Power MOSFET

PRODUCT SUMMARY		
$\mathrm{V}_{\mathrm{DS}}(\mathrm{V})$	400	
$\mathrm{R}_{\mathrm{DS}(\mathrm{on})}(\Omega)$	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$	0.55
$\mathrm{Q}_{\mathrm{g}}($ Max. $)(\mathrm{nC})$	39	
$\mathrm{Q}_{\mathrm{gs}}(\mathrm{nC})$	10	
$\mathrm{Q}_{\mathrm{gd}}(\mathrm{nC})$	19	
Configuration	Single	

N-Channel MOSFET

FEATURES

- Ultra Low Gate Charge
- Reduced Gate Drive Requirement
- Enhanced 30 V VGs Rating
- Reduced Ciss , Coss , Crss
- Extremely High Frequency Operation
- Repetitive Avalanche Rated
- Compliant to RoHS Directive 2002/95/EC

DESCRIPTION

This new series of low charge Power MOSFETs achieve significantly lower gate charge over conventional MOSFETs. Utilizing the new LCDMOS technology, the device improvements are achieved without added product cost, allowing for reduced gate drive requirements and total system savings. In addition, reduced switching losses and improved efficiency are achievable in a variety of high frequency applications. Frequencies of a few MHz at high current are possible using the new Low Charge MOSFETs.
These device improvements combined with the proven ruggedness and reliability that are characteristic of Power MOSFETs ofter the designer a new standard in power transistors for switching applications.

ORDERING INFORMATION

Package	TO-220AB
Lead (Pb)-free	IRF740LCPbF
	SiHF740LC-E3
SnPb	IRF740LC
	SiHF740LC

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, unless otherwise noted)					
PARAMETER			SYMBOL	LIMIT	UNIT
Drain-Source Voltage			$V_{\text {DS }}$	400	V
Gate-Source Voltage			V_{GS}	± 30	
Continuous Drain Current	V_{GS} at 10 V	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	ID	10	A
		$\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$		6.3	
Pulsed Drain Current ${ }^{\text {a }}$			I_{DM}	32	
Linear Derating Factor				1.0	W/ ${ }^{\circ} \mathrm{C}$
Single Pulse Avalanche Energy ${ }^{\text {b }}$			$\mathrm{E}_{\text {AS }}$	520	mJ
Repetitive Avalanche Current ${ }^{\text {a }}$			$\mathrm{I}_{\text {AR }}$	10	A
Repetitive Avalanche Energy ${ }^{\text {a }}$			$\mathrm{E}_{\text {AR }}$	13	mJ
Maximum Power Dissipation	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$		P_{D}	125	W
Peak Diode Recovery $\mathrm{dV} / \mathrm{dt}^{\text {c }}$			dV/dt	4.0	V/ns
Operating Junction and Storage Temperature Range			$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$	-55 to + 150	${ }^{\circ} \mathrm{C}$
Soldering Recommendations (Peak Temperature)	for 10 s			$300^{\text {d }}$	
Mounting Torque	6-32 or M3 screw			10	lbf \cdot in
				1.1	$\mathrm{N} \cdot \mathrm{m}$

Notes

a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
b. $\mathrm{V}_{\mathrm{DD}}=50 \mathrm{~V}$, starting $\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{L}=9.1 \mathrm{mH}, \mathrm{R}_{\mathrm{g}}=25 \Omega, \mathrm{I}_{\mathrm{AS}}=10 \mathrm{~A}$ (see fig. 12).
c. $\mathrm{I}_{\mathrm{SD}} \leq 10 \mathrm{~A}, \mathrm{dl} / \mathrm{dt} \leq 120 \mathrm{~A} / \mu \mathrm{s}, \mathrm{V}_{\mathrm{DD}} \leq \mathrm{V}_{\mathrm{DS}}, \mathrm{T}_{\mathrm{J}} \leq 150^{\circ} \mathrm{C}$.
d. 1.6 mm from case.

* Pb containing terminations are not RoHS compliant, exemptions may apply

Vishay Siliconix

THERMAL RESISTANCE RATINGS				
PARAMETER	SYMBOL	TYP.	MAX.	UNIT
Maximum Junction-to-Ambient	$\mathrm{R}_{\text {thJA }}$	-	62	
Case-to-Sink, Flat, Greased Surface	$\mathrm{R}_{\text {thcs }}$	0.50	-	
Maximum Junction-to-Case (Drain)	$\mathrm{R}_{\text {thJc }}$	-	1.0	

SPECIFICATIONS $\left(\mathrm{T}_{J}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS			MIN.	TYP.	MAX.	UNIT
Static								
Drain-Source Breakdown Voltage	V_{DS}	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$			400	-	-	V
$V_{\text {DS }}$ Temperature Coefficient	$\Delta \mathrm{V}_{\mathrm{DS}} / \mathrm{T}_{\mathrm{J}}$	Reference to $25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$			-	0.76	-	$\mathrm{V} /{ }^{\circ} \mathrm{C}$
Gate-Source Threshold Voltage	$\mathrm{V}_{\mathrm{GS}(\text { (th) }}$	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$			2.0	-	4.0	V
Gate-Source Leakage	$\mathrm{I}_{\text {GSS }}$	$\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}$			-	-	± 100	nA
Zero Gate Voltage Drain Current	Idss	$\mathrm{V}_{\mathrm{DS}}=400 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$			-	-	25	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{DS}}=320 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$			-	-	250	
Drain-Source On-State Resistance	$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$		$\mathrm{I}_{\mathrm{D}}=6.0 \mathrm{~A}^{\mathrm{b}}$	-	-	0.55	Ω
Forward Transconductance	$\mathrm{gfs}_{\text {f }}$	$\mathrm{V}_{\mathrm{DS}}=50 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=6.0 \mathrm{~A}^{\mathrm{b}}$			3.0	-	-	S
Dynamic								
Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\begin{gathered} \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{DS}}=25 \mathrm{~V}, \\ \mathrm{f}=1.0 \mathrm{MHz}, \text { see fig. } 5 \end{gathered}$			-	1100	-	pF
Output Capacitance	$\mathrm{Cosss}^{\text {coser }}$				-	190	-	
Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$				-	18	-	
Total Gate Charge	Q_{g}	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$	$\mathrm{I}_{\mathrm{D}}=10 \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=320 \mathrm{~V}$ see fig. 6 and $13^{\text {b }}$		-	-	39	nC
Gate-Source Charge	Q_{gs}				-	-	10	
Gate-Drain Charge	Q_{gd}				-	-	19	
Turn-On Delay Time	$\mathrm{t}_{\mathrm{d}(\mathrm{on})}$	$\begin{gathered} V_{D D}=200 \mathrm{~V}, I_{D}=10 \mathrm{~A}, \\ R_{g}=9.1 \Omega, R_{D}=20 \Omega \text {, see fig. } 10^{\mathrm{b}} \end{gathered}$			-	11	-	ns
Rise Time	t_{r}				-	31	-	
Turn-Off Delay Time	$\mathrm{t}_{\text {d(off) }}$				-	25	-	
Fall Time	t_{f}				-	20	-	
Internal Drain Inductance	L_{D}	Between lead, $6 \mathrm{~mm}(0.25$ ") from package and center of die contact			-	4.5	-	nH
Internal Source Inductance	Ls				-	7.5	-	
Drain-Source Body Diode Characteristics								
Continuous Source-Drain Diode Current	Is	MOSFET symbol showing the integral reverse $\mathrm{p}-\mathrm{n}$ junction diode			-	-	10	A
Pulsed Diode Forward Current ${ }^{\text {a }}$	ISM				-	-	32	
Body Diode Voltage	$\mathrm{V}_{\text {SD }}$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{S}}=10 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}^{\mathrm{b}}$			-	-	2.0	V
Body Diode Reverse Recovery Time	$\mathrm{trr}_{\text {r }}$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~A}, \mathrm{dl} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}^{\mathrm{b}}$			-	380	570	ns
Body Diode Reverse Recovery Charge	Q_{rr}				-	2.8	4.2	$\mu \mathrm{C}$
Forward Turn-On Time	$\mathrm{t}_{\text {on }}$	Intrinsic turn-on time is negligible (turn-on is dominated by L_{S} and L_{D})						

Notes

a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
b. Pulse width $\leq 300 \mu \mathrm{~s}$; duty cycle $\leq 2 \%$.

TYPICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Fig. 1 - Typical Output Characteristics, $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$

Fig. 2 - Typical Output Characteristics, $\mathrm{T}_{\mathrm{C}}=150^{\circ} \mathrm{C}$

Fig. 3 - Typical Transfer Characteristics

Fig. 4 - Normalized On-Resistance vs. Temperature

Vishay Siliconix

Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage

Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage

Fig. 7 - Typical Source-Drain Diode Forward Voltage

Fig. 8 - Maximum Safe Operating Area

Fig. 9 - Maximum Drain Current vs. Case Temperature

Fig. 10a - Switching Time Test Circuit

Fig. 10b - Switching Time Waveforms

Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case

Vishay Siliconix

Fig. 12a - Unclamped Inductive Test Circuit

Fig. 12b - Unclamped Inductive Waveforms

Fig. 12c - Maximum Avalanche Energy vs. Drain Current

Fig. 13a - Basic Gate Charge Waveform

Fig. 13b - Gate Charge Test Circuit

Peak Diode Recovery dV/dt Test Circuit

Fig. 14 - For N -Channel

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?91053.

TO-220AB

DIM.	MILLIMETERS		INCHES	
	MIN.	MAX.	MIN.	MAX.
A	4.25	4.65	0.167	0.183
b	0.69	1.01	0.027	0.040
b(1)	1.20	1.73	0.047	0.068
c	0.36	0.61	0.014	0.024
D	14.85	15.49	0.585	0.610
D2	12.19	12.70	0.480	0.500
E	10.04	10.51	0.395	0.414
e	2.41	2.67	0.095	0.105
e(1)	4.88	5.28	0.192	0.208
F	1.14	1.40	0.045	0.055
H(1)	6.09	6.48	0.240	0.255
J(1)	2.41	2.92	0.095	0.115
L	13.35	14.02	0.526	0.552
L(1)	3.32	3.82	0.131	0.150
\varnothing P	3.54	3.94	0.139	0.155
Q	2.60	3.00	0.102	0.118

ECN: T14-0413-Rev. P, 16-Jun-14
DWG: 5471
Note

* $\mathrm{M}=1.32 \mathrm{~mm}$ to 1.62 mm (dimension including protrusion) Heatsink hole for HVM

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

