}} \\ & \mathrm{pA} / \sqrt{\mathrm{Hz}} \end{aligned}$
	Input Resistance	Common Mode Differential Mode		$\begin{aligned} & 22 \\ & 25 \end{aligned}$		$\begin{gathered} \mathrm{M} \Omega \\ \mathrm{k} \Omega \end{gathered}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance	Common Mode Differential Mode		$\begin{aligned} & 2.5 \\ & 4.2 \end{aligned}$		pF
AVOL	Large-Signal Gain	$\begin{aligned} & V_{S}=5 \mathrm{~V}, \mathrm{~V}_{0}=0.5 \mathrm{~V} \text { to } 4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \text { to } \mathrm{V}_{\mathrm{S}} / 2 \\ & \mathrm{~V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~V}_{0}=0.5 \mathrm{~V} \text { to } 4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \text { to } \mathrm{V}_{\mathrm{S}} / 2 \end{aligned}$	$\begin{aligned} & 73 \\ & 18 \end{aligned}$	$\begin{gathered} 140 \\ 35 \end{gathered}$		V / mV V / mV
		$\begin{aligned} & V_{S}=3.3 \mathrm{~V}, \mathrm{~V}_{0}=0.65 \mathrm{~V} \text { to } 2.65 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \text { to } \mathrm{V}_{\mathrm{S}} / 2 \\ & \mathrm{~V}_{\mathrm{S}}=3.3 \mathrm{~V}, \mathrm{~V}_{0}=0.65 \mathrm{~V} \text { to } 2.65 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \text { to } \mathrm{V}_{\mathrm{S}} / 2 \end{aligned}$	$\begin{aligned} & 53 \\ & 11 \end{aligned}$	$\begin{aligned} & 100 \\ & 20 \end{aligned}$		V / mV V / mV
V_{CM}	Input Voltage Range	Guaranteed by CMRR, $\mathrm{V}_{S}=5 \mathrm{~V}, 0 \mathrm{~V}$ Guaranteed by CMRR, $\mathrm{V}_{\mathrm{S}}=3.3 \mathrm{~V}$, 0 V	$\begin{gathered} 1.5 \\ 1.15 \end{gathered}$		$\begin{gathered} 4 \\ 2.65 \end{gathered}$	V
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & V_{S}=5 \mathrm{~V}, V_{C M}=1.5 \mathrm{~V} \text { to } 4 \mathrm{~V} \\ & V_{S}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.15 \mathrm{~V} \text { to } 2.65 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 90 \\ & 85 \end{aligned}$	$\begin{aligned} & 115 \\ & 110 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
	CMRR Match (Channel-to-Channel) (Note 6)	$\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~V}_{\text {CM }}=1.5 \mathrm{~V}$ to 4V	84	115		dB

LT6234/LT6235

ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{S}}=3.3 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUT }}=$ half supply,
ENABLE $=0$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}=3 \mathrm{~V}$ to 10 V	90	115		dB
	PSRR Match (Channel-to-Channel) (Note 6)	$\mathrm{V}_{S}=3 \mathrm{~V}$ to 10 V	84	115		dB
	Minimum Supply Voltage (Note 7)		3			V
V_{OL}	Output Voltage Swing Low (Note 8)	$\begin{aligned} & \text { No Load } \\ & I_{\text {SINK }}=5 \mathrm{~mA} \\ & V_{S}=5 \mathrm{VV}, I_{\text {SINK }}=15 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{S}}=3.3 \mathrm{~V}, \mathrm{I}_{\text {SINK }}=10 \mathrm{~mA} \\ & \hline \end{aligned}$		$\begin{gathered} 4 \\ 75 \\ 165 \\ 125 \end{gathered}$	$\begin{gathered} 40 \\ 180 \\ 320 \\ 240 \end{gathered}$	mV mV mV mV
V_{OH}	Output Voltage Swing High (Note 8)	$\begin{aligned} & \hline \text { No Load } \\ & I_{\text {SOURCE }}=5 \mathrm{~mA} \\ & V_{S}=5 \mathrm{~V}, I_{\text {SOURCE }}=15 \mathrm{~mA} \\ & V_{S}=3.3 V, I_{\text {SOURCE }}=10 \mathrm{~mA} \end{aligned}$		$\begin{gathered} 5 \\ 85 \\ 220 \\ 165 \end{gathered}$	$\begin{gathered} 50 \\ 195 \\ 410 \\ 310 \end{gathered}$	mV mV mV mV
$I_{S C}$	Short-Circuit Current	$\begin{aligned} & V_{S}=5 \mathrm{~V} \\ & \mathrm{~V}_{S}=3.3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \pm 40 \\ & \pm 35 \end{aligned}$	$\begin{aligned} & \pm 55 \\ & \pm 50 \end{aligned}$		mA mA
I_{S}	Supply Current per Amplifier Disabled Supply Current per Amplifier	$\overline{\text { ENABLE }}=\mathrm{V}^{+}-0.35 \mathrm{~V}$		$\begin{gathered} 1.05 \\ 0.2 \end{gathered}$	$\begin{aligned} & 1.2 \\ & 10 \end{aligned}$	$m A$ μA
$\overline{\text { ENABLE }}$	ENABLE Pin Current	$\overline{\text { ENABLE }}=0.3 \mathrm{~V}$		-25	-75	$\mu \mathrm{A}$
V_{L}	ENABLE Pin Input Voltage Low				0.3	V
V_{H}	ENABLE Pin Input Voltage High		$\mathrm{V}^{+}-0.35$			V
	Output Leakage Current	$\overline{\text { ENABLE }}=\mathrm{V}^{+}-0.35 \mathrm{~V}, \mathrm{~V}_{0}=1.5 \mathrm{~V}$ to 3.5V		0.2	10	$\mu \mathrm{A}$
ton	Turn-On Time	$\overline{\text { ENABLE }}=5 \mathrm{~V}$ to $0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$		500		ns
$\mathrm{t}_{\text {OFF }}$	Turn-Off Time	$\overline{\text { ENABLE }}=0 \mathrm{~V}$ to $5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$		76		$\mu \mathrm{S}$
GBW	Gain-Bandwidth Product	$\begin{aligned} & \text { Frequency }=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{S}}=5 \mathrm{~V} \\ & \text { LT6233-10 } \end{aligned}$		$\begin{gathered} 55 \\ 320 \end{gathered}$		$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
SR	Slew Rate	$\mathrm{V}_{S}=5 \mathrm{~V}, \mathrm{~A}_{V}=-1, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \mathrm{V}_{0}=1.5 \mathrm{~V}$ to 3.5 V	10	15		V/ $/ \mathrm{s}$
		$\begin{aligned} & \text { LT6233-10, } V_{S}=5 \mathrm{~V}, A_{V}=-10, R_{L}=1 \mathrm{k}, \\ & V_{0}=1.5 \mathrm{~V} \text { to } 3.5 \mathrm{~V} \end{aligned}$		80		V/us
FPBW	Full-Power Bandwidth	$\mathrm{V}_{\text {S }}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=3 \mathrm{~V}_{\text {P-P }}($ Note 9)	1.06	1.6		MHz
		LT6233-10, HD2 = HD3 $\leq 1 \%$		2.2		MHz
ts	Settling Time (LT6233, LT6234, LT6235)	$0.1 \%, V_{S}=5 \mathrm{~V}, \mathrm{~V}_{\text {STEP }}=2 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=-1, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}$		175		ns

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over the $0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C}$ temperature range. $\mathrm{V}_{S}=5 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{S}=3.3 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{0 U T}=$ half supply, ENABLE $=0 \mathrm{~V}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNIT
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	LT6233CS6, LT6233CS6-10 LT6234CS8, LT6235CGN LT6234CDD	$\begin{aligned} & \bullet \\ & \bullet \\ & \bullet \end{aligned}$			$\begin{aligned} & 600 \\ & 450 \\ & 550 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V}$
	Input Offset Voltage Match (Channel-to-Channel) (Note 6)		\bullet			800	$\mu \mathrm{V}$
$\mathrm{V}_{\text {OS }}$ TC	Input Offset Voltage Drift (Note 10)	$\mathrm{V}_{\text {CM }}$ = Half Supply	\bullet		0.5	3.0	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
IB	Input Bias Current		\bullet			3.5	$\mu \mathrm{A}$
	$I_{\text {B }}$ Match (Channel-to-Channel) (Note 6)		\bullet			0.4	$\mu \mathrm{A}$
Ios	Input Offset Current		\bullet			0.4	$\mu \mathrm{A}$
AVOL	Large-Signal Gain	$\begin{aligned} & V_{S}=5 \mathrm{~V}, \mathrm{~V}_{0}=0.5 \mathrm{~V} \text { to } 4.5 \mathrm{~V}, R_{\mathrm{L}}=10 \mathrm{k} \text { to } \mathrm{V}_{\mathrm{S}} / 2 \\ & \mathrm{~V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~V}_{0}=0.5 \mathrm{~V} \text { to } 4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \text { to } \mathrm{V}_{\mathrm{S}} / 2 \end{aligned}$	\bullet	$\begin{aligned} & 47 \\ & 12 \\ & \hline \end{aligned}$			$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \end{aligned}$
		$\begin{aligned} & V_{S}=3.3 \mathrm{~V}, \mathrm{~V}_{0}=0.65 \mathrm{~V} \text { to } 2.65 \mathrm{~V}, R_{\mathrm{L}}=10 \mathrm{k} \text { to } \mathrm{V}_{\mathrm{S}} / 2 \\ & \mathrm{~V}_{\mathrm{S}}=3.3 \mathrm{~V}, \mathrm{~V}_{0}=0.65 \mathrm{~V} \text { to } 2.65 \mathrm{~V}, R_{\mathrm{L}}=1 \mathrm{k} \text { to } \mathrm{V}_{\mathrm{S}} / 2 \end{aligned}$	\bullet	$\begin{aligned} & 40 \\ & 7.5 \end{aligned}$			V / mV V / mV
$\overline{\mathrm{V}} \mathrm{CM}$	Input Voltage Range	$\begin{gathered} \text { Guaranteed by CMRR } \\ V_{S}=5 \mathrm{~V}, 0 \mathrm{~V} \\ \mathrm{Vs}=3.3 \mathrm{~V}, 0 \mathrm{~V} \end{gathered}$	\bullet	$\begin{gathered} 1.5 \\ 1.15 \end{gathered}$		$\begin{gathered} 4 \\ 2.65 \end{gathered}$	V
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & V_{S}=5 \mathrm{~V}, V_{C M}=1.5 \mathrm{~V} \text { to } 4 \mathrm{~V} \\ & V_{S}=3.3 \mathrm{~V}, V_{C M}=1.15 \mathrm{~V} \text { to } 2.65 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & 90 \\ & 85 \\ & \hline \end{aligned}$			dB dB
	CMRR Match (Channel-to-Channel) (Note 6)	$\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{~V}$ to 4V	\bullet	84			dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}=3 \mathrm{~V}$ to 10 V	\bullet	90			dB
	PSRR Match (Channel-to-Channel) (Note 6)	$\mathrm{V}_{S}=3 \mathrm{~V}$ to 10 V	\bullet	84			dB
	Minimum Supply Voltage (Note 7)		\bullet	3			V
$\mathrm{V}_{\text {OL }}$	Output Voltage Swing Low (Note 8)	$\begin{array}{\|l} \hline \text { No Load } \\ I_{\text {SINK }}=5 \mathrm{~mA} \\ V_{S}=5 V, I_{\text {SINK }}=15 \mathrm{~mA} \\ V_{S}=3.3 V, I_{\text {SINK }}=10 \mathrm{~mA} \end{array}$	$\stackrel{\bullet}{\bullet}$			$\begin{gathered} \hline 50 \\ 195 \\ 360 \\ 265 \end{gathered}$	$m \mathrm{~V}$ mV mV mV
V_{OH}	Output Voltage Swing High (Note 8)	$\begin{aligned} & \text { No Load } \\ & I_{\text {SOURCE }}=5 \mathrm{~mA} \\ & V_{S}=5 V, I_{\text {SOURCE }}=15 \mathrm{~mA} \\ & V_{S}=3.3 V, I_{\text {SOURCE }}=10 \mathrm{~mA} \end{aligned}$	$\bullet \bullet$			$\begin{gathered} 60 \\ 205 \\ 435 \\ 330 \end{gathered}$	mV mV mV mV
ISC	Short-Circuit Current	$\begin{aligned} & V_{S}=5 \mathrm{~V} \\ & V_{S}=3.3 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \pm 35 \\ & \pm 30 \end{aligned}$			mA mA
Is	Supply Current per Amplifier Disabled Supply Current per Amplifier	$\overline{\text { ENABLE }}=\mathrm{V}^{+}-0.25 \mathrm{~V}$	\bullet		1	1.45	mA $\mu \mathrm{A}$
IENABLE	ENABLE Pin Current	$\overline{\text { ENABLE }}=0.3 \mathrm{~V}$	\bullet			-85	$\mu \mathrm{A}$
V_{L}	ENABLE Pin Input Voltage Low		\bullet			0.3	V
V_{H}	ENABLE Pin Input Voltage High		\bullet	$\mathrm{V}^{+}-0.25$			V
	Output Leakage Current	$\overline{\text { ENABLE }}=\mathrm{V}^{+}-0.25 \mathrm{~V}, \mathrm{~V}_{0}=1.5 \mathrm{~V}$ to 3.5 V	\bullet		1		$\mu \mathrm{A}$
t_{ON}	Turn-On Time	$\overline{\text { ENABLE }}=5 \mathrm{~V}$ to 0V, $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$	\bullet		500		ns
$\mathrm{t}_{\text {OFF }}$	Turn-Off Time	$\overline{\text { ENABLE }}=0 \mathrm{~V}$ to $5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$	\bullet		120		$\mu \mathrm{s}$
SR	Slew Rate	$\mathrm{V}_{S}=5 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=-1, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \mathrm{V}_{0}=1.5 \mathrm{~V}$ to 3.5 V	\bullet	9			V/ $/ \mathrm{s}$
		LT6233-10, $A_{V}=-10, R_{L}=1 \mathrm{k}, \mathrm{V}_{0}=1.5 \mathrm{~V}$ to 3.5 V	\bullet		75		V/ $/ \mathrm{s}$
FPBW	Full-Power Bandwidth (Note 9)	$V_{S}=5 V, V_{\text {OUT }}=3 V_{\text {P-P; }} \text { LT6233C, LT6234C, }$ LT6235C	\bullet	955			kHz

LT6234/LT6235

 temperature range. $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{OV} ; \mathrm{V}_{\mathrm{S}}=3.3 \mathrm{~V}, \mathrm{OV} ; \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{OUT}}=$ half supply, $\overline{E N A B L E}=0 \mathrm{~V}$, unless otherwise noted. (Note 5)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\begin{aligned} & \text { LT6233IS6, LT6233IS6-10 } \\ & \text { LT6234IS8, LT6235IGN } \\ & \text { LT6234IDD } \end{aligned}$	\bullet			$\begin{aligned} & 700 \\ & 550 \\ & 650 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V}$
	Input Offset Voltage Match (Channel-to-Channel) (Note 6)		\bullet			1000	$\mu \mathrm{V}$
$\mathrm{V}_{\text {OS }}$ TC	Input Offset Voltage Drift (Note 10)	$\mathrm{V}_{\text {CM }}$ = Half Supply	\bullet		0.5	3	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
IB	Input Bias Current		\bullet			4	$\mu \mathrm{A}$
	IB Match (Channel-to-Channel) (Note 6)		\bullet			0.4	$\mu \mathrm{A}$
IOS	Input Offset Current		\bullet			0.5	$\mu \mathrm{A}$
AVOL	Large-Signal Gain	$\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~V}_{0}=0.5 \mathrm{~V}$ to $4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$ to $\mathrm{V}_{\mathrm{S}} / 2$ $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~V}_{0}=0.5 \mathrm{~V}$ to $4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}$ to $\mathrm{V}_{\mathrm{S}} / 2$	\bullet	$\begin{aligned} & 45 \\ & 11 \end{aligned}$			V / mV V / mV
		$\begin{aligned} & V_{S}=3.3 \mathrm{~V}, \mathrm{~V}_{0}=0.65 \mathrm{~V} \text { to } 2.65 \mathrm{~V}, R_{\mathrm{L}}=10 \mathrm{k} \text { to } \mathrm{V}_{\mathrm{S}} / 2 \\ & \mathrm{~V}_{\mathrm{S}}=3.3 \mathrm{~V}, \mathrm{~V}_{0}=0.65 \mathrm{~V} \text { to } 2.65 \mathrm{~V}, R_{\mathrm{L}}=1 \mathrm{k} \text { to } \mathrm{V}_{\mathrm{S}} / 2 \end{aligned}$	\bullet	$\begin{gathered} 38 \\ 7 \end{gathered}$			V / mV V / mV
$\mathrm{V}_{\text {CM }}$	Input Voltage Range	$\begin{gathered} \text { Guaranteed by CMRR } \\ V_{S}=5 \mathrm{~V}, 0 \mathrm{~V} \\ V_{S}=3.3 \mathrm{~V}, 0 \mathrm{~V} \end{gathered}$	\bullet	$\begin{gathered} 1.5 \\ 1.15 \end{gathered}$		$\begin{gathered} 4 \\ 2.65 \end{gathered}$	V
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & V_{S}=5 \mathrm{~V}, V_{C M}=1.5 \mathrm{~V} \text { to } 4 \mathrm{~V} \\ & V_{S}=3.3 V, V_{C M}=1.15 \mathrm{~V} \text { to } 2.65 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & 90 \\ & 85 \end{aligned}$			dB dB
	CMRR Match (Channel-to-Channel) (Note 6)	$\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~V}_{\text {CM }}=1.5 \mathrm{~V}$ to 4V	\bullet	84			dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}=3 \mathrm{~V}$ to 10 V	\bullet	90			dB
	PSRR Match (Channel-to-Channel) (Note 6)	$\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}$ to 10 V	\bullet	84			dB
	Minimum Supply Voltage (Note 7)		\bullet	3			V
$\mathrm{V}_{\text {OL }}$	Output Voltage Swing Low (Note 8)	No Load $\mathrm{I}_{\mathrm{SINK}}=5 \mathrm{~mA}$ $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{SINK}}=15 \mathrm{~mA}$ $\mathrm{V}_{\mathrm{S}}=3.3 \mathrm{~V}$, $\mathrm{I}_{\mathrm{SINK}}=10 \mathrm{~mA}$	$\stackrel{\bullet}{\bullet}$			$\begin{gathered} 50 \\ 195 \\ 370 \\ 275 \end{gathered}$	$m V$ $m V$ $m V$ $m V$
V_{OH}	Output Voltage Swing High (Note 6)	$\begin{aligned} & \text { No Load } \\ & I_{\text {SOURCE }}=5 \mathrm{~mA} \\ & V_{S}=5 V, I_{\text {SOURCE }}=15 \mathrm{~mA} \\ & V_{S}=3.3 V, I_{\text {SOURCE }}=10 \mathrm{~mA} \end{aligned}$	$\stackrel{\bullet}{\bullet}$			$\begin{gathered} 60 \\ 210 \\ 445 \\ 335 \end{gathered}$	mV mV mV mV
ISC	Short-Circuit Current	$\begin{aligned} & V_{S}=5 \mathrm{~V} \\ & V_{S}=3.3 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & \pm 30 \\ & \pm 20 \end{aligned}$			mA mA
Is	Supply Current per Amplifier Disabled Supply Current per Amplifier	$\overline{\text { ENABLE }}=\mathrm{V}^{+}-0.2 \mathrm{~V}$	\bullet		1	1.5	mA $\mu \mathrm{A}$
IENABLE	ENABLE Pin Current	$\overline{\text { ENABLE }}=0.3 \mathrm{~V}$	\bullet			-100	$\mu \mathrm{A}$
V_{L}	ENABLE Pin Input Voltage Low		\bullet			0.3	V
V_{H}	ENABLE Pin Input Voltage High		\bullet	$V^{+}-0.2$			V
	Output Leakage Current	$\overline{\text { ENABLE }}=\mathrm{V}^{+}-0.2 \mathrm{~V}, \mathrm{~V}_{0}=1.5 \mathrm{~V}$ to 3.5V	\bullet		1		$\mu \mathrm{A}$
t_{ON}	Turn-On Time	$\overline{\text { ENABLE }}=5 \mathrm{~V}$ to $0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$	\bullet		500		ns
$\mathrm{t}_{\text {OFF }}$	Turn-Off Time	$\overline{\text { ENABLE }}=0 \mathrm{~V}$ to 5V, $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \mathrm{V}_{S}=5 \mathrm{~V}$	\bullet		135		$\mu \mathrm{S}$
SR	Slew Rate	$\mathrm{V}_{S}=5 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=-1, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \mathrm{V}_{0}=1.5 \mathrm{~V}$ to 3.5 V	\bullet	8			$\mathrm{V} / \mathrm{\mu s}$
		LT6233-10, $A_{V}=-10, R_{L}=1 \mathrm{k}, \mathrm{V}_{0}=1.5 \mathrm{~V}$ to 3.5 V	\bullet		70		$\mathrm{V} / \mathrm{\mu s}$
FPBW	Full-Power Bandwidth (Note 9)	$\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=3 \mathrm{~V}_{\text {P-P }} ; \text { LT6233I, LT6234I, }$ LT6235I	\bullet	848			kHz

ELECTRACRL CHARACERISTIS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{OUT}}=0 \mathrm{~V}$, $\overline{\mathrm{ENABLE}}=0 \mathrm{~V}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\begin{aligned} & \text { LT6233S6, LT6233S6-10 } \\ & \text { LT6234S8, LT6235GN } \\ & \text { LT6234DD } \end{aligned}$		$\begin{gathered} \hline 100 \\ 50 \\ 75 \end{gathered}$	$\begin{aligned} & 500 \\ & 350 \\ & 450 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V}$
	Input Offset Voltage Match (Channel-to-Channel) (Note 6)			100	600	$\mu \mathrm{V}$
I_{B}	Input Bias Current			1.5	3	$\mu \mathrm{A}$
	I_{B} Match (Channel-to-Channel) (Note 6)			0.04	0.3	$\mu \mathrm{A}$
Ios	Input Offset Current			0.04	0.3	$\mu \mathrm{A}$
	Input Noise Voltage	0.1 Hz to 10Hz		220		$n \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$
$\underline{e_{n}}$	Input Noise Voltage Density	$\mathrm{f}=10 \mathrm{kHz}$		1.9	3.0	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Input Noise Current Density, Balanced Source Input Noise Current Density, Unbalanced Source	$\begin{aligned} & f=10 \mathrm{kHz}, R_{S}=10 \mathrm{k} \\ & f=10 \mathrm{kHz}, R_{S}=10 \mathrm{k} \end{aligned}$		$\begin{aligned} & 0.43 \\ & 0.78 \end{aligned}$		$\begin{aligned} & \mathrm{pA} / \sqrt{\mathrm{Hz}} \\ & \mathrm{pA} / \sqrt{\mathrm{Hz}} \end{aligned}$
	Input Resistance	Common Mode Differential Mode		$\begin{aligned} & 22 \\ & 25 \end{aligned}$		$M \Omega$ $\mathrm{k} \Omega$
$\overline{C_{\text {IN }}}$	Input Capacitance	Common Mode Differential Mode		$\begin{aligned} & 2.1 \\ & 3.7 \end{aligned}$		pF pF
AVOL	Large-Signal Gain	$\begin{aligned} & \mathrm{V}_{0}= \pm 4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \\ & \mathrm{~V}_{0}= \pm 4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \end{aligned}$	97	$\begin{gathered} 180 \\ 55 \end{gathered}$		V / mV V / mV
$\mathrm{V}_{\text {CM }}$	Input Voltage Range	Guaranteed by CMRR	-3		4	V
CMRR	Common Mode Rejection Ratio	$\mathrm{V}_{\text {CM }}=-3 \mathrm{~V}$ to 4V	90	110		dB
	CMRR Match (Channel-to-Channel) (Note 6)	$\mathrm{V}_{\text {CM }}=-3 \mathrm{~V}$ to 4V	84	120		dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}= \pm 1.5 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$	90	115		dB
	PSRR Match (Channel-to-Channel) (Note 6)	$\mathrm{V}_{\mathrm{S}}= \pm 1.5 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$	84	115		dB
$\mathrm{V}_{\text {OL }}$	Output Voltage Swing Low (Note 8)	No Load $\mathrm{I}_{\text {SINK }}=5 \mathrm{~mA}$ $\mathrm{I}_{\text {SINK }}=15 \mathrm{~mA}$		$\begin{gathered} 4 \\ 75 \\ 165 \end{gathered}$	$\begin{gathered} \hline 40 \\ 180 \\ 320 \end{gathered}$	mV mV mV
V_{OH}	Output Voltage Swing High (Note 8)	$\begin{aligned} & \text { No Load } \\ & l^{\text {SOURCE }}=5 \mathrm{~mA} \\ & I_{\text {SOURCE }}=15 \mathrm{~mA} \\ & \hline \end{aligned}$		$\begin{gathered} 5 \\ 85 \\ 220 \\ \hline \end{gathered}$	$\begin{gathered} 50 \\ 195 \\ 410 \\ \hline \end{gathered}$	mV mV mV
ISC	Short-Circuit Current		± 40	± 55		mA
Is	Supply Current per Amplifier Disabled Supply Current per Amplifier	$\overline{\text { ENABLE }}=4.65 \mathrm{~V}$		$\begin{gathered} 1.15 \\ 0.2 \end{gathered}$	$\begin{aligned} & 1.4 \\ & 10 \\ & \hline \end{aligned}$	mA $\mu \mathrm{A}$
IENABLE	ENABLE Pin Current	$\overline{\text { ENABLE }}=0.3 \mathrm{~V}$		-35	-85	$\mu \mathrm{A}$
V_{L}	ENABLE Pin Input Voltage Low				0.3	V
V_{H}	ENABLE Pin Input Voltage High		4.65			V
	Output Leakage Current	$\overline{\text { ENABLE }}=4.65 \mathrm{~V}, \mathrm{~V}_{0}= \pm 1 \mathrm{~V}$		0.2	10	$\mu \mathrm{A}$
t_{ON}	Turn-On Time	$\overline{\text { ENABLE }}=5 \mathrm{~V}$ to $0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}$		900		ns
${ }^{\text {tofF }}$	Turn-Off Time	$\overline{\text { ENABLE }}=0 \mathrm{~V}$ to 5V, $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k}$		100		$\mu \mathrm{S}$
GBW	Gain-Bandwidth Product	$\begin{aligned} & \text { Frequency = 1MHz } \\ & \text { LT6233-10 } \end{aligned}$	$\begin{aligned} & \hline 42 \\ & 260 \end{aligned}$	$\begin{gathered} 60 \\ 375 \end{gathered}$		$\begin{aligned} & \overline{\mathrm{MHz}} \\ & \mathrm{MHz} \end{aligned}$
SR	Slew Rate	$A_{V}=-1, R_{L}=1 \mathrm{k}, \mathrm{V}_{0}=-2 \mathrm{~V}$ to 2V	12	17		$\mathrm{V} / \mathrm{\mu s}$
		LT6233-10, $A_{V}=-10, R_{L}=1 \mathrm{k}, \mathrm{V}_{0}=-2 \mathrm{~V}$ to 2V		115		$\mathrm{V} / \mathrm{\mu s}$
FPBW	Full-Power Bandwidth	$\mathrm{V}_{\text {OUT }}=3 \mathrm{~V}_{\text {P-P }}$ (Note 9)	1.27	1.8		MHz
		LT6233-10, HD2 = HD3 $\leq 1 \%$		2.2		MHz
ts	Settling Time (LT6233, LT6234, LT6235)	$0.1 \%, V_{\text {STEP }}=2 \mathrm{~V}, \mathrm{~A}_{V}=-1, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}$		170		ns

LT6234/LT6235

ELECTRICRL CHARACERISTCS The e denotes the specifications which apply over the $0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C}$
temperature range. $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{0 U T}=0 \mathrm{~V}$, $\overline{\mathrm{ENABLE}}=0 \mathrm{~V}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\begin{aligned} & \text { LT6233CS6, LT6233CS6-10 } \\ & \text { LT6234CS8, LT6235CGN } \\ & \text { LT6234CDD } \end{aligned}$	$\begin{aligned} & \bullet \\ & \bullet \\ & \bullet \end{aligned}$			$\begin{aligned} & 600 \\ & 450 \\ & 550 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V}$
	Input Offset Voltage Match (Channel-to-Channel) (Note 6)		\bullet			800	$\mu \mathrm{V}$
$\mathrm{V}_{\text {OS }}$ TC	Input Offset Voltage Drift (Note 10)		\bullet		0.5	3	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current		\bullet			3.5	$\mu \mathrm{A}$
	$\mathrm{I}_{\text {B }}$ Match (Channel-to-Channel) (Note 6)		\bullet			0.4	$\mu \mathrm{A}$
Ios	Input Offset Current		\bullet			0.4	$\mu \mathrm{A}$
AVOL	Large-Signal Gain	$\begin{aligned} & V_{0}= \pm 4.5 \mathrm{~V}, R_{L}=10 \mathrm{k} \\ & V_{0}= \pm 4.5 \mathrm{~V}, R_{L}=1 \mathrm{k} \end{aligned}$	\bullet	75			V / mV V/mV
$\mathrm{V}_{\text {CM }}$	Input Voltage Range	Guaranteed by CMRR	\bullet	-3		4	V
CMRR	Common Mode Rejection Ratio	$V_{C M}=-3 \mathrm{~V}$ to 4V	\bullet	90			dB
	CMRR Match (Channel-to-Channel) (Note 6)	$V_{C M}=-3 \mathrm{~V}$ to 4V	\bullet	84			dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}= \pm 1.5 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$	\bullet	90			dB
	PSRR Match (Channel-to-Channel) (Note 6)	$\mathrm{V}_{\mathrm{S}}= \pm 1.5 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$	\bullet	84			dB
$\mathrm{V}_{\text {OL }}$	Output Voltage Swing Low (Note 8)	No Load $\mathrm{I}_{\text {SINK }}=5 \mathrm{~mA}$ $\mathrm{I}_{\text {SINK }}=15 \mathrm{~mA}$	\bullet			$\begin{gathered} \hline 50 \\ 195 \\ 360 \\ \hline \end{gathered}$	mV mV mV
V_{OH}	Output Voltage Swing High (Note 8)	$\begin{aligned} & \hline \text { No Load } \\ & I_{\text {SOURCE }}=5 \mathrm{~mA} \\ & I_{\text {SOURCE }}=15 \mathrm{~mA} \end{aligned}$	$\stackrel{\bullet}{\bullet}$			$\begin{gathered} 60 \\ 205 \\ 435 \end{gathered}$	mV mV mV
$\mathrm{I}_{\text {SC }}$	Short-Circuit Current		\bullet	± 35			mA
IS	Supply Current per Amplifier Disabled Supply Current per Amplifier	$\overline{\text { ENABLE }}=4.75 \mathrm{~V}$	\bullet		1	1.7	mA $\mu \mathrm{A}$
IENABLE	ENABLE Pin Current	$\overline{\text { ENABLE }}=0.3 \mathrm{~V}$	\bullet			-95	$\mu \mathrm{A}$
$\mathrm{V}_{\text {L }}$	ENABLE Pin Input Voltage Low		\bullet			0.3	V
V_{H}	ENABLE Pin Input Voltage High		\bullet	4.7			V
	Output Leakage Current	$\overline{\text { ENABLE }}=4.75 \mathrm{~V}, \mathrm{~V}_{0}= \pm 1 \mathrm{~V}$	\bullet		1		$\mu \mathrm{A}$
t_{ON}	Turn-On Time	$\overline{\text { ENABLE }}=5 \mathrm{~V}$ to $0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}$	\bullet		900		ns
$\mathrm{t}_{\text {OFF }}$	Turn-Off Time	$\overline{\text { ENABLE }}=0 \mathrm{~V}$ to $5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}$	\bullet		150		$\mu \mathrm{S}$
SR	Slew Rate	$A_{V}=-1, R_{L}=1 \mathrm{k}, \mathrm{V}_{0}=-2 \mathrm{~V}$ to 2 V	\bullet	11			$\mathrm{V} / \mathrm{\mu s}$
		LT6233-10, $A_{V}=-10, R_{L}=1 \mathrm{k}, \mathrm{V}_{0}=-2 \mathrm{~V}$ to 2V	\bullet		105		$\mathrm{V} / \mathrm{\mu s}$
FPBW	Full-Power Bandwidth (Note 9)	$V_{\text {OUT }}=3 V_{\text {P-p; }}$ LT6233C, LT6234C, LT6235C	\bullet	1.1			MHz

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the $-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C}$ temperature range. $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{0 U T}=0 \mathrm{~V}$, $\overline{\mathrm{ENABLE}}=0 \mathrm{~V}$, unless otherwise noted. (Note 5)

SYMBOL	PARAMETER	CONDITIONS		MII	TYP	MAX	UNITS
$\mathrm{V}_{0 S}$	Input Offset Voltage	LT6233IS6, LT6233IS6-10 LT6234IS8, LT6235IGN LT6234IDD	$\begin{aligned} & \bullet \\ & \bullet \\ & \bullet \end{aligned}$			$\begin{aligned} & \hline 700 \\ & 550 \\ & 650 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V}$
	Input Offset Voltage Match (Channel-to-Channel) (Note 6)		\bullet			1000	$\mu \mathrm{V}$
$\mathrm{V}_{\text {OS }}$ TC	Input Offset Voltage Drift (Note 10)		\bullet		0.5	3	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current		\bullet			4	$\mu \mathrm{A}$
	IB Match (Channel-to-Channel) (Note 6)		\bullet			0.4	$\mu \mathrm{A}$
IOS	Input Offset Current		\bullet			0.5	$\mu \mathrm{A}$
AVOL	Large-Signal Gain	$\begin{aligned} & V_{0}= \pm 4.5 \mathrm{~V}, R_{L}=10 \mathrm{k} \\ & V_{0}= \pm 4.5 \mathrm{~V}, R_{L}=1 \mathrm{k} \end{aligned}$	\bullet	68 20			$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \end{aligned}$
$\mathrm{V}_{\text {CM }}$	Input Voltage Range	Guaranteed by CMRR	\bullet	-3		4	V
CMRR	Common Mode Rejection Ratio	$V_{C M}=-3 \mathrm{~V}$ to 4V	\bullet	90			dB
	CMRR Match (Channel-to-Channel) (Note 6)	$\mathrm{V}_{\text {CM }}=-3 \mathrm{~V}$ to 4V	\bullet	84			dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}= \pm 1.5 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$	\bullet	90			dB
	PSRR Match (Channel-to-Channel) (Note 6)	$\mathrm{V}_{S}= \pm 1.5 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$	\bullet	84			dB
$\mathrm{V}_{\text {OL }}$	Output Voltage Swing Low (Note 8)	$\begin{aligned} & \hline \text { No Load } \\ & I_{\text {SINK }}=5 \mathrm{~mA} \\ & \mathrm{I}_{\text {IINK }}=15 \mathrm{~mA} \end{aligned}$	$\stackrel{\bullet}{\bullet}$			$\begin{gathered} \hline 50 \\ 195 \\ 370 \\ \hline \end{gathered}$	mV mV mV
V_{OH}	Output Voltage Swing High (Note 8)	$\begin{array}{\|l\|} \hline \text { No Load } \\ l_{\text {SOURCE }}=5 \mathrm{~mA} \\ I_{\text {SOURCE }}=15 \mathrm{~mA} \\ \hline \end{array}$	$\stackrel{\bullet}{\bullet}$			$\begin{gathered} \hline 70 \\ 210 \\ 445 \\ \hline \end{gathered}$	mV mV mV
$\underline{\text { IS }}$	Short-Circuit Current		\bullet	± 30			mA
Is	Supply Current per Amplifier Disabled Supply Current per Amplifier	$\overline{\text { ENABLE }}=4.8 \mathrm{~V}$	\bullet		1	1.75	$m A$ $\mu \mathrm{~A}$
$\underline{\text { ENABLE }}$	ENABLE Pin Current	ENABLE $=0.3 \mathrm{~V}$	\bullet			-110	$\mu \mathrm{A}$
V_{L}	ENABLE Pin Input Voltage Low		\bullet			0.3	V
V_{H}	ENABLE Pin Input Voltage High		\bullet	4.8			V
	Output Leakage Current	$\overline{\text { ENABLE }}=4.8 \mathrm{~V}, \mathrm{~V}_{0}= \pm 1 \mathrm{~V}$	\bullet		1		$\mu \mathrm{A}$
t_{ON}	Turn-On Time	$\overline{\text { ENABLE }}=5 \mathrm{~V}$ to 0V, $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k}$	\bullet		900		ns
$\mathrm{t}_{\text {OFF }}$	Turn-Off Time	$\overline{\text { ENABLE }}=0 \mathrm{~V}$ to 5V, $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k}$	\bullet		160		$\mu \mathrm{S}$
SR	Slew Rate	$A_{V}=-1, R_{L}=1 \mathrm{k}, \mathrm{V}_{0}=-2 \mathrm{~V}$ to 2 V	\bullet	10			$\mathrm{V} / \mathrm{\mu s}$
		LT6233-10, $A_{V}=-10, R_{L}=1 \mathrm{k}, \mathrm{V}_{0}=-2 \mathrm{~V}$ to 2V	\bullet		95		$\mathrm{V} / \mathrm{\mu s}$
FPBW	Full-Power Bandwidth (Note 9)	$\mathrm{V}_{\text {OUT }}=3 \mathrm{~V}_{\text {P-P }}$; LT6233I, LT6234I, LT6235I	\bullet	1.0			MHz

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.
Note 2: Inputs are protected by back-to-back diodes. If the differential input voltage exceeds 0.7 V , the input current must be limited to less than 40 mA .
Note 3: A heat sink may be required to keep the junction temperature below the absolute maximum rating when the output is shorted indefinitely.
Note 4: The LT6233C/LT6233I the LT6234C/LT6234I, and LT6235C/LT6235I are guaranteed functional over the temperature range of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

Note 5: The LT6233C/LT6234C/LT6235C are guaranteed to meet specified performance from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. The LT6233C/LT6234C/LT6235C are designed, characterized and expected to meet specified performance from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, but are not tested or QA sampled at these temperatures. The LT6233I/LT6234I/LT6235I are guaranteed to meet specified performance from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
Note 6: Matching parameters are the difference between the two amplifiers A and D and between B and C of the LT6235; between the two amplifiers of the LT6234. CMRR and PSRR match are defined as follows: CMRR and PSRR are measured in $\mu \mathrm{V} / \mathrm{V}$ on the matched amplifiers. The difference is calculated between the matching sides in $\mu \mathrm{V} / \mathrm{V}$. The result is converted to dB.

ELECTRICAL CHARACTERISTICS

Note 7: Minimum supply voltage is guaranteed by power supply rejection ratio test.
Note 8: Output voltage swings are measured between the output and power supply rails.

Note 9: Full-power bandwidth is calculated from the slew rate:
FPBW $=S R / 2 \pi V_{P}$
Note 10: This parameter is not 100% tested.

TYPICAL PGRFORMAOCE CHARACTERISTICS

(LT6233/LT6234/LT6235)

Input Bias Current vs Temperature

Offset Voltage vs Input Common Mode Voltage

Output Saturation Voltage vs Load Current (Output Low)

TYPICAL PERFORMANCE CHARACTERISTICS

(LT6233/LT6234/LT6235)

TYPICAL PERFORMANCE CHARACTERISTICS

(LT6233/LT6234/LT6235)

TYPICAL PERFORMANCE CHARACTERISTICS

(LT6233/LT6234/LT6235)

623345 G25

Series Output Resistance and Overshoot vs Capacitive Load

Settling Time vs Output Step

 (Inverting)

623345 G 29

Series Output Resistance and Overshoot vs Capacitive Load

Maximum Undistorted Output Signal vs Frequency

623345 G30

TYPICAL PERFORMANCE CHARACTERISTICS

(LT6233/LT6234/LT6235)

Small-Signal Response

Output Overdrive Recovery

(LT6233) ENABLE Characteristics

623345 G39

ENABLE Pin Current vs ENABLE Pin Voltage

ENABLE Pin Response Time

TYPICAL PERFORMANCE CHARACTERISTICS

(LT6233-10)

623345 G42

Open-Loop Gain and Phase vs Frequency

Common Mode Rejection Ratio vs Frequency

Slew Rate vs Temperature

623345 G43
Gain Bandwidth and Phase Margin vs Supply Voltage

Maximum Undistorted Output vs Frequency

Series Output Resistor and Overshoot vs Capacitive Load

623345644

2nd and 3rd Harmonic Distortion vs Frequency

TYPICAL PERFORMANCE CHARACTERISTICS

(LT6233-10)

Input Referred High Frequency
Noise Spectrum

APPLICATIONS INFORMATION

Amplifier Characteristics

Figure 1 is a simplified schematic of the LT6233/LT6234/ LT6235, which has a pair of low noise input transistors Q1 and Q2. A simple current mirror Q3/Q4 converts the differential signal to a single-ended output, and these transistors are degenerated to reduce their contribution to the overall noise.

Capacitor C 1 reduces the unity-cross frequency and improves the frequency stability without degrading the gain bandwidth of the amplifier. Capacitor C_{M} sets the overall amplifier gain bandwidth. The differential drive generator supplies current to transistors Q5 and Q6 that swing the output from rail-to-rail.

Input Protection

There are back-to-back diodes, D1 and D2 across the + and - inputs of these amplifiers to limit the differential input voltage to $\pm 0.7 \mathrm{~V}$. The inputs of the LT6233/LT6234/LT6235 do not have internal resistors in series with the input transistors. This technique is often used to protect the input devices from overvoltage that causes excessive current to flow. The addition of these resistors would significantly degrade the low noise voltage of these amplifiers. For instance, a 100Ω resistor in series with each input would generate $1.8 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ of noise, and the total amplifier noise voltage would rise from $1.9 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ to $2.6 \mathrm{nV} / \sqrt{\mathrm{Hz}}$. Once the input differential voltage exceeds $\pm 0.7 \mathrm{~V}$, steady-state current conducted through the protection diodes should
be limited to $\pm 40 \mathrm{~mA}$. This implies 25Ω of protection resistance is necessary per volt of overdrive beyond $\pm 0.7 \mathrm{~V}$. These input diodes are rugged enough to handle transient currents due to amplifier slew rate overdrive and clipping without protection resistors.

The photo of Figure 2 shows the output response to an input overdrive with the amplifier connected as a voltage follower. With the input signal low, current source I_{1} saturates and the differential drive generator drives Q6 into saturation so the output voltage swings all the way to V^{-}. The input can swing positive until transistor Q2 saturates into current mirror Q3/Q4. When saturation occurs, the output tries to phase invert, but diode D2 conducts current from the signal source to the output through the feedback connection. The output is clamped a diode drop below the input. In this photo, the input signal generator is limiting at about 20 mA .

Figure 2. $\mathrm{V}_{\mathrm{S}}= \pm 2.5 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=1$ with Large Overdrive

Figure 1. Simplified Schematic

APPLICATIONS INFORMATION

With the amplifier connected in a gain of $A_{V} \geq 2$, the output can invert with very heavy overdrive. To avoid this inversion, limit the input overdrive to 0.5 V beyond the power supply rails.

ESD

The LT6233/LT6234/LT6235 have reverse-biased ESD protection diodes on all inputs and outputs as shown in Figure 1. If these pins are forced beyond either supply, unlimited current will flow through these diodes. If the current is transient and limited to one hundred milliamps or less, no damage to the device will occur.

Noise

The noise voltage of the LT6233/LT6234/LT6235 is equivalent to that of a 225Ω resistor, and for the lowest possible noise it is desirable to keep the source and feedback resistance at or below this value, i.e., $R_{S}+R_{G} \| R_{F B}$ $\leq 225 \Omega$. With $R_{S}+R_{G} \| R_{F B}=225 \Omega$ the total noise of the amplifier is:

$$
\mathrm{e}_{\mathrm{N}}=\sqrt{(1.9 \mathrm{nV})^{2}+(1.9 \mathrm{nV})^{2}}=2.69 \mathrm{nV} / \sqrt{\mathrm{Hz}}
$$

Below this resistance value, the amplifier dominates the noise, but in the region between 225Ω and about 30 k , the noise is dominated by the resistor thermal noise. As the total resistance is further increased beyond 30k, the amplifier noise current multiplied by the total resistance eventually dominates the noise.

The product of $e_{N} \cdot \sqrt{I_{\text {SUPPLY }}}$ is an interesting way to gauge low noise amplifiers. Most low noise amplifiers with low e_{N} have high I ISUPPLY current. In applications that require low noise voltage with the lowest possible supply current, this product can prove to be enlightening. The LT6233/LT6234/LT6235 have an $\mathrm{e}_{\mathrm{N}} \cdot \sqrt{\text { ISUPPLY }^{2}}$ product of only 2.1 per amplifier, yet it is common to see amplifiers with similar noise specifications to have $\mathrm{e}_{\mathrm{N}} \cdot \sqrt{\text { ISUPPLY }}$ as high as 13.5.
For a complete discussion of amplifier noise, see the LT1028 data sheet.

Enable Pin

The LT6233 and LT6233-10 include an ENABLE pin that shuts down the amplifier to $10 \mu \mathrm{~A}$ maximum supply current. The $\overline{\text { ENABLE }}$ pin must be driven low to operate the amplifier with normal supply current. The ENABLE pin must be driven high to within 0.35 V of V^{+}to shut down the supply current. This can be accomplished with simple gate logic; however care must be taken if the logic and the LT6233 operate from different supplies. If this is the case, then open-drain logic can be used with a pull-up resistor to ensure that the amplifier remains off. See Typical Performance Characteristics.
The output leakage current when disabled is very low; however, current can flow into the input protection diodes D1 and D2 if the output voltage exceeds the input voltage by a diode drop.

TYPICAL APPLICATIONS

Single Supply, Low Noise, Low Power, Bandpass Filter with Gain = 10

Frequency Response Plot of Bandpass Filter

Low Power, Low Noise, Single Supply, Instrumentation Amplifier with Gain = 100

S6 Package

6-Lead Plastic TSOT-23
(Reference LTC DWG \# 05-08-1636)

1. DIMENSIONS ARE IN MILLIMETERS
2. DRAWING NOT TO SCALE
3. DIMENSIONS ARE INCLUSIVE OF PLATING
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR
5. MOLD FLASH SHALL NOT EXCEED 0.254 mm
6. JEDEC PACKAGE REFERENCE IS MO-193

DD Package
8-Lead Plastic DFN ($3 \mathrm{~mm} \times 3 \mathrm{~mm}$)
(Reference LTC DWG \# 05-08-1698 Rev C)

RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED

NOTE:

1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE MO-229 VARIATION OF (WEED-1) 2. DRAWING NOT TO SCALE
2. ALL DIMENSIONS ARE IN MILLIMETERS
3. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15 mm ON ANY SIDE
4. EXPOSED PAD SHALL BE SOLDER PLATED
5. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON TOP AND BOTTOM OF PACKAGE

PACKAGE DESCRIPTION

S8 Package
8-Lead Plastic Small Outline (Narrow . 150 Inch)
(Reference LTC DWG \# 05-08-1610)

recommended solder pad layout

3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)

GN Package

16-Lead Plastic SSOP (Narrow . 150 Inch)
(Reference LTC DWG \# 05-08-1641)

DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006" (0.152 mm) PER SIDE
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED $0.010^{\prime \prime}(0.254 \mathrm{~mm})$ PER SIDE

REVISIO HISTORY (Revision history begins at Rev C)

REV	DATE	DESCRIPTION	PAGE NUMBER
C	$1 / 11$	Revised y-axis lable on curve G40 in Typical Performance Characteristics	14
		Updated ENABLE Pin section in Applications Information	18

TYPICAL APPLICATIONS

The LT6233 is applied as a transimpedance amplifier with an I-to-V conversion gain of $10 \mathrm{k} \Omega$ set by R1. The LT6233 is ideally suited to this application because of its low input offset voltage and current, and its low noise. This is because the 10k resistor has an inherent thermal noise of $13 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ or $1.3 \mathrm{pA} / \sqrt{\mathrm{Hz}}$ at room temperature, while the LT6233 contributes only 2 nV and $0.8 \mathrm{pA} / \sqrt{\mathrm{Hz}}$. So, with respect to both voltage and current noises, the LT6233 is actually quieter than the gain resistor.
The circuit uses an avalanche photodiode with the cathode biased to approximately 200V. When light is incident on

Low Power Avalanche Photodiode Transimpedance Amplifier $I_{S}=1.2 \mathrm{~mA}$

OUTPUT OFFSET $=500 \mu \mathrm{~V}$ TYPICAL BANDWIDTH $=7.8 \mathrm{MHz}$ OUTPUT NOISE $=1 \mathrm{mV}$ P-P (20 MHz MEASUREMENT BW)
the photodiode, it induces a current IPD which flows into the amplifier circuit. The amplifier output falls negative to maintain balance at its inputs. The transfer function is therefore $\mathrm{V}_{\text {OUT }}=-_{\text {PD }} \cdot 10 \mathrm{k}$. C1 ensures stability and good settling characteristics. Output offset was measured at better than $500 \mu \mathrm{~V}$, so low in part because R2 serves to cancel the DC effects of bias current. Output noise was measured at below 1 mV p-p on a 20 MHz measurement bandwidth, with C2 shunting R2's thermal noise. As shown in the scope photo, the rise time is 45 ns , indicating a signal bandwidth of 7.8 MHz .

Photodiode Amplifier Time Domain Response

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1028	Single, Ultralow Noise 50MHz Op Amp	$0.85 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
LT1677	Single, Low Noise Rail-to-Rail Amplifier	3 V Operation, $2.5 \mathrm{~mA}, 4.5 \mathrm{nV} / \sqrt{\mathrm{Hz}}, 60 \mu \mathrm{~V}$ Max $\mathrm{V}_{\text {OS }}$
LT1806/LT1807	Single/Dual, Low Noise 325MHz Rail-to-Rail Amplifier	2.5 V Operation, $550 \mu \mathrm{~V}$ Max $\mathrm{V}_{0 S}, 3.5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
LT6200/LT6201	Single/Dual, Low Noise 165MHz	$0.95 \mathrm{nV} \sqrt{\mathrm{Hz}, \text { Rail-to-Rail Input and Output }}$
LT6202/LT6203/LT6204	Single/Dual/Quad, Low Noise, Rail-to-Rail Amplifier	$1.9 \mathrm{nV} / \sqrt{\mathrm{Hz}, 3 \mathrm{~mA} \mathrm{Max,} \mathrm{100MHz} \mathrm{Gain} \mathrm{Bandwidth}}$

[^0]: $\boldsymbol{\mathcal { C }}$, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. ThinSOT is a trademark of Linear Technology Corporation. All other trademarks are the property of their respective owners.

