

Four ADC, Two DAC Low Power Codec with Audio Processor

Data Sheet

ADAU1772

FEATURES

Programmable audio processing engine 192 kHz processing path Biquad filters, limiters, volume controls, mixing Low latency, 24-bit ADCs and DACs 102 dB SNR (signal through PGA and ADC with A-weighted filter) 107 dB combined SNR (signal through DAC and headphone with A-weighted filter) Serial port sample rates from 8 kHz to 192 kHz 38 µs analog-to-analog latency 4 single-ended analog inputs—configurable as microphone or line inputs **Dual stereo digital microphone inputs** Stereo analog audio output—single-ended or differential, configurable as either line output or headphone driver PLL supporting any input clock rate from 8 MHz to 27 MHz Full-duplex, asynchronous sample rate converters (ASRCs)

Power supplies Analog and digital I/O of 1.8 V to 3.3 V Digital signal processing (DSP) core of 1.1 V to 1.8 V Low power (15 mW for typical noise cancelling solution) I²C and SPI control interfaces, self-boot from I²C EEPROM 7 MP pins supporting dual stereo digital microphone inputs, stereo PDM output, mute, DSP bypass, push-button

APPLICATIONS

Noise cancelling handsets, headsets, and headphones Bluetooth ANC handsets, headsets, and headphones Personal navigation devices Digital still and video cameras

volume controls, and parameter bank switching

GENERAL DESCRIPTION

The ADAU1772 is a codec with four inputs and two outputs that incorporates a digital processing engine to perform filtering, level control, signal level monitoring, and mixing. The path from the analog input to the DSP core to the analog output is optimized for low latency and is ideal for noise cancelling headsets. With the addition of just a few passive components, a crystal, and an EEPROM for booting, the ADAU1772 provides a complete headset solution.

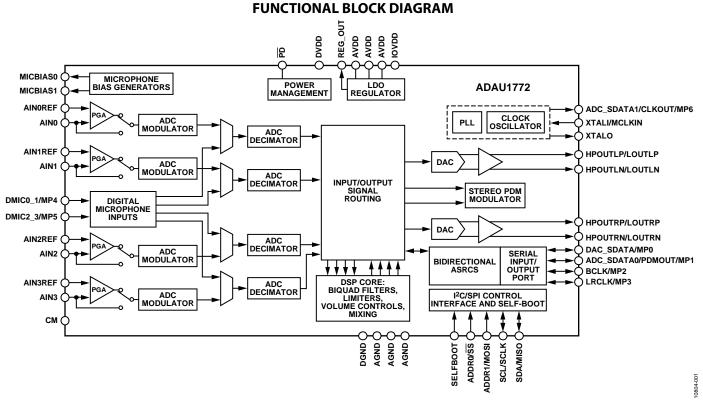


Figure 1.

Rev. C Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2012-2014 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com

TABLE OF CONTENTS

Features 1
Applications
General Description
Functional Block Diagram 1
Revision History
Specifications
Analog Performance Specifications 4
Crystal Amplifier Specifications7
Digital Input/Output Specifications
Power Supply Specifications
Typical Power Consumption9
Digital Filters9
Digital Timing Specifications10
Absolute Maximum Ratings14
Thermal Resistance14
ESD Caution14
Pin Configuration and Function Descriptions15
Typical Performance Characteristics
System Block Diagrams
Theory of Operation
System Clocking and Power-Up
System Clocking and Power-Up
System Clocking and Power-Up
System Clocking and Power-Up 30 Clock Initialization 30 PLL 30
System Clocking and Power-Up
System Clocking and Power-Up30Clock Initialization30PLL30Clock Output31Power Sequencing31
System Clocking and Power-Up30Clock Initialization30PLL30Clock Output31Power Sequencing31Signal Routing32
System Clocking and Power-Up30Clock Initialization30PLL30Clock Output31Power Sequencing31Signal Routing32Input Signal Paths33
System Clocking and Power-Up30Clock Initialization30PLL30Clock Output31Power Sequencing31Signal Routing32Input Signal Paths33Analog Inputs33
System Clocking and Power-Up30Clock Initialization30PLL30Clock Output31Power Sequencing31Signal Routing32Input Signal Paths33Analog Inputs33Digital Microphone Input34
System Clocking and Power-Up30Clock Initialization30PLL30Clock Output31Power Sequencing31Signal Routing32Input Signal Paths33Analog Inputs33Digital Microphone Input34Analog-to-Digital Converters34
System Clocking and Power-Up30Clock Initialization30PLL30Clock Output31Power Sequencing31Signal Routing32Input Signal Paths33Analog Inputs33Digital Microphone Input34Analog-to-Digital Converters34Output Signal Paths35
System Clocking and Power-Up30Clock Initialization30PLL30Clock Output31Power Sequencing31Signal Routing32Input Signal Paths33Analog Inputs33Digital Microphone Input34Analog-to-Digital Converters34Output Signal Paths35Analog Outputs35
System Clocking and Power-Up30Clock Initialization30PLL30Clock Output31Power Sequencing31Signal Routing32Input Signal Paths33Analog Inputs33Digital Microphone Input34Analog-to-Digital Converters34Output Signal Paths35Analog Outputs35Digital-to-Analog Converters35
System Clocking and Power-Up30Clock Initialization30PLL30Clock Output31Power Sequencing31Signal Routing32Input Signal Paths33Analog Inputs33Digital Microphone Input34Analog-to-Digital Converters34Output Signal Paths35Digital-to-Analog Converters35PDM Output35
System Clocking and Power-Up30Clock Initialization30PLL30Clock Output31Power Sequencing31Signal Routing32Input Signal Paths33Analog Inputs33Digital Microphone Input34Analog-to-Digital Converters34Output Signal Paths35Digital-to-Analog Converters35PDM Output35Asynchronous Sample Rate Converters36
System Clocking and Power-Up30Clock Initialization30PLL30Clock Output31Power Sequencing31Signal Routing32Input Signal Paths33Analog Inputs33Digital Microphone Input34Analog-to-Digital Converters34Output Signal Paths35Analog Outputs35Digital-to-Analog Converters35PDM Output35Asynchronous Sample Rate Converters36Signal Levels36
System Clocking and Power-Up30Clock Initialization30PLL30Clock Output31Power Sequencing31Signal Routing32Input Signal Paths33Analog Inputs33Digital Microphone Input34Analog-to-Digital Converters34Output Signal Paths35Analog Outputs35Digital-to-Analog Converters35PDM Output35Asynchronous Sample Rate Converters36Signal Processing37

n	ata	Ch	0	ot
υ	αια	JII	G	σι

Control Port 40	0
I ² C Port	0
SPI Port 4	3
Self-Boot	4
Multipurpose Pins 4	5
Push-Button Volume Controls 4	5
Limiter Compression Enable 4	5
Parameter Bank Switching	5
Mute	5
DSP Bypass Mode 40	6
Serial Data Input/Output Ports	7
Tristating Unused Channels	7
Applications Information	0
Power Supply Bypass Capacitors	0
Layout	0
Grounding	0
Exposed Pad PCB Design	0
Register Summary	1
Register Details	3
Clock Control Register 5.	3
PLL Denominator MSB Register	4
PLL Denominator LSB Register	4
PLL Numerator MSB Register	4
PLL Numerator LSB Register	5
PLL Integer Setting Register	5
PLL Lock Flag Register	6
CLKOUT Setting Selection Register	6
Regulator Control Register	7
Core Control Register	8
Filter Engine and Limiter Control Register	9
DB Value Register 0 Read60	0
DB Value Register 1 Read60	0
DB Value Register 2 Read6	1
Core Channel 0/Core Channel 1 Input Select Register	2
Core Channel 2/Core Channel 3 Input Select Register	3
DAC Input Select Register	
PDM Modulator Input Select Register	
Serial Data Output 0/Serial Data Output 1 Input Select	
Register	6

Serial Data Output 2/Serial Data Output 3 Input Select Register
Serial Data Output 4/Serial Data Output 5 Input Select Register
Serial Data Output 6/Serial Data Output 7 Input Select Register
ADC_SDATA0/ADC_SDATA1 Channel Select Register70
Output ASRC0/Output ASRC1 Source Register71
Output ASRC2/Output ASRC3 Source Register72
Input ASRC Channel Select Register73
ADC0/ADC1 Control 0 Register74
ADC2/ADC3 Control 0 Register75
ADC0/ADC1 Control 1 Register
ADC2/ADC3 Control 1 Register77
ADC0 Volume Control Register
ADC1 Volume Control Register
ADC2 Volume Control Register79
ADC3 Volume Control Register79
PGA Control 0 Register80
PGA Control 1 Register80
PGA Control 2 Register81
PGA Control 3 Register82
PGA Slew Control Register83
PGA 10 dB Gain Boost Register84
Input and Output Capacitor Charging Register85
DSP Bypass Path Register
DSP Bypass Gain for PGA0 Register
DSP Bypass Gain for PGA1 Register86
MIC_BIAS0_1 Control Register87
DAC Control Register
DAC0 Volume Control Register
DAC1 Volume Control Register88

REVISION HISTORY

	Headphone Output Mutes Register	89
	Serial Port Control 0 Register	
	ç	
	Serial Port Control 1 Register	
	TDM Output Channel Disable Register	
	PDM Enable Register	
	PDM Pattern Setting Register	
	MP0 Function Setting Register	
	MP1 Function Setting Register	95
	MP2 Function Setting Register	96
	MP3 Function Setting Register	97
	MP4 Function Setting Register	98
	MP5 Function Setting Register	99
	MP6 Function Setting Register	100
	Push-Button Volume Settings Register	101
	Push-Button Volume Control Assignment Register	102
	Debounce Modes Register	103
	Headphone Line Output Select Register	103
	Decimator Power Control Register	105
	ASRC Interpolator and DAC Modulator Power Control	
	Register	106
	Analog Bias Control 0 Register	106
	Analog Bias Control 1 Register	107
	Digital Pin Pull-Up Control 0 Register	108
	Digital Pin Pull-Up Control 1 Register	109
	Digital Pin Pull-Down Control 0 Register	110
	Digital Pin Pull-Down Control 1 Register	111
	Digital Pin Drive Strength Control 0 Register	112
	Digital Pin Drive Strength Control 1 Register	113
0	Outline Dimensions	114
	Ordering Guide	114

8/12-Rev. 0 to Rev. A

Changes to Figure 69	31
7/12—Revision 0: Initial Version	

SPECIFICATIONS

Master clock = core clock = 12.288 MHz, serial input sample rate = 48 kHz, measurement bandwidth = 20 Hz to 20 kHz, word width = 24 bits, ambient temperature = 25° C, outputs line loaded with 10 k Ω .

ANALOG PERFORMANCE SPECIFICATIONS

Supply voltages AVDD = IOVDD = 1.8 V, DVDD = 1.1 V, unless otherwise noted. PLL disabled, direct master clock.

Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
ANALOG-TO-DIGITAL CONVERTERS			.76		
ADC Resolution	All ADCs		24		Bits
Digital Attenuation Step			0.375		dB
Digital Attenuation Range			95		dB
INPUT RESISTANCE	Gain settings do not include 10 dB gain from				45
	PGA_x_BOOST settings; this additional gain does not affect input impedance; PGA_POP_DISx = 1				
Single-Ended Line Input	0 dB gain		14.3		kΩ
PGA Inputs	–12 dB gain		32.0		kΩ
	0 dB gain		20		kΩ
	+35.25 dB gain		0.68		kΩ
SINGLE-ENDED LINE INPUT	PGA_ENx = 0, PGA_x_BOOST = 0, PGA_POP_DISx = 1				
Full-Scale Input Voltage	Scales linearly with AVDD		AVDD/3.63		V rms
	AVDD = 1.8 V		0.49		V rms
	AVDD = 1.8 V, 0 dBFS		1.38		V p-p
	AVDD = 3.3 V		0.90		Vrms
	AVDD = 3.3 V, 0 dBFS		2.54		V p-p
Dynamic Range ¹	20 Hz to 20 kHz, –60 dB input		2.0		• • •
With A-Weighted Filter (RMS)	AVDD = 1.8 V		97		dB
·······	AVDD = 3.3 V		102		dB
With Flat 20 Hz to 20 kHz Filter	AVDD = 1.8 V		94		dB
	AVDD = 3.3 V		99		dB
Signal-to-Noise Ratio (SNR) ²					0.5
With A-Weighted Filter (RMS)	AVDD = 1.8 V		98		dB
·······	AVDD = 3.3 V		103		dB
With Flat 20 Hz to 20 kHz Filter	AVDD = 1.8 V		96		dB
	AVDD = 3.3 V		100		dB
Interchannel Gain Mismatch			40		mdB
Total Harmonic Distortion + Noise (THD + N)	20 Hz to 20 kHz, –1 dBFS		10		mab
	AVDD = 1.8 V		-90		dB
	AVDD = 3.3 V		-94		dB
Offset Error			±0.1		mV
Gain Error			±0.2		dB
Interchannel Isolation	CM capacitor = $22 \mu\text{F}$		100		dB
Power Supply Rejection Ratio	CM capacitor = 22 μ F		100		ab
rower supply rejection natio	100 mV p-p at 1 kHz		55		dB
SINGLE-ENDED PGA INPUT	$PGA_ENx = 1, PGA_x_BOOST = 0$		55		ub
Full-Scale Input Voltage	Scales linearly with AVDD		AVDD/3.63		V rms
i un scale input voltage	AVDD = 1.8 V		0.49		Vrms
	AVDD = 1.8 V, 0 dBFS		1.38		V p-p
	AVDD = 1.3 V		0.90		V rms
	AVDD = 3.3 V AVDD = 3.3 V, 0 dBFS		2.54		
Dynamic Range ¹	-		2.34		V p-p
With A-Weighted Filter (RMS)	20 Hz to 20 kHz, –60 dB input AVDD = 1.8 V		96		40
	AVDD = 1.0 V	1	90		dB
with A-weighted Filter (RMS)			102		an
With Flat 20 Hz to 20 kHz Filter	AVDD = 3.3 V AVDD = 1.8 V		102 94		dB dB

ADAU1772

Total Harmonic Distortion + Noise 20 Hz to 20 kHz, -1 dBFS AVDD = 1.8 V AVDD = 3.3 V Signal-to-Noise Ratio ² With A-Weighted Filter (RMS) AVDD = 1.8 V AVDD = 3.3 V With Filt 20 Hz to 20 kHz Filter AVDD = 1.8 V AVDD = 3.3 V With Filt 20 Hz to 20 kHz Filter AVDD = 1.8 V AVDD = 3.3 V PGA Gain Variation Standard deviation With +135.25 dB Setting PGA Mute Attenuation Interchannel Gain Mismatch DFGA_MUTEx Offset Error Gain Error Interchannel Isolation PGA_XBOOST POSA Wute Attenuation MIC_ENx = 1 Bias Voltage O.65 × AVDD 0.90 × AVDD AVDD = 1.8 V, MIC_GAINx = 1 0.90 × AVDD AVDD = 1.8 V, MIC_GAINx = 1 Noise in the Signal Bandwidth ³ MIC_GAINx = 0 MIC_GAINx = 0 MIC_GAINx = 0 MIC_GAINx = 1 AVDD = 1.8 V, 20 Hz to 20 kHz MIC_GAINx = 0 MIC_GAINx = 0 MIC_GAINx = 1 AVDD = 1.8 V, 20 Hz to 20 kHz MIC_GAINx = 1 AVDD = 3.3 V, 20 Hz to 20 kHz Noise in the Signal Bandwidth ³ MIC_GAINx = 1 AVDD = 1.8 V, 20 Hz to 20 kHz MIC_GAINx = 1 AVDD = 3.3 V, 20 Hz to 20 kHz MIC_GAINx = 1 AVDD = 3.3 V, 20 Hz to 20 kHz MIC_GAINx = 1 AVDD = 3.3 V, 20 Hz to 20 kHz MIC_GAINx = 1	-88 -90 96 102 94	dB dB dB
AVDD = 3.3 V Signal-to-Noise Ratio ² With A-Weighted Filter (RMS) With Flat 20 Hz to 20 kHz Filter AVDD = 1.8 V AVDD = 3.3 V With Flat 20 Hz to 20 kHz Filter AVDD = 3.3 V PGA Gain Variation With +35.25 dB Setting PGA Mute Attenuation Interchannel Gain Mismatch Offset Error Gain Error Interchannel Isolation Power Supply Rejection Ratio CMCROPHONE BIAS Bias Voltage 0.65 × AVDD 0.4VDD = 1.8 V, MIC_GAINx = 1 AVDD = 3.3 V, MIC_GAINx = 1 AVDD = 3.3 V, MIC_GAINx = 0 MICBIASx Isolation MICE GAINx = 0 MICAIAX Isolation MIC_GAINx = 0 MICAIAX Isolation MIC_GAINx = 0 MICAIAX Isolation MIC_GAINx = 0 MIC_GAINx = 1 AVDD = 3.3 V, 20 Hz to 20 kHz	-90 96 102	dB
Signal-to-Noise Ratio ² AVDD = 1.8 V With A-Weighted Filter (RMS) AVDD = 3.3 V With Flat 20 Hz to 20 kHz Filter AVDD = 3.3 V PGA Gain Variation AVDD = 3.3 V With -12 dB Setting Standard deviation With -12 dB Setting Standard deviation PGA Mute Attenuation PGA_x_BOOST PGA Mute Attenuation PGA_MUTEx Interchannel Gain Mismatch Offset Error Gain Error Interchannel Isolation Power Suppl Rejection Ratio CM capacitor = 22 µF, 100 mV p-p at 1 kHz WICROPHONE BIAS MIC_ENX = 1 Bias Voltage AVDD = 1.8 V, MIC_GAINx = 1 0.90 × AVDD AVDD = 1.8 V, MIC_GAINx = 0 MICEGAINX = 0 AVDD = 3.3 V, MIC_GAINx = 0 MICEGAINX = 1 AVDD = 1.8 V, 20 Hz to 20 kHz MIC_GAINX = 1 MVD = 3.3 V, 20 Hz to 20 kHz MIC_GAINX = 1 MVD = 3.3 V, 20 Hz to 20 kHz MIC_GAINX = 1 MVD = 3.3 V, 20 Hz to 20 kHz MIC_GAINX = 1 MVD = 3.3 V, 20 Hz to 20 kHz MIC_GAINX = 1 MVD = 3.3 V, 20 Hz to 20 kHz MIC_GAINX = 1 MVD = 3.3 V, 20 Hz to 20 kHz MIC_GAINX = 1 MVD = 3.3 V	96 102	
With A-Weighted Filter (RMS) AVDD = 1.8 V With Flat 20 Hz to 20 kHz Filter AVDD = 3.3 V PGA Gain Variation XVD = 3.3 V With -12 dB Setting Standard deviation With -12 dB Setting Standard deviation With -12 cB Setting PGA Gain Variation With -12 dB Setting Standard deviation PGA Boost PGA_SOST PGA Mute Attenuation PGA_MUTEx Interchannel Gain Mismatch Offset Error Gain Error Interchannel Isolation Power Supply Rejection Ratio CM capacitor = 22 µF, 100 mV p-p at 1 kHz MICROPHONE BIAS MIC_ENx = 1 Bias Voltage AVDD = 1.8 V, MIC_GAINx = 1 0.90 × AVDD AVDD = 1.8 V, MIC_GAINx = 0 MICBIASX Isolation MIC_GAINx = 0 MICBIASX Isolation MIC_GAINx = 1 Noise in the Signal Bandwidth ³ MIC_GAINx = 1 NOD = 3.3 V, 20 Hz to 20 kHz MIC_GAINx = 1 AVDD = 1.8 V, 20 Hz to 20 kHz MIC_GAINx = 1 NOD = 3.3 V, 20 Hz to 20 kHz MIC_GAINx = 1 NOB AVDD = 1.8 V, 20 Hz to 20 kHz MIC_GAINx = 1 AVDD = 3.3 V, 20 Hz to 20 kHz <tr< td=""><td>102</td><td>dB</td></tr<>	102	dB
AVDD = 3.3 V AVDD = 3.3 V With Flat 20 Hz to 20 kHz Filter AVDD = 1.8 V AVDD = 3.3 V AVDD = 3.3 V PGA Gain Variation Standard deviation With +35.25 dB Setting Standard deviation PGA Boost PGA_Mute Attenuation Interchannel Gain Mismatch PGA_MUTEx Offset Error Gain Error Interchannel Isolation PGA-MUTEx Power Supply Rejection Ratio CM capacitor = 22 µF, 100 mV p-p at 1 kHz MICENPHONE BIAS MIC_ENx = 1 Bias Voltage 0.65 × AVDD 0.4 XVDD AVDD = 1.8 V, MIC_GAINx = 1 0.90 × AVDD AVDD = 1.8 V, MIC_GAINx = 0 MICBIASX Isolation MIC_GAINx = 0 MIC_GAINX = 0 MIC_GAINX = 0 MIC_GAINX = 0 MIC_GAINX = 0 MIC_GAINX = 1 AVDD = 3.3 V, 20 Hz to 20 kHz Noise in the Signal Bandwidth ³ AVDD = 1.8 V, 20 Hz to 20 kHz MIC_GAINX = 0 MIC_GAINX = 1 MIC_GAINX = 1 AVDD = 3.3 V, 20 Hz to 20 kHz MIC_GAINX = 1 AVDD = 3.3 V, 20 Hz to 20 kHz MIC_GAINX = 1 AVDD = 3.3 V, 20 Hz to 20 kHz MIC_GAINX = 1 AVDD = 3.3 V, 20 Hz to 20 kHz MIC_GAINX = 1 AVDD = 3.3 V, 20 Hz to 20 kHz MIC_GAINX = 1 AVDD = 1.8 V, 20 Hz to 20 kHz	102	dR
With Flat 20 Hz to 20 kHz Filter AVDD = 1.8 V PGA Gain Variation Standard deviation With -12 dB Setting Standard deviation PGA Boost PGA_MUTE Attenuation Interchannel Gain Mismatch PGA_MUTE X Offset Error Gain Error Interchannel Isolation PGA_MUTE X Power Supply Rejection Ratio CM capacitor = 22 µF, 100 mV p-p at 1 kHz WICROPHONE BIAS MIC_ENX = 1 Bias Voltage AVDD = 1.8 V, MIC_GAINX = 1 0.90 × AVDD AVDD = 1.8 V, MIC_GAINX = 0 MICBIASX Isolation MIC_GAINX = 0 MICBIASX Isolation MIC_GAINX = 0 MICBIASX Isolation MIC_GAINX = 1 Noise in the Signal Bandwidth ³ AVDD = 1.8 V, 20 Hz to 20 kHz MIC_GAINX = 1 MIC_GAINX = 1 AVDD = 3.3 V, 20 Hz to 20 kHz MIC_GAINX = 1 DIGITAL-TO-ANALOG CONVERTERS AII DACs Digital Attenuation Step Single-ended operation, HPOUTLP and HPOUTLP and HPOUTLP pins Full-Scale Output Voltage Single-ended operation, HPOUTLP and HPOUTLP and HPOUTLP and Single Single and operation, HPOUTLP and HPOUTLP an		ub
AVDD = 3.3 V AVDD = 3.3 V PGA Gain Variation Standard deviation With -12 dB Setting Standard deviation PGA Boost PGA_x_BOOST PGA Mute Attenuation PGA_x_BOOST Interchannel Gain Mismatch Offset Error Gain Error Interchannel Isolation Power Supply Rejection Ratio CM capacitor = 22 µF, 100 mV p-p at 1 kHz WICROPHONE BIAS MIC_ENx = 1 Bias Voltage 0.65 × AVDD 0.65 × AVDD AVDD = 1.8 V, MIC_GAINx = 1 0.90 × AVDD AVDD = 1.8 V, MIC_GAINx = 0 MICBIASX Isolation MIC_GAINx = 0 MICCBAINS Isolation MIC_GAINx = 0 MIC_GAINX = 1 AVDD = 3.3 V, 20 Hz to 20 kHz Noise in the Signal Bandwidth ³ AVDD = 1.8 V, 20 Hz to 20 kHz MIC_GAINX = 1 AVDD = 3.3 V, 20 Hz to 20 kHz MIC_GAINX = 1 MIC_GAINX = 0 MIC_GAINX = 0 MIC_GAINX = 0 MIC_GAINX = 0 MIC_GAINX = 0 MIC_GAINX = 1 AVDD = 3.3 V, 20 Hz to 20 kHz MIC_GAINX = 1 AVDD = 3.3 V, 20 Hz to 20 kHz MIC_GAINX = 1 AVDD = 1.8 V, 00 HES DAC Resolution <td>94</td> <td>dB</td>	94	dB
PGA Gain Variation Note that the signal Bandwidth 3 With +-12 dB Setting Standard deviation PGA Boost PGA Scotting PGA Boost PGA_X_BOOST PGA Mute Attenuation PGA_X_BOOST Interchannel Gain Mismatch PGA_MUTEx Offset Error Interchannel Isolation Power Supply Rejection Ratio CM capacitor = 22 µF, 100 mV p-p at 1 kHz WICROPHONE BIAS MIC_ENx = 1 Bias Voltage AVDD = 1.8 V, MIC_GAINx = 1 0.90 × AVDD AVDD = 1.8 V, MIC_GAINx = 0 MICBIASX Isolation MIC_GAINx = 0 MICBIASX Isolation MIC_GAINx = 1 Noise in the Signal Bandwidth ³ MIC_GAINx = 0 MIC_GAINx = 1 AVDD = 3.3 V, 20 Hz to 20 kHz MIC_GAINx = 1 AVDD = 3.3 V, 20 Hz to 20 kHz MIC_GAINx = 1 AVDD = 3.3 V, 20 Hz to 20 kHz MIC_GAINx = 1 AVDD = 3.3 V, 20 Hz to 20 kHz MIC_GAINx = 1 AVDD = 3.3 V, 20 Hz to 20 kHz MIC_GAINx = 1 AVDD = 3.3 V, 20 Hz to 20 kHz MIC_GAINx = 1 AVDD = 3.3 V, 20 Hz to 20 kHz MIC_GAINx = 1 AVDD = 1.8 V, 20 Hz to 20 kHz DIGITAL-TO-ANALOG CONVERTERS AII D		dB
With -12 dB SettingStandard deviationWith +35.25 dB SettingPGAPGA BoostPGA_x_BOOSTPGA Mute AttenuationPGA_x_BOOSTInterchannel Gain MismatchPGA_MUTExOffset ErrorInterchannel IsolationPower Supply Rejection RatioCM capacitor = 22 µF, 100 mV p-p at 1 kHzWICROPHONE BIASMIC_ENx = 1Bias VoltageAVDD = 1.8 V, MIC_GAINx = 10.65 x AVDDAVDD = 1.8 V, MIC_GAINx = 0AVDD = 3.3 V, MIC_GAINx = 0AVDD = 3.3 V, MIC_GAINx = 0MICBIASX IsolationMIC_GAINx = 0MICBIASX IsolationMIC_GAINx = 1Noise in the Signal Bandwidth 3AVDD = 1.8 V, 20 Hz to 20 kHzMIC_GAINx = 1AVDD = 3.3 V, 20 Hz to 20 kHzMIC_GAINx = 0MIC_GAINx = 1AVDD = 3.3 V, 20 Hz to 20 kHzDAC ResolutionAII DACsDigital Attenuation RangeSingle-ended operation, HPOUTLP and HPOUTRP pinsFull-Scale Output VoltageScales linearly with AVDDAVDD = 1.8 V, 0 dBFSAVDD = 3.3 V	99	dB
With +35.25 dB SettingStandard deviationPGA BoostPGA_x_BOOSTPGA Mute AttenuationPGA_X_BOOSTInterchannel Gain MismatchPGA_MUTExOffset ErrorGain ErrorInterchannel IsolationPower Supply Rejection RatioPower Supply Rejection RatioCM capacitor = 22 µF, 100 mV p-p at 1 kHzMICROPHONE BIASMIC_ENx = 1Bias Voltage0.65 × AVDD0.65 × AVDDAVDD = 1.8 V, MIC_GAINx = 10.90 × AVDDAVDD = 1.8 V, MIC_GAINx = 0MICBIASX IsolationMIC_GAINX = 0MICBIASX IsolationMIC_GAINX = 0MICBIASX IsolationMIC_GAINX = 1Noise in the Signal Bandwidth ³ AVDD = 1.8 V, 20 Hz to 20 kHzMIC_GAINX = 0MIC_GAINX = 0MIC_GAINX = 0MIC_GAINX = 1DIGITAL-TO-ANALOG CONVERTERSAID = 3.3 V, 20 Hz to 20 kHzDAC SINGLE-ENDED OUTPUTSingle-ended operation, HPOUTLP and HPOUTRP pinsFull-Scale Output VoltageScales linearly with AVDD AVDD = 1.8 V, 0 dBFS AVDD = 3.3 V		
With +35.25 dB SettingStandard deviationPGA BoostPGA_x_BOOSTPGA Mute AttenuationPGA_x_BOOSTInterchannel Gain MismatchPGA_MUTExOffset ErrorGain ErrorInterchannel IsolationPower Supply Rejection RatioPower Supply Rejection RatioCM capacitor = 22 µF, 100 mV p-p at 1 kHzMICROPHONE BIASMIC_ENx = 1Bias Voltage0.65 × AVDD0.90 × AVDDAVDD = 1.8 V, MIC_GAINx = 10.90 × AVDDAVDD = 1.8 V, MIC_GAINx = 0MICBIASX IsolationMIC_GAINx = 0MICBIASX IsolationMIC_GAINx = 0MICBIASX IsolationMIC_GAINx = 1Noise in the Signal Bandwidth ³ AVDD = 1.8 V, 20 Hz to 20 kHzMIC_GAINx = 0MIC_GAINx = 0MIC_GAINx = 0MIC_GAINx = 0MIC_GAINx = 0MIC_GAINx = 1DAC SINGLE-ENDED OUTPUTAID ACsFull-Scale Output VoltageSingle-ended operation, HPOUTLP and HPOUTRP pinsFull-Scale Output VoltageScales linearly with AVDD AVDD = 1.8 V, 0 dBFS AVDD = 1.8 V, 0 dBFS AVDD = 3.3 V	0.05	dB
PGA Boost PGA_X_BOOST PGA Mute Attenuation PGA_MUTEX Interchannel Gain Mismatch PGA_MUTEx Offset Error Interchannel Isolation Power Supply Rejection Ratio CM capacitor = 22 μF, 100 mV p-p at 1 kHz WICROPHONE BIAS MIC_ENx = 1 Bias Voltage AVDD = 1.8 V, MIC_GAINx = 1 0.65 × AVDD AVDD = 1.8 V, MIC_GAINx = 0 MCGBINX = 1 AVDD = 3.3 V, MIC_GAINx = 0 MICBIASX Isolation MIC_GAINX = 0 MICBIASX Isolation MIC_GAINX = 1 Noise in the Signal Bandwidth ³ AVDD = 1.8 V, 20 Hz to 20 kHz MIC_GAINX = 1 AVDD = 3.3 V, 20 Hz to 20 kHz MIC_GAINX = 0 MIC_GAINX = 0 MIC_GAINX = 0 MIC_GAINX = 0 MIC_GAINX = 1 AVDD = 3.3 V, 20 Hz to 20 kHz MIC_GAINX = 1 AVDD = 3.3 V, 20 Hz to 20 kHz DIGITAL-TO-ANALOG CONVERTERS AII DACs DAC Resolution AII DACs Digital Attenuation Range Scales linearly with AVDD AVDD = 1.8 V, 0 dBFS AVDD = 1.8 V, 0 dBFS AVDD = 3.3 V YOD = 3.3 V	0.15	dB
PGA Mute Attenuation Interchannel Gain MismatchPGA_MUTExOffset Error Gain Error Interchannel IsolationPower Supply Rejection RatioCM capacitor = 22 µF, 100 mV p-p at 1 kHzWICROPHONE BIAS Bias Voltage 0.65 × AVDDMIC_ENx = 10.65 × AVDD 0.65 × AVDDAVDD = 1.8 V, MIC_GAINx = 10.90 × AVDD Bias Current Source Output Impedance MICBIASx IsolationAVDD = 3.3 V, MIC_GAINx = 0MICBIASx IsolationMIC_GAINx = 0MICBIASx IsolationMIC_GAINx = 1Noise in the Signal Bandwidth³AVDD = 1.8 V, 20 Hz to 20 kHzMIC_GAINx = 0MIC_GAINx = 0MIC_GAINx = 0MIC_GAINx = 0MIC_GAINx = 1AVDD = 3.3 V, 20 Hz to 20 kHzDOGITAL-TO-ANALOG CONVERTERS DAC ResolutionAII DACsDAC SINGLE-ENDED OUTPUT Full-Scale Output VoltageSingle-ended operation, HPOUTLP and HPOUTRP pins Scales linearly with AVDD AVDD = 1.8 V, 04BFS AVDD = 3.3 V	10	dB
Interchannel Gain Mismatch Offset Error Gain Error Interchannel Isolation Power Supply Rejection Ratio CM capacitor = 22 μF, 100 mV p-p at 1 kHz WICROPHONE BIAS MIC_ENx = 1 Bias Voltage 0.65 × AVDD 0.65 × AVDD AVDD = 1.8 V, MIC_GAINx = 1 0.90 × AVDD AVDD = 3.3 V, MIC_GAINx = 0 0.90 × AVDD AVDD = 1.8 V, MIC_GAINx = 0 MICBIASx Isolation MIC_GAINx = 0 MICBIASx Isolation MIC_GAINx = 0 MICBIASx Isolation MIC_GAINx = 0 MICGAINx = 1 AVDD = 1.8 V, 20 Hz to 20 kHz MIC_GAINx = 1 MIC_GAINx = 1 Noise in the Signal Bandwidth ³ AVDD = 1.8 V, 20 Hz to 20 kHz MIC_GAINx = 1 MIC_GAINx = 0 MIC_GAINx = 1 MIC_GAINx = 1 AVDD = 3.3 V, 20 Hz to 20 kHz MIC_GAINx = 1 DIGITAL-TO-ANALOG CONVERTERS AII DACs Digital Attenuation Step Digital Attenuation Range DIGITAL troubult Voltage Scales linearly with AVDD AVDD = 1.8 V AVDD = 1.8 V AVDD = 1.8 V AVDD = 3.3 V <td>-65</td> <td>dB</td>	-65	dB
Offset Error Gain Error Interchannel IsolationCM capacitor = 22 µF, 100 mV p-p at 1 kHzPower Supply Rejection RatioCM capacitor = 22 µF, 100 mV p-p at 1 kHzMICROPHONE BIAS Bias VoltageMIC_ENx = 10.65 × AVDDAVDD = 1.8 V, MIC_GAINx = 10.90 × AVDDAVDD = 3.3 V, MIC_GAINx = 00.90 × AVDDAVDD = 1.8 V, MIC_GAINx = 0Bias Current Source Output ImpedanceMIC_GAINx = 0MICBIASx IsolationMIC_GAINx = 0MICBIASx IsolationMIC_GAINx = 1Noise in the Signal Bandwidth³AVDD = 1.8 V, 20 Hz to 20 kHzMIC_GAINx = 0MIC_GAINx = 1AVDD = 3.3 V, 20 Hz to 20 kHzMIC_GAINx = 0MIC_GAINx = 1MIC_GAINx = 0DIGITAL-TO-ANALOG CONVERTERS DAC ResolutionAII DACsDIGItal Attenuation RangeSingle-ended operation, HPOUTLP and HPOUTRP pinsFull-Scale Output VoltageScales linearly with AVDD AVDD = 1.8 V, 0 dBFS AVDD = 3.3 V	0.005	dB
Gain Error Interchannel IsolationCM capacitor = 22 µF, 100 mV p-p at 1 kHzPower Supply Rejection RatioCM capacitor = 22 µF, 100 mV p-p at 1 kHzWICROPHONE BIASMIC_ENx = 1Bias VoltageAVDD = 1.8 V, MIC_GAINx = 10.65 × AVDDAVDD = 1.8 V, MIC_GAINx = 00.90 × AVDDAVDD = 3.3 V, MIC_GAINx = 0Bias Current SourceAVDD = 3.3 V, MIC_GAINx = 0Output ImpedanceMIC_GAINx = 1Noise in the Signal Bandwidth ³ MIC_GAINx = 1Noise in the Signal Bandwidth ³ AVDD = 1.8 V, 20 Hz to 20 kHzMIC_GAINx = 0MIC_GAINx = 0MIC_GAINx = 1AVDD = 3.3 V, 20 Hz to 20 kHzNoise in the Signal Bandwidth ³ AID DACsDIGITAL-TO-ANALOG CONVERTERSAID DACsDAC ResolutionAII DACsDigital Attenuation StepSingle-ended operation, HPOUTLP and HPOUTRP pinsFull-Scale Output VoltageScales linearly with AVDD AVDD = 1.8 V, 00 dBFS AVDD = 3.3 V	0	mV
Interchannel IsolationCM capacitor = 22 µF, 100 mV p-p at 1 kHzPower Supply Rejection RatioCM capacitor = 22 µF, 100 mV p-p at 1 kHzMICROPHONE BIASMIC_ENx = 1Bias VoltageAVDD = 1.8 V, MIC_GAINx = 10.65 × AVDDAVDD = 3.3 V, MIC_GAINx = 10.90 × AVDDAVDD = 1.8 V, MIC_GAINx = 0Bias Current SourceAVDD = 3.3 V, MIC_GAINx = 0Output ImpedanceMIC_GAINx = 0MICBIASx IsolationMIC_GAINx = 1Noise in the Signal Bandwidth ³ AVDD = 1.8 V, 20 Hz to 20 kHzMIC_GAINx = 0MIC_GAINx = 0MIC_GAINx = 1AVDD = 3.3 V, 20 Hz to 20 kHzMIC_GAINx = 1MIC_GAINx = 0DIGITAL-TO-ANALOG CONVERTERSMIC_GAINx = 1DAC ResolutionAII DACsDigital Attenuation StepSingle-ended operation, HPOUTLP and HPOUTRP pinsDigital Attenuation RangeScales linearly with AVDD AVDD = 1.8 V, 0 dBFS AVDD = 3.3 V	±0.2	dB
Power Supply Rejection RatioCM capacitor = 22 μF, 100 mV p-p at 1 kHzWICROPHONE BIAS Bias Voltage 0.65 × AVDDMIC_ENx = 10.90 × AVDDAVDD = 1.8 V, MIC_GAINx = 10.90 × AVDDAVDD = 1.8 V, MIC_GAINx = 00.90 × AVDDAVDD = 3.3 V, MIC_GAINx = 0Bias Current Source Output Impedance MICBIASx IsolationMIC_GAINx = 0MIC_GAINx Impedance MIC_GAINx = 1MIC_GAINx = 0Noise in the Signal Bandwidth³AVDD = 1.8 V, 20 Hz to 20 kHz MIC_GAINx = 1Noise in the Signal Bandwidth³AVDD = 1.8 V, 20 Hz to 20 kHz MIC_GAINx = 0DIGITAL-TO-ANALOG CONVERTERS DAC ResolutionAII DACsDAC SINGLE-ENDED OUTPUT Full-Scale Output VoltageSingle-ended operation, HPOUTLP and HPOUTRP pins Scales linearly with AVDD AVDD = 1.8 V, 0 dBFS AVDD = 3.3 V, 0 dBFS AVDD = 3.3 V	83	dB
WICROPHONE BIAS MIC_ENx = 1 Bias Voltage AVDD = 1.8 V, MIC_GAINx = 1 0.55 × AVDD AVDD = 3.3 V, MIC_GAINx = 1 0.90 × AVDD AVDD = 1.8 V, MIC_GAINx = 0 Bias Current Source AVDD = 3.3 V, MIC_GAINx = 0 Output Impedance MIC_GAINx = 0 MICBIASx Isolation MIC_GAINx = 1 Noise in the Signal Bandwidth ³ MIC_GAINx = 1 AVDD = 1.8 V, 20 Hz to 20 kHz MIC_GAINx = 1 AVDD = 1.8 V, 20 Hz to 20 kHz MIC_GAINx = 1 AVDD = 3.3 V, 20 Hz to 20 kHz MIC_GAINx = 1 AVDD = 3.3 V, 20 Hz to 20 kHz MIC_GAINx = 1 AVDD = 3.3 V, 20 Hz to 20 kHz MIC_GAINx = 1 AVDD = 3.3 V, 20 Hz to 20 kHz MIC_GAINx = 1 AVDD = 3.3 V, 20 Hz to 20 kHz MIC_GAINx = 1 AVDD = 3.3 V, 20 Hz to 20 kHz MIC_GAINx = 1 DIGITAL-TO-ANALOG CONVERTERS AII DACs Digital Attenuation Step MID ACs Digital Attenuation Range Single-ended operation, HPOUTLP and HPOUTRP pins Scales linearly with AVDD AVDD = 1.8 V AVDD = 1.8 V AVDD = 1.8 V AVDD = 1.8 V AVDD = 3.3 V	63	dB
Bias Voltage 0.65 × AVDDAVDD = 1.8 V, MIC_GAINx = 1 AVDD = 3.3 V, MIC_GAINx = 1 AVDD = 3.3 V, MIC_GAINx = 0 AVDD = 1.8 V, MIC_GAINx = 0 AVDD = 3.3 V, MIC_GAINx = 0Bias Current Source Output Impedance MICBIASx IsolationMIC_GAINx = 0 MIC_GAINx = 1 AVDD = 1.8 V, 20 Hz to 20 kHz MIC_GAINx = 1 AVDD = 3.3 V, 20 Hz to 20 kHz MIC_GAINx = 1 AVDD = 3.3 V, 20 Hz to 20 kHz MIC_GAINx = 1 AVDD = 3.3 V, 20 Hz to 20 kHz MIC_GAINx = 1 AVDD = 3.3 V, 20 Hz to 20 kHz MIC_GAINx = 1DIGITAL-TO-ANALOG CONVERTERS DAC Resolution Digital Attenuation Step Digital Attenuation RangeAll DACsDAC SINGLE-ENDED OUTPUT Full-Scale Output VoltageSingle-ended operation, HPOUTLP and HPOUTRP pins S cales linearly with AVDD AVDD = 1.8 V AVDD = 1.8 V, 0 dBFS AVDD = 3.3 V	05	
0.65 × ÅVDDAVDD = 1.8 V, MIC_GAINx = 1 AVDD = 3.3 V, MIC_GAINx = 1 AVDD = 3.3 V, MIC_GAINx = 0 AVDD = 1.8 V, MIC_GAINx = 0 AVDD = 3.3 V, MIC_GAINx = 0Bias Current Source Output Impedance MICBIASx IsolationMIC_GAINx = 0 MIC_GAINx = 1 AVDD = 1.8 V, 20 Hz to 20 kHz MIC_GAINx = 1 AVDD = 1.8 V, 20 Hz to 20 kHz MIC_GAINx = 1 AVDD = 3.3 V, 20 Hz to 20 kHz MIC_GAINx = 0 MIC_GAINx = 1 AVDD = 3.3 V, 20 Hz to 20 kHz MIC_GAINx = 0 MIC_GAINx = 0 MIC_GAINx = 0 MIC_GAINx = 1DIGITAL-TO-ANALOG CONVERTERS DAC ResolutionAll DACsDIGITAL Attenuation Step Digital Attenuation RangeSingle-ended operation, HPOUTLP and HPOUTRP pinsFull-Scale Output VoltageScales linearly with AVDD AVDD = 1.8 V, 0 dBFS AVDD = 3.3 V		
AVDD = 3.3 V, MIC_GAINx = 10.90 × AVDDAVDD = 1.8 V, MIC_GAINx = 0Bias Current SourceAVDD = 3.3 V, MIC_GAINx = 0Output ImpedanceMIC_GAINx = 0MICBIASx IsolationMIC_GAINx = 1Noise in the Signal Bandwidth ³ AVDD = 1.8 V, 20 Hz to 20 kHzMIC_GAINx = 0MIC_GAINx = 1Noise in the Signal Bandwidth ³ AVDD = 3.3 V, 20 Hz to 20 kHzMIC_GAINx = 0MIC_GAINx = 1AVDD = 3.3 V, 20 Hz to 20 kHzMIC_GAINx = 1DIGITAL-TO-ANALOG CONVERTERSAII DACsDAC ResolutionSingle-ended operation, HPOUTLP andDigital Attenuation StepSingle-ended operation, HPOUTLP andHPOUTRP pinsScales linearly with AVDDAVDD = 1.8 VAVDD = 1.8 V, 0 dBFSAVDD = 3.3 VAVDD = 3.3 V	1.1.0	N
0.90 × AVDDAVDD = 1.8 V, MIC_GAINx = 0 AVDD = 3.3 V, MIC_GAINx = 0Bias Current Source Output Impedance MICBIASx IsolationMIC_GAINx = 0 MIC_GAINx = 1 AVDD = 1.8 V, 20 Hz to 20 kHz MIC_GAINx = 1 AVDD = 3.3 V, 20 Hz to 20 kHz MIC_GAINx = 1 AVDD = 3.3 V, 20 Hz to 20 kHz MIC_GAINx = 1 AVDD = 3.3 V, 20 Hz to 20 kHz MIC_GAINx = 1DIGITAL-TO-ANALOG CONVERTERS DAC Resolution Digital Attenuation Step Digital Attenuation RangeAll DACsDAC SINGLE-ENDED OUTPUT Full-Scale Output VoltageSingle-ended operation, HPOUTLP and HPOUTRP pins Scales linearly with AVDD AVDD = 1.8 V AVDD = 3.3 V	1.16	V
Bias Current Source AVDD = 3.3 V, MIC_GAINx = 0 Output Impedance MIC_GAINx = 0 MICBIASx Isolation MIC_GAINx = 1 Noise in the Signal Bandwidth ³ AVDD = 1.8 V, 20 Hz to 20 kHz MIC_GAINx = 1 AVDD = 3.3 V, 20 Hz to 20 kHz MIC_GAINx = 1 AVDD = 3.3 V, 20 Hz to 20 kHz MIC_GAINx = 1 AVDD = 3.3 V, 20 Hz to 20 kHz MIC_GAINx = 1 AVDD = 3.3 V, 20 Hz to 20 kHz MIC_GAINx = 1 AVDD = 3.3 V, 20 Hz to 20 kHz DIGITAL-TO-ANALOG CONVERTERS MIC_GAINx = 1 DAC Resolution AII DACs Digital Attenuation Step Digital Attenuation Range DAC SINGLE-ENDED OUTPUT Single-ended operation, HPOUTLP and HPOUTRP pins Full-Scale Output Voltage Scales linearly with AVDD AVDD = 1.8 V AVDD = 1.8 V AVDD = 1.8 V, 0 dBFS AVDD = 3.3 V	2.12	V
Bias Current Source MIC_GAINx = 0 MICBIASx Isolation MIC_GAINx = 1 Noise in the Signal Bandwidth ³ AVDD = 1.8 V, 20 Hz to 20 kHz MIC_GAINx = 0 MIC_GAINx = 1 AVDD = 3.3 V, 20 Hz to 20 kHz MIC_GAINx = 1 AVDD = 3.3 V, 20 Hz to 20 kHz MIC_GAINx = 1 DIGITAL-TO-ANALOG CONVERTERS MIC_GAINx = 1 DAC Resolution AII DACs Digital Attenuation Step Jigle-ended operation, HPOUTLP and DIGITAL-ENDED OUTPUT Single-ended operation, HPOUTLP and Full-Scale Output Voltage Scales linearly with AVDD AVDD = 1.8 V, 0 dBFS AVDD = 3.3 V	1.63	V
Output Impedance MICBIASx IsolationMIC_GAINx = 0 MIC_GAINx = 1Noise in the Signal Bandwidth³AVDD = 1.8 V, 20 Hz to 20 kHz MIC_GAINx = 0 MIC_GAINx = 1 AVDD = 3.3 V, 20 Hz to 20 kHz MIC_GAINx = 1DIGITAL-TO-ANALOG CONVERTERS DAC Resolution Digital Attenuation Step Digital Attenuation RangeAll DACsDAC SINGLE-ENDED OUTPUTSingle-ended operation, HPOUTLP and HPOUTRP pins Scales linearly with AVDD AVDD = 1.8 V, 0 dBFS AVDD = 3.3 V	2.97	V
MICBIASx IsolationMIC_GAINx = 0 MIC_GAINx = 1Noise in the Signal Bandwidth³AVDD = 1.8 V, 20 Hz to 20 kHz MIC_GAINx = 0 MIC_GAINx = 1 AVDD = 3.3 V, 20 Hz to 20 kHz MIC_GAINx = 0 MIC_GAINx = 0 MIC_GAINx = 1DIGITAL-TO-ANALOG CONVERTERS DAC Resolution Digital Attenuation Step Digital Attenuation RangeAll DACsDAC SINGLE-ENDED OUTPUT Full-Scale Output VoltageSingle-ended operation, HPOUTLP and HPOUTRP pins Scales linearly with AVDD AVDD = 1.8 V AVDD = 1.8 V AVDD = 3.3 V	3	mA
Noise in the Signal Bandwidth ³ NIC_GAINx = 1 AVDD = 1.8 V, 20 Hz to 20 kHz MIC_GAINx = 0 MIC_GAINx = 1 AVDD = 3.3 V, 20 Hz to 20 kHz MIC_GAINx = 0 MIC_GAINx = 0 MIC_GAINx = 1DIGITAL-TO-ANALOG CONVERTERS DAC Resolution Digital Attenuation Step Digital Attenuation RangeAll DACsDAC SINGLE-ENDED OUTPUT Full-Scale Output VoltageSingle-ended operation, HPOUTLP and HPOUTRP pins Scales linearly with AVDD AVDD = 1.8 V AVDD = 1.8 V, 0 dBFS AVDD = 3.3 V	1	Ω
Noise in the Signal Bandwidth³AVDD = 1.8 V, 20 Hz to 20 kHzMIC_GAINx = 0MIC_GAINx = 1AVDD = 3.3 V, 20 Hz to 20 kHzMIC_GAINx = 0MIC_GAINx = 0MIC_GAINx = 1DIGITAL-TO-ANALOG CONVERTERSDAC ResolutionDigital Attenuation StepDigital Attenuation RangeDAC SINGLE-ENDED OUTPUTFull-Scale Output VoltageSingle-ended operation, HPOUTLP andHPOUTRP pinsFull-Scale Output VoltageScales linearly with AVDDAVDD = 1.8 VAVDD = 1.8 V, 0 dBFSAVDD = 3.3 V	95	dB
MIC_GAINx = 0MIC_GAINx = 1AVDD = 3.3 V, 20 Hz to 20 kHzMIC_GAINx = 0MIC_GAINx = 1DIGITAL-TO-ANALOG CONVERTERSDAC ResolutionDigital Attenuation StepDigital Attenuation RangeDAC SINGLE-ENDED OUTPUTFull-Scale Output VoltageSingle-ended operation, HPOUTLP andAVDD = 1.8 VAVDD = 1.8 V,AVDD = 1.8 V, 0 dBFSAVDD = 3.3 V	99	dB
MIC_GAINx = 1 AVDD = 3.3 V, 20 Hz to 20 kHz MIC_GAINx = 0 MIC_GAINx = 1DIGITAL-TO-ANALOG CONVERTERS DAC Resolution Digital Attenuation Step Digital Attenuation RangeAll DACsDAC SINGLE-ENDED OUTPUT Full-Scale Output VoltageSingle-ended operation, HPOUTLP and HPOUTRP pins Scales linearly with AVDD AVDD = 1.8 V AVDD = 1.8 V, 0 dBFS AVDD = 3.3 V		
AVDD = 3.3 V, 20 Hz to 20 kHz MIC_GAINx = 0 MIC_GAINx = 1DIGITAL-TO-ANALOG CONVERTERS DAC Resolution Digital Attenuation Step Digital Attenuation RangeAll DACsDAC SINGLE-ENDED OUTPUT Full-Scale Output VoltageSingle-ended operation, HPOUTLP and HPOUTRP pins Scales linearly with AVDD AVDD = 1.8 V AVDD = 1.8 V, 0 dBFS AVDD = 3.3 V	27	nV/√H
MIC_GAINx = 0 MIC_GAINx = 1DIGITAL-TO-ANALOG CONVERTERS DAC Resolution Digital Attenuation Step Digital Attenuation RangeAll DACsDAC SINGLE-ENDED OUTPUT Full-Scale Output VoltageSingle-ended operation, HPOUTLP and HPOUTRP pins Scales linearly with AVDD AVDD = 1.8 V AVDD = 1.8 V, 0 dBFS AVDD = 3.3 V	16	nV/√H
MIC_GAINx = 1 DIGITAL-TO-ANALOG CONVERTERS DAC Resolution All DACs Digital Attenuation Step Digital Attenuation Range DAC SINGLE-ENDED OUTPUT Single-ended operation, HPOUTLP and HPOUTRP pins Full-Scale Output Voltage Scales linearly with AVDD AVDD = 1.8 V AVDD = 1.8 V, 0 dBFS AVDD = 3.3 V		
DIGITAL-TO-ANALOG CONVERTERS All DACs DAC Resolution All DACs Digital Attenuation Step Digital Attenuation Range DAC SINGLE-ENDED OUTPUT Single-ended operation, HPOUTLP and HPOUTRP pins Full-Scale Output Voltage Scales linearly with AVDD AVDD = 1.8 V AVDD = 1.8 V, 0 dBFS AVDD = 3.3 V AVDD = 3.3 V	35	nV/√H
DAC Resolution All DACs Digital Attenuation Step Digital Attenuation Range DAC SINGLE-ENDED OUTPUT Single-ended operation, HPOUTLP and HPOUTRP pins Full-Scale Output Voltage Scales linearly with AVDD AVDD = 1.8 V AVDD = 1.8 V, 0 dBFS AVDD = 3.3 V V	19	nV/√H
Digital Attenuation Step Single-ended operation, HPOUTLP and DAC SINGLE-ENDED OUTPUT Single-ended operation, HPOUTLP and Full-Scale Output Voltage Scales linearly with AVDD AVDD = 1.8 V AVDD = 1.8 V, AVDD = 1.8 V, 0 dBFS AVDD = 3.3 V		
Digital Attenuation Range DAC SINGLE-ENDED OUTPUT Single-ended operation, HPOUTLP and HPOUTRP pins Full-Scale Output Voltage Scales linearly with AVDD AVDD = 1.8 V AVDD = 1.8 V, AVDD = 1.8 V, 0 dBFS AVDD = 3.3 V AVDD = 3.3 V	24	Bits
DAC SINGLE-ENDED OUTPUT Full-Scale Output Voltage Scales linearly with AVDD AVDD = 1.8 V AVDD = 1.8 V, 0 dBFS AVDD = 3.3 V	0.375	dB
Full-Scale Output Voltage HPOUTRP pins Scales linearly with AVDD AVDD = 1.8 V AVDD = 1.8 V, 0 dBFS AVDD = 3.3 V	95	dB
Full-Scale Output VoltageScales linearly with AVDDAVDD = 1.8 VAVDD = 1.8 V, 0 dBFSAVDD = 3.3 V		
AVDD = 1.8 V AVDD = 1.8 V, 0 dBFS AVDD = 3.3 V		
AVDD = 1.8 V, 0 dBFS AVDD = 3.3 V	AVDD/3.4	V rms
AVDD = 3.3 V	0.53	V rms
	1.5	V р-р
	0.97	V rms
AVDU = 3.5 V, U UDFS	2.74	V p-р
Mute Attenuation	-72	dB
Dynamic Range ¹ Line output mode, 20 Hz to 20 kHz, –60 dB input		
With A-Weighted Filter (RMS) $AVDD = 1.8 V$	100	dB
AVDD = 3.3 V	104	dB
With Flat 20 Hz to 20 kHz Filter AVDD = 1.8 V	97	dB
AVDD = 1.0 V AVDD = 3.3 V	101	dB
	101	UD
	100	ar
With A-Weighted Filter (RMS) AVDD = 1.8 V	100	dB
	104	dB
With Flat 20 Hz to 20 kHz FilterAVDD = 1.8 VAVDD = 3.3 V	98 102	dB dB

Rev. C | Page 5 of 116

Parameter	Test Conditions/Comments	Min Typ	Max Unit
Interchannel Gain Mismatch	Line output mode	20	mdE
Total Harmonic Distortion + Noise	Line output mode, 20 Hz to 20 kHz, –1 dBFS		dB
	AVDD = 1.8 V	-93	dB
	AVDD = 3.3 V	-94	dB
Gain Error	Line output mode	±0.1	dB
Dynamic Range ¹	Headphone mode, 20 Hz to 20 kHz, –60 dB input		
With A-Weighted Filter (RMS)	AVDD = 1.8 V	100	dB
j	AVDD = 3.3 V	104	dB
With Flat 20 Hz to 20 kHz Filter	AVDD = 1.8 V	97	dB
	AVDD = 3.3 V	101	dB
Signal-to-Noise Ratio ²	Headphone mode, 20 Hz to 20 kHz		
With A-Weighted Filter (RMS)	AVDD = 1.8 V	100	dB
	AVDD = 3.3 V	104	dB
With Flat 20 Hz to 20 kHz Filter	AVDD = 1.8 V	98	dB
	AVDD = 3.3 V	102	dB
Interchannel Gain Mismatch	Headphone mode	50	mdE
Total Harmonic Distortion + Noise	Headphone mode, 20 Hz to 20 kHz, –1 dBFS	50	mat
32 Ω load	$AVDD = 1.8 V, P_0 = 6.7 mW$	-77	dB
52 12 1000	$AVDD = 3.3 V, P_0 = 22.4 mW$	-80	dB
24 Ω load	$AVDD = 1.8 V, P_0 = 8.9 mW$	-76	dB
24 12 1080	$AVDD = 1.3 V, P_0 = 3.0 mW$	-79	dB
16 Ω load	$AVDD = 3.5 V, P_0 = 30 \text{ mW}$ AVDD = 1.8 V, P ₀ = 13 mW	-74	dB
10121080	$AVDD = 1.8 V, P_0 = 13 MW$ AVDD = 3.3 V, P_0 = 44 mW	-74	dB
Llandahana Output Dowar	$AVDD = 3.5 V, P_0 = 44 IIIVV$	-//	UD
Headphone Output Power 32 Ω Load		0.4	
32 17 LOOU	AVDD = 1.8 V, < 0.1% THD + N	8.4	mW
24.04	AVDD = 3.3 V, <0.1% THD + N	28.1	mW
24 Ω Load	AVDD = 1.8 V, <0.1% THD + N	11.2	mW
	AVDD = 3.3 V, <0.1% THD + N	37.4	mW
16 Ω Load	AVDD = 1.8 V, < 0.1% THD + N	16.25	mW
	AVDD = 3.3 V, <0.1% THD + N	55.8	mW
Gain Error	Headphone mode	±0.1	dB
Offset Error		±0.1	mV
Interchannel Isolation	1 kHz, 0 dBFS input signal	100	dB
Power Supply Rejection Ratio	CM capacitor = 22 μ F, 100 mV p-p at 1 kHz	70	dB
DAC DIFFERENTIAL OUTPUT	Differential operation		
Full-Scale Output Voltage	Scales linearly with AVDD	AVDD/1.8	V rm
	AVDD = 1.8 V	1.0	V rm
	AVDD = 1.8 V, 0 dBFS	2.58	V p-j
	AVDD = 3.3 V	1.83	V rm
	AVDD = 3.3 V, 0 dBFS	5.49	V p-j
Mute Attenuation		-72	dB
Dynamic Range ¹	Line output mode, 20 Hz to 20 kHz, –60 dB input		
With A-Weighted Filter (RMS)	AVDD = 1.8 V	104	dB
	AVDD = 3.3 V	107	dB
With Flat 20 Hz to 20 kHz Filter	AVDD = 1.8 V	101	dB
	AVDD = 3.3 V	105	dB
Signal-to-Noise Ratio ²	Line output mode, 20 Hz to 20 kHz		
With A-Weighted Filter (RMS)	AVDD = 1.8 V	105	dB
-	AVDD = 3.3 V	108	dB
With Flat 20 Hz to 20 kHz Filter	AVDD = 1.8 V	102	dB
	AVDD = 3.3 V	105	dB
Interchannel Gain Mismatch	Line output mode	20	mdE
Total Harmonic Distortion + Noise	Line output mode, 20 Hz to 20 kHz, –1 dBFS		dB
	AVDD = 1.8 V	-96	dB
	AVDD = 1.3 V AVDD = 3.3 V	-96	dB
Gain Error	Line output mode		чь %

ADAU1772

Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
Dynamic Range ¹	Headphone mode, 20 Hz to 20 kHz, –60 dB input				
With A-Weighted Filter (RMS)	AVDD = 1.8 V		104		dB
	AVDD = 3.3 V		107		dB
With Flat 20 Hz to 20 kHz Filter	AVDD = 1.8 V		102		dB
	AVDD = 3.3 V		104		dB
Signal-to-Noise Ratio ²	Headphone mode, 20 Hz to 20 kHz				
With A-Weighted Filter (RMS)	AVDD = 1.8 V		105		dB
	AVDD = 3.3 V		108		dB
With Flat 20 Hz to 20 kHz Filter	AVDD = 1.8 V		103		dB
	AVDD = 3.3 V		106		dB
Interchannel Gain Mismatch	Headphone mode		75		mdB
Total Harmonic Distortion + Noise	Headphone mode				
32 Ω Load	-1 dBFS, AVDD = 1.8 V, P _o = 27 mW		-75		dB
	-1 dBFS, AVDD = 3.3 V, P _o = 90 mW		-83		dB
24 Ω Load	-2 dBFS, AVDD = 1.8 V, P _o = 28 mW		-75		dB
	-1 dBFS, AVDD = 3.3 V, P _o = 118 mW		-77		dB
16 Ω Load	-3 dBFS, AVDD = 1.8 V, P _o = 33 mW		-75		dB
	-1 dBFS, AVDD = 3.3 V, P _o = 175 mW		-83		dB
Headphone Output Power					
32 Ω Load	AVDD = 1.8 V, <0.1% THD + N		32.5		mW
	AVDD = 3.3 V, <0.1% THD + N		111.8		mW
24 Ω Load	AVDD = 1.8 V, <0.1% THD + N		37.6		mW
	AVDD = 3.3 V, <0.1% THD + N		148.3		mW
16 Ω Load	AVDD = 1.8 V, <0.1% THD + N		41.5		mW
	AVDD = 3.3 V, <0.1% THD + N		189.2		mW
Gain Error	Headphone mode		±0.25		%
Offset Error			±0.1		mV
Interchannel Isolation	1 kHz, 0 dBFS input signal		100		dB
Power Supply Rejection Ratio	CM capacitor = 22 μ F				
	100 mV p-p at 1 kHz		73		dB
CM REFERENCE	CM pin				
Common-Mode Reference Output			AVDD/2		V
Common-Mode Source Impedance			5		kΩ
REGULATOR					
Line Regulation			1		mV/V
Load Regulation			6		mV/mA

¹ Dynamic range is the ratio of the sum of noise and harmonic power in the band of interest with a –60 dBFS signal present to the full-scale power level in decibels. ² SNR is the ratio of the sum of all noise power in the band of interest with no signal present to the full-scale power level in decibels.

 3 These specifications are with 4.7 μF decoupling and 5.0 k Ω load on pin.

CRYSTAL AMPLIFIER SPECIFICATIONS

Supply voltages AVDD = IOVDD = 1.8 V, DVDD = 1.1 V, unless otherwise noted.

Table 2.					
Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
Jitter			270	500	ps
Frequency Range		8		27	MHz
Load Capacitance				20	рF

DIGITAL INPUT/OUTPUT SPECIFICATIONS

 $-40^{\circ}C < T_{\text{A}} < +85^{\circ}C,$ IOVDD = 3.3 V \pm 10% and 1.8 V - 5%/+10%.

Table 3.

Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
Input Voltage High (V _⊮)	IOVDD = 3.3 V	2.0			V
	IOVDD = 1.8 V	1.1			V
Input Voltage Low (V _{IL})	IOVDD = 3.3 V			0.8	V
	IOVDD = 1.8 V			0.45	V
Input Leakage	IOVDD = 3.3 V, I_{IH} at V_{IH} = 2.0 V			10	μΑ
	I_{IL} at $V_{IL} = 0.8 V$			10	μΑ
	$IOVDD = 1.8 V$, I_{IH} at $V_{IH} = 1.1 V$			10	μΑ
	I_{IL} at $V_{IL} = 0.45 V$			10	μΑ
Output Voltage High (V_{OH}) with Low Drive Strength	I _{ОН} = 1 mA	IOVDD – 0.6			V
Output Voltage High (V_{OH}) with High Drive Strength	I _{ОН} = 3 mA	IOVDD – 0.6			V
Output Voltage Low (V_{OL}) with Low Drive Strength	$I_{OL} = 1 \text{ mA}$			0.4	V
Output Voltage Low (V_{OL}) with High Drive Strength	$I_{OL} = 3 \text{ mA}$			0.4	V
Input Capacitance				5	pF

POWER SUPPLY SPECIFICATIONS

Supply voltages AVDD = IOVDD = 1.8 V, DVDD = 1.1 V, unless otherwise noted. PLL disabled, direct master clock.

Parameter	Test Conditions/Comments	Min	Тур	Мах	Unit
SUPPLIES					
AVDD Voltage		1.71	1.8	3.63	V
DVDD Voltage		1.045	1.1	1.98	V
IOVDD Voltage		1.71	1.8	3.63	V
Digital I/O Current with IOVDD = 1.8 V	Crystal oscillator enabled				
Slave Mode	$f_s = 48 \text{ kHz}$		0.35		mA
	$f_s = 192 \text{ kHz}$		0.49		mA
	fs = 8 kHz		0.32		mA
Master Mode	$f_s = 48 \text{ kHz}$		0.53		mA
	fs = 192 kHz		1.18		mA
	fs = 8 kHz		0.35		mA
Power-Down			0		μA
Digital I/O Current with IOVDD = 3.3 V	Crystal oscillator enabled				•
Slave Mode	$f_s = 48 \text{ kHz}$		2.05		mA
	fs = 192 kHz		2.28		mA
	fs = 8 kHz		1.99		mA
Master Mode	$f_s = 48 \text{ kHz}$		2.4		mA
	f _s = 192 kHz		3.62		mA
	fs = 8 kHz		2.05		mA
Power-Down			7		μA
Analog Current (AVDD)	See Table 5				
Power-Down	AVDD = 1.8 V		0.6		μA
	AVDD = 3.3 V		13.6		μA
DISSIPATION					
Operation	f _s = 192 kHz (see conditions in Table 5)				
All Supplies			15.5		mW
Digital I/O Supply			0.7		mW
Analog Supply	Includes regulated DVDD current		14.8		mW
Power-Down, All Supplies	-		1		μW

TYPICAL POWER CONSUMPTION

Typical active noise cancelling (ANC) settings. Master clock = 12.288 MHz, $f_s = 192$ kHz. On-board regulator enabled. Two analog-todigital converters (ADCs) with PGA enabled and two ADCs configured for line input; no input signal. Two digital-to-analog converters (DACs) configured for differential headphone operation; DAC outputs unloaded. Both MICBIAS0 and MICBIAS1 enabled. ASRCs and pulse density modulated (PDM) modulator disabled. Core running 26 out of 32 possible instructions. For total power consumption, add IOVDD at 8 kHz slave current listed in Table 4.

Table 5.

Operating Voltage	Power Management Setting	Typical AVDD Power Consumption (mA)	Typical ADC THD + N (dB)	Typical HP Output THD + N (dB)
AVDD = IOVDD = 3.3 V	Normal (default)	11.5	-93	-87.5
	Extreme power saving	9.4	-93	-86.5
	Power saving	9.8	-93	-86.5
	Enhanced performance	12.65	-93	-90.5
AVDD = IOVDD = 1.8 V	Normal (default)	9.37	-86	-91
	Extreme power saving	7.40	-84.5	-87
	Power saving	7.78	-84.5	-87.5
	Enhanced performance	10.4	-86	-94.5

DIGITAL FILTERS

Table 6.

Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
ADC INPUT TO DAC OUTPUT PATH					
Pass-Band Ripple	DC to 20 kHz, $f_s = 192$ kHz			±0.02	dB
Group Delay	$f_s = 192 \text{ kHz}$		38		μs
SAMPLE RATE CONVERTER					
Pass Band	LRCLK < 63 kHz	0		$0.475 imes f_s$	kHz
	63 kHz < LRCLK <130 kHz	0		$0.4286 \times f_s$	
	LRCLK > 130 kHz	0		$0.4286 \times f_s$	
Pass-Band Ripple	Upsampling, 96 kHz	-0.27		0.05	dB
	Upsampling, 192 kHz	-0.06		0.05	dB
	Downsampling, 96 kHz	0		0.07	dB
	Downsampling, 192 kHz	0		0.07	dB
Input/Output Frequency Range		8		192	kHz
Dynamic Range			100		dB
Total Harmonic Distortion + Noise			-90		dB
Startup Time				15	ms
PDM MODULATOR					
Dynamic Range (A-Weighted)			112		dB
Total Harmonic Distortion + Noise			-92		dB

DIGITAL TIMING SPECIFICATIONS

 $-40^{\circ}C < T_{\rm A} < +85^{\circ}C, \, IOVDD$ = 1.71 V to 3.63 V, DVDD = 1.045 V to 1.98 V.

Table 7. Digital Timing

	Liı	mit		
Parameter	T _{MIN}	T _{MAX}	Unit	Description
MASTER CLOCK				
t _{MP}	37	125	ns	MCLKIN period; 8 MHz to 27 MHz input clock using PLL
tmclk	77	82	ns	Internal MCLK period; direct MCLK and PLL output divided by 2
SERIAL PORT				
t _{BL}	40		ns	BCLK low pulse width (master and slave modes)
t _{вн}	40		ns	BCLK high pulse width (master and slave modes)
t _{LS}	10		ns	LRCLK setup; time to BCLK rising (slave mode)
tLH	10		ns	LRCLK hold; time from BCLK rising (slave mode)
tss	5		ns	DAC_SDATA setup; time to BCLK rising (master and slave modes)
tsн	5		ns	DAC_SDATA hold; time from BCLK rising (master and slave modes)
tтs		10	ns	BCLK falling to LRCLK timing skew (master mode)
tsod	0	34	ns	ADC_SDATAx delay; time from BCLK falling (master and slave modes)
tsotd		30	ns	BCLK falling to ADC_SDATAx driven in TDM tristate mode
tsotx		30	ns	BCLK falling to ADC_SDATAx tristated in TDM tristate mode
SPI PORT				
fsclk		6.25	MHz	SCLK frequency
t _{CCPL}	80		ns	SCLK pulse width low
tссрн	80		ns	SCLK pulse width high
t _{CLS}	5		ns	SS setup; time to SCLK rising
tclh	100		ns	SS hold; time from SCLK rising
t _{clph}	80		ns	SS pulse width high
t _{CDS}	10		ns	MOSI setup; time to SCLK rising
t _{CDH}	10		ns	MOSI hold; time from SCLK rising
tcod		101	ns	MISO delay; time from SCLK falling
I ² C PORT				
f _{scL}		400	kHz	SCL frequency
tsclh	0.6		μs	SCL high
t _{scll}	1.3		μs	SCL low
tscs	0.6		μs	SCL rise setup time (to SDA falling), relevant for repeated start condition
tscr		250	ns	SCL and SDA rise time, $C_{LOAD} = 400 \text{ pF}$
tscн	0.6		μs	SCL fall hold time (from SDA falling), relevant for start condition
t _{Ds}	100		ns	SDA setup time (to SCL rising)
t _{SCF}		250	ns	SCL fall time; $C_{LOAD} = 400 \text{ pF}$
t _{sDF}		250	ns	SDA fall time; C _{LOAD} = 400 pF
t _{BFT}	0.6		μs	SCL rise setup time (to SDA rising), relevant for stop condition
I ² C EEPROM SELF-BOOT				
t _{SCHE}	$26 imes t_{MP} - 70$		ns	SCL fall hold time (from SDA falling), relevant for start condition; t_M is the input clock on the MCLKIN pin
t _{SCSE}	$38 imes t_{MP} - 70$		ns	SCL rise setup time (to SDA falling), relevant for repeated start condition
t _{BFTE}	70 × t _{MP} - 70		ns	SCL rise setup time (to SDA rising), relevant for stop condition
t _{DSE}	6 × t _{MP} – 70		ns	Delay from SCL falling to SDA changing
t _{внте}	$32 \times t_{MP}$		ns	SDA rising in self-boot stop condition to SDA falling edge for external master start condition
MULTIPURPOSE AND POWER- DOWN PINS				
t _{GIL}		$1.5 \times 1/f_s$	μs	MPx input latency; time until high or low value is read by core
			1.	PD low pulse width

10804-002

		Limit		
Parameter	T _{MIN}	T _{MAX}	Unit	Description
DIGITAL MICROPHONE				
tcF		20	ns	Digital microphone clock fall time
t _{CR}		20	ns	Digital microphone clock rise time
t _{Ds}	40			Digital microphone valid data start time
t _{DE}		0	ns	Digital microphone valid data end time
PDM OUTPUT				
t _{DCF}		20	ns	PDM clock fall time
t _{DCR}		20	ns	PDM clock rise time
t _{DDV}	0	30	ns	PDM delay time for valid data

Digital Timing Diagrams

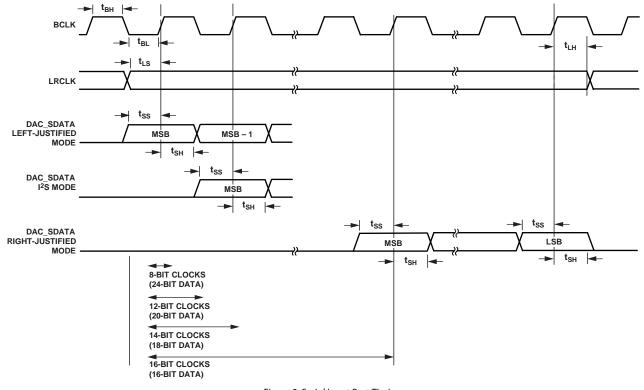
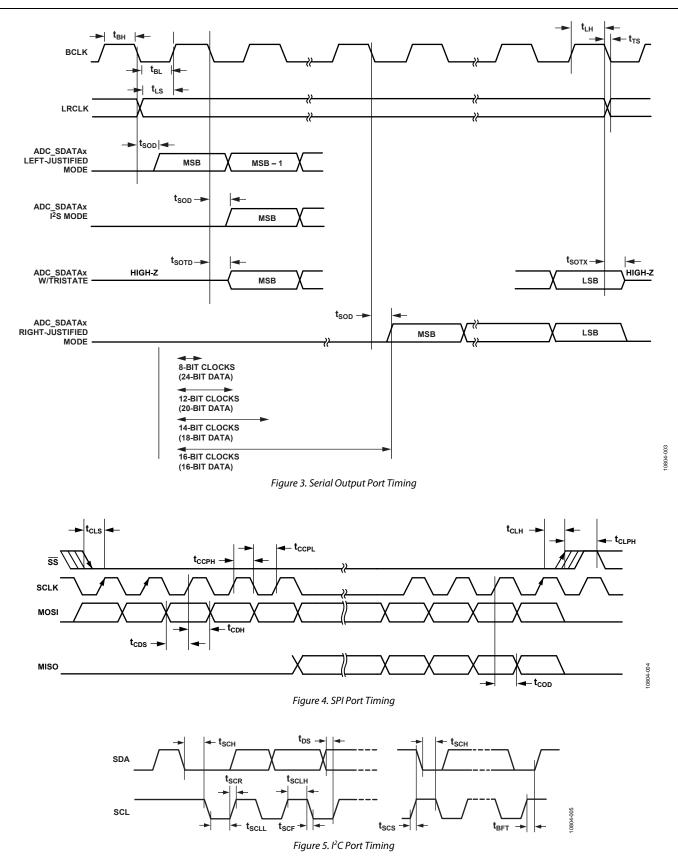
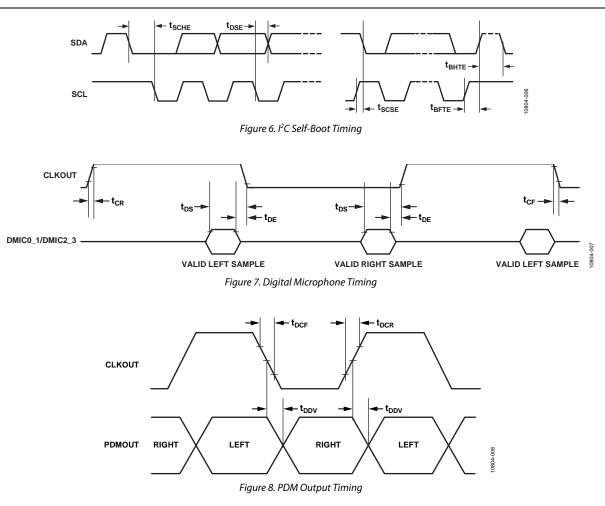




Figure 2. Serial Input Port Timing

ADAU1772

ABSOLUTE MAXIMUM RATINGS

Table 8.

Parameter	Rating
Power Supply (AVDD, IOVDD)	–0.3 V to +3.63 V
Digital Supply (DVDD)	–0.3 V to +1.98 V
Input Current (Except Supply Pins)	±20 mA
Analog Input Voltage (Signal Pins)	–0.3 V to AVDD + 0.3 V
Digital Input Voltage (Signal Pins)	-0.3 to IOVDD + 0.3 V
Operating Temperature Range (Case)	-40°C to +85°C
Storage Temperature Range	–65°C to +150°C

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

 θ_{JA} represents the junction-to-ambient thermal resistance; θ_{JC} represents the junction-to-case thermal resistance. Thermal numbers are simulated on a 4-layer JEDEC PCB with the exposed pad soldered to the PCB. θ_{JC} was simulated at the exposed pad on the bottom of the package.

Table 9. Thermal Resistance

Package Type	θ」Α	θıc	Unit
40-Lead LFCSP	29	1.8	°C/W

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

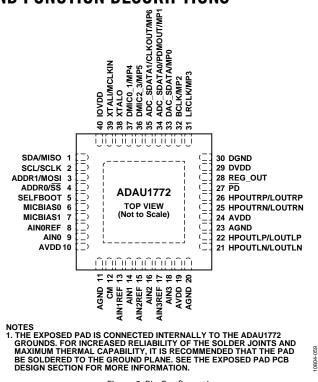


Figure 9. Pin Configuration

Table 10. Pin Function Descriptions

Pin No.	Mnemonic	Type ¹	Description
1	SDA/MISO	D_IO	I^2C Data (SDA). This pin is a bidirectional open-collector. The line connected to this pin should have a 2.0 $k\Omega$ pull-up resistor.
			SPI Data Output (MISO). This SPI data output is used for reading back registers and memory locations. It is tristated when an SPI read is not active.
2	SCL/SCLK	D_IN	I ² C Clock (SCL). This pin is always an open-collector input when the device is in I ² C control mode. When the device is in self-boot mode, this pin is an open-collector output (I ² C master). The line connected to this pin should have a 2.0 kΩ pull-up resistor.
			SPI Clock (SCLK). This pin can either run continuously or be gated off between SPI transactions.
3	ADDR1/MOSI	D_IN	I ² C Address 1 (ADDR1).
			SPI Data Input (MOSI).
4	ADDR0/SS	D_IN	I ² C Address 0 (ADDR0).
			SPI Latch Signal (SS). This pin must go low at the beginning of an SPI transaction and high at the end of a transaction. Each SPI transaction can take a different number of SCLK cycles to complete, depending on the address and read/write bit that are sent at the beginning of the SPI transaction.
5	SELFBOOT	D_IN	Self-Boot. Pull this pin up to IOVDD at power-up to enable the self-boot mode.
6	MICBIASO	A_OUT	Bias Voltage for Electret Microphone. Decouple with a 1 μ F capacitor.
7	MICBIAS1	A_OUT	Bias Voltage for Electret Microphone. Decouple with a 1 μ F capacitor.
8	AINOREF	A_IN	ADC0 Input Reference. This reference pin should be ac-coupled to ground with a 10 µF capacitor.
9	AINO	A_IN	ADC0 Input.
10	AVDD	PWR	1.8 V to 3.3 V Analog Supply. This pin should be decoupled to AGND with a 0.1 μ F capacitor.
11	AGND	PWR	Analog Ground. The AGND and DGND pins can be tied directly together in a common ground plane. AGND should be decoupled to AVDD with a 0.1 μF capacitor.
12	СМ	A_OUT	AVDD/2 V Common-Mode Reference. A 10 μ F to 47 μ F decoupling capacitor should be connected between this pin and ground to reduce crosstalk between the ADCs and DACs. The material of the capacitors is not critical. This pin can be used to bias external analog circuits, as long as they are not drawing current from CM (for example, the noninverting input of an op amp).

Dia Na	M	T	Description
Pin No.	Mnemonic	Type ¹	Description
13	AIN1REF	A_IN	ADC1 Input Reference. This reference pin should be ac-coupled to ground with a 10 μ F capacitor.
14	AIN1	A_IN	ADC1 Input.
15	AIN2REF	A_IN	ADC2 Input Reference. This reference pin should be ac-coupled to ground with a 10 μ F capacitor.
16	AIN2	A_IN	ADC2 Input.
17	AIN3REF	A_IN	ADC3 Input Reference. This reference pin should be ac-coupled to ground with a 10 μ F capacitor.
18	AIN3	A_IN	ADC3 Input.
19	AVDD	PWR	1.8 V to 3.3 V Analog Supply. This pin should be decoupled to AGND with a 0.1 μ F capacitor.
20	AGND	PWR	Analog Ground.
21	HPOUTLN/LOUTLN	A_OUT	Left Headphone Inverted (HPOUTLN).
			Line Output Inverted (LOUTLN).
22	HPOUTLP/LOUTLP	A_OUT	Left Headphone Noninverted (HPOUTLP).
			Line Output Noninverted, Single-Ended Line Output (LOUTLP).
23	AGND	PWR	Headphone Amplifier Ground.
24	AVDD	PWR	Headphone Amplifier Power, 1.8 V to 3.3 V Analog Supply. This pin should be decoupled to AGND with a 0.1 µF capacitor. The PCB trace to this pin should be wider to supply the higher current necessary for driving the headphone outputs.
25	HPOUTRN/LOUTRN	A_OUT	Right Headphone Inverted (HPOUTRN).
			Line Output Inverted (LOUTRN).
26	HPOUTRP/LOUTRP	A_OUT	Right Headphone Noninverted (HPOUTRP).
			Line Output Noninverted, Single-Ended Line Output (LOUTRP).
27	PD	D_IN	Active Low Power-Down. All digital and analog circuits are powered down. There is an internal pull-down resistor on this pin; therefore, the ADAU1772 is held in power-down mode if its input signal is floating while power is applied to the supply pins.
28	REG_OUT	A_OUT	Regulator Output Voltage. This pin should be connected to DVDD if the internal voltage regulator is being used to generate DVDD voltage.
29	DVDD	PWR	Digital Core Supply. The digital supply can be generated from an on-board regulator or supplied directly from an external supply. In each case, DVDD should be decoupled to DGND with a 0.1 µF capacitor.
30	DGND	PWR	Digital Ground. The AGND and DGND pins can be tied directly together in a common ground plane.
31	LRCLK/MP3	D_IO	Serial Data Port Frame Clock (LRCLK).
		5_10	General-Purpose Input (MP3).
32	BCLK/MP2	D_IO	Serial Data Port Bit Clock (BCLK).
52	Delivini	0_10	General-Purpose Input (MP2).
33	DAC_SDATA/MP0	D_IO	DAC Serial Input Data (DAC_SDATA).
55	DAC_SDATA/MILO	0_10	General-Purpose Input (MP0).
34	ADC_SDATA0/PDMOUT/MP1	D_IO	ADC Serial Data Output 0 (ADC_SDATA0).
54		0_10	Stereo PDM Output to Drive a High Efficiency Class-D Amplifier (PDMOUT).
			General-Purpose Input (MP1).
35	ADC SDATA1/CLKOUT/MP6		Serial Data Output 1 (ADC_SDATA1).
22	ADC_SDATAT/CEROOT/MP8	D_IO	Master Clock Output/Clock for the Digital Microphone Input and PDM Output (CLKOUT).
26			General-Purpose Input (MP6).
36	DMIC2_3/MP5	D_IN	Digital Microphone Stereo Input 2 and Digital Microphone Stereo Input 3 (DMIC2_3).
27		D 111	General-Purpose Input (MP5).
37	DMIC0_1/MP4	D_IN	Digital Microphone Stereo Input 0 and Digital Microphone Stereo Input 1 (DMIC0_1).
	X711.0		General-Purpose Input (MP4).
38	XTALO	A_OUT	Crystal Clock Output. This pin is the output of the crystal amplifier and should not be used to provide a clock to other ICs in the system. If a master clock output is needed, use CLKOUT (Pin 35).
20			Crystal Clock Input (XTALI).
39	XTALI/MCLKIN	D_IN	Master Clock Input (MCLKIN)
40	IOVDD	PWR	Supply for Digital Input and Output Pins. The digital output pins are supplied from IOVDD, and this sets the highest input voltage that should be seen on the digital input pins. The current draw of this pin is variable because it is dependent on the loads of the digital outputs. IOVDD should be decoupled to DGND with a 0.1 μ F capacitor.
	EP		Exposed Pad. The exposed pad is connected internally to the ADAU1772 grounds. For increased reliability of the solder joints and maximum thermal capability, it is recommended that the pad be soldered to the ground plane. See the Exposed Pad PCB Design section for more information.

 1 D_IO = digital input/output, D_IN = digital input, A_OUT = analog output, A_IN = analog input, PWR = power, A_IN = analog input.

TYPICAL PERFORMANCE CHARACTERISTICS

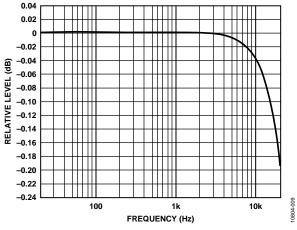


Figure 10. Relative Level vs. Frequency, fs = 48 kHz, Signal Path = AIN0 to DSP (Without Processing) to LOUTLx

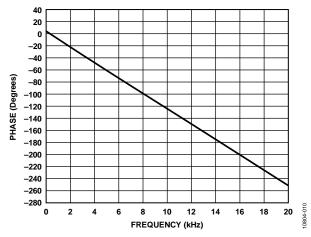
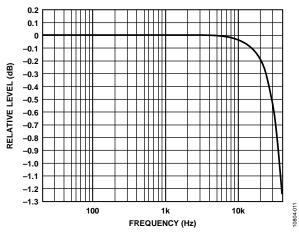
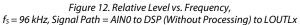




Figure 11. Phase vs. Frequency, 20 kHz Bandwidth, $f_s = 48$ kHz, Signal Path = AIN0 to DSP (Without Processing) to LOUTLx

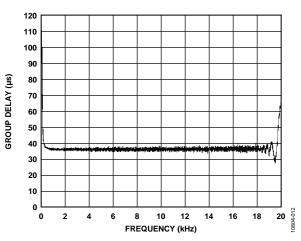


Figure 13. Group Delay vs. Frequency, $f_s = 48 \text{ kHz}$, Signal Path = AIN0 to DSP (Without Processing) to LOUTLx

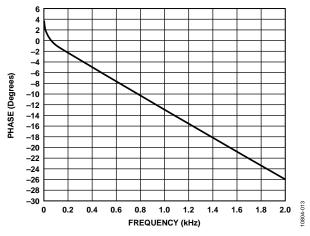


Figure 14. Phase vs. Frequency, 2 kHz Bandwidth, $f_s = 48$ kHz, Signal Path = AIN0 to DSP (Without Processing) to LOUTLx

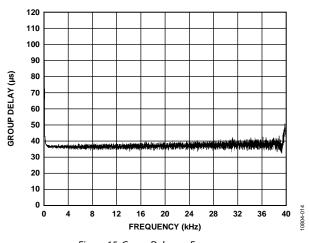


Figure 15. Group Delay vs. Frequency, $f_s = 96 \text{ kHz}$, Signal Path = AIN0 to DSP (Without Processing) to LOUTLx

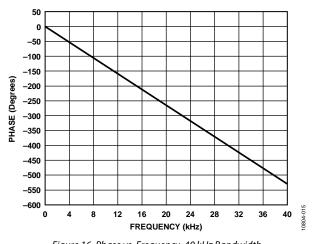


Figure 16. Phase vs. Frequency, 40 kHz Bandwidth, fs = 96 kHz, Signal Path = AIN0 to DSP (Without Processing) to LOUTLx

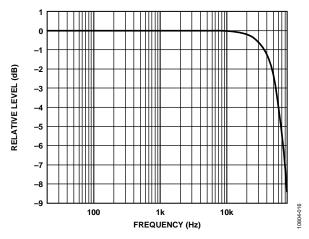


Figure 17. Relative Level vs. Frequency, $f_{\rm S}$ = 192 kHz, Signal Path = AIN0 to DSP (Without Processing) to LOUTLx

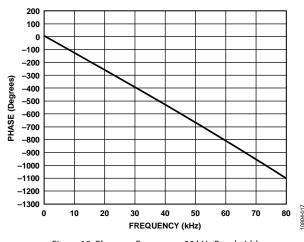


Figure 18. Phase vs. Frequency, 80 kHz Bandwidth, $f_s = 192$ kHz, Signal Path = AIN0 to DSP (Without Processing) to LOUTLx

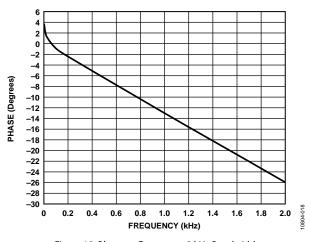
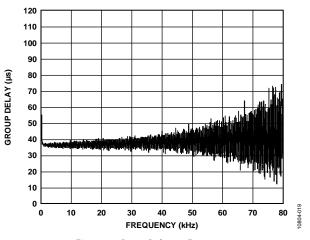
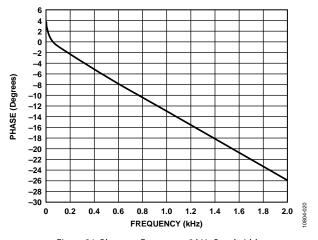
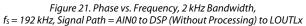
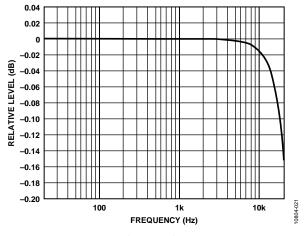
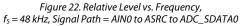
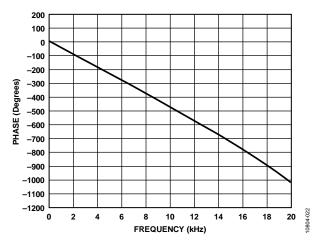
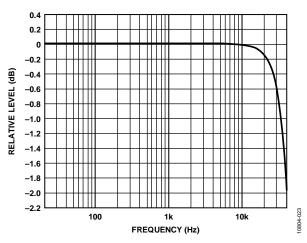
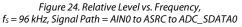
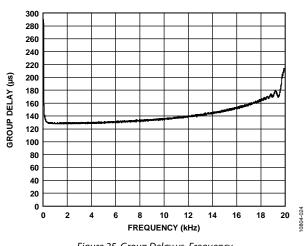


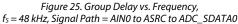
Figure 19. Phase vs. Frequency, 2 kHz Bandwidth, $f_s = 96$ kHz, Signal Path = AIN0 to DSP (Without Processing) to LOUTLx


Figure 20. Group Delay vs. Frequency, $f_s = 192 \text{ kHz}$, Signal Path = AIN0 to DSP (Without Processing) to LOUTLx

Rev. C | Page 18 of 116


Figure 23. Phase vs. Frequency, 20 kHz Bandwidth, $f_5 = 48$ kHz, Signal Path = AIN0 to ASRC to ADC_SDATA0

ADAU1772

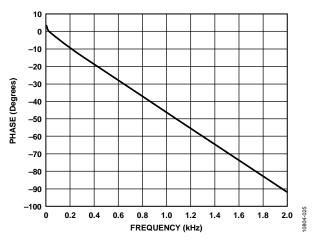


Figure 26. Phase vs. Frequency, 2 kHz Bandwidth, $f_s = 48$ kHz, Signal Path = AIN0 to ASRC to ADC_SDATA0

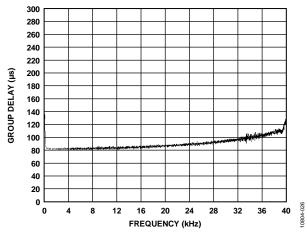
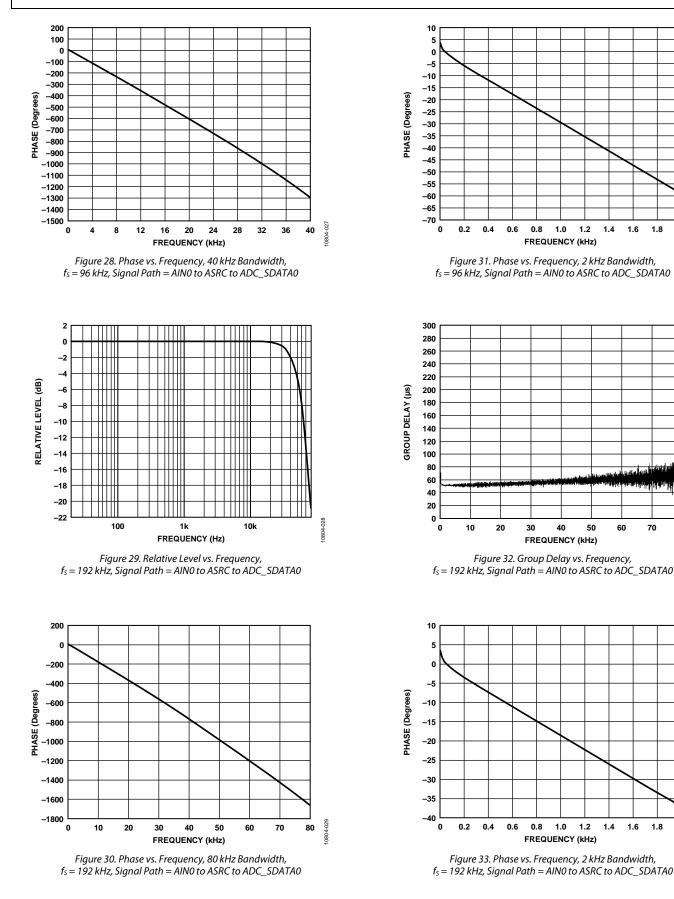
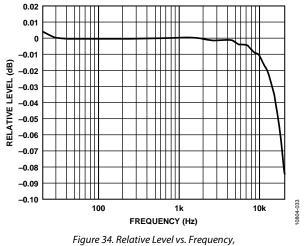


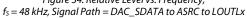
Figure 27. Group Delay vs. Frequency, fs = 96 kHz, Signal Path = AIN0 to ASRC to ADC_SDATA0

Rev. C | Page 19 of 116

080.4.030

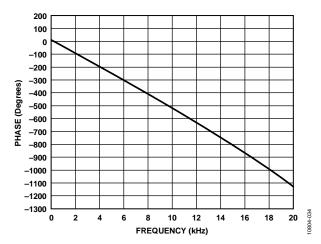
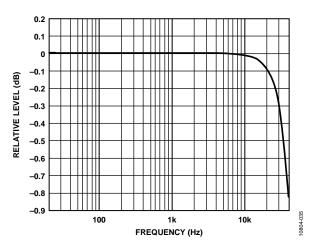
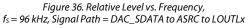
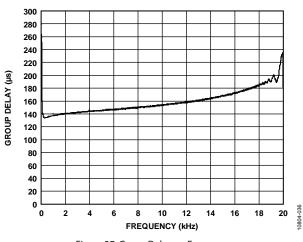

10804-031

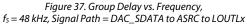

0804-032


2.0

80

2.0


Figure 35. Phase vs. Frequency, 20 kHz Bandwidth, $f_s = 48$ kHz, Signal Path = DAC_SDATA to ASRC to LOUTLx

ADAU1772

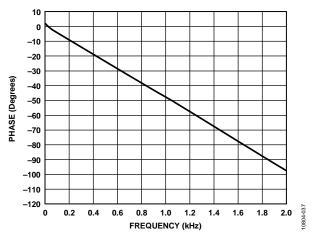


Figure 38. Phase vs. Frequency, 2 kHz Bandwidth, $f_s = 48$ kHz, Signal Path = DAC_SDATA to ASRC to LOUTLx

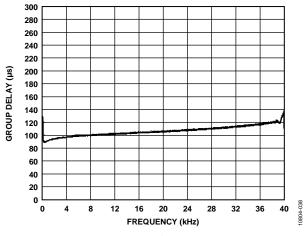
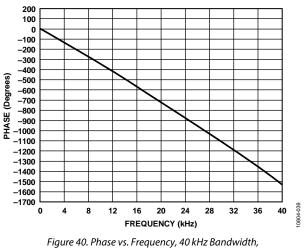
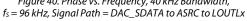




Figure 39. Group Delay vs. Frequency, fs = 96 kHz, Signal Path = DAC_SDATA to ASRC to LOUTLx

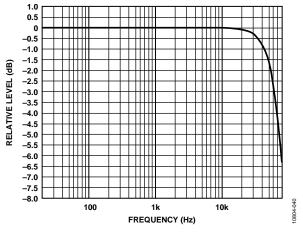
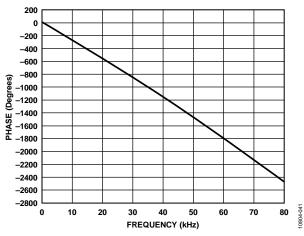



Figure 41. Relative Level vs. Frequency, $f_s = 192 \text{ kHz}$, Signal Path = DAC_SDATA to ASRC to LOUTLx

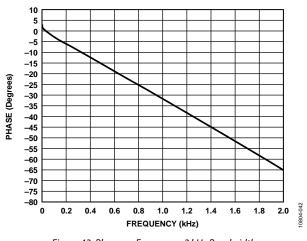


Figure 43. Phase vs. Frequency, 2 kHz Bandwidth, $f_s = 96$ kHz, Signal Path = DAC_SDATA to ASRC to LOUTLx

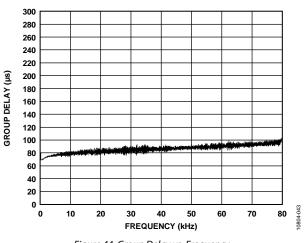
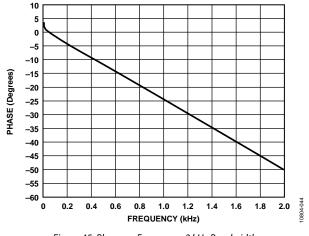
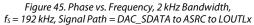




Figure 44. Group Delay vs. Frequency, $f_{\rm S}$ = 192 kHz, Signal Path = DAC_SDATA to ASRC to LOUTLx

Rev. C | Page 22 of 116

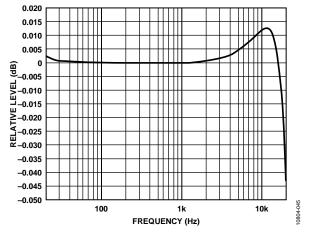


Figure 46. Relative Level vs. Frequency, f_s = 48 kHz, Signal Path = DAC_SDATA to ASRC to DSP (Without Processing) to ASRC to ADC_SDATA0

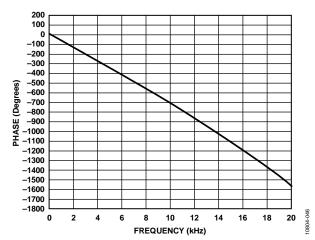
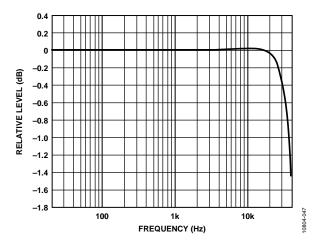
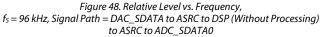




Figure 47. Phase vs. Frequency, 20 kHz Bandwidth, $f_S = 48$ kHz, Signal Path = DAC_SDATA to ASRC to DSP (Without Processing) to ASRC to ADC_SDATA0

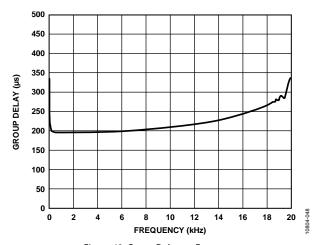


Figure 49. Group Delay vs. Frequency, $f_s = 48 \text{ kHz}$, Signal Path = DAC_SDATA to ASRC to DSP (Without Processing) to ASRC to ADC_SDATA0

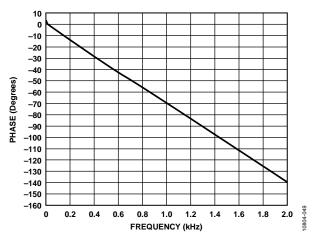


Figure 50. Phase vs. Frequency, 2 kHz Bandwidth, $f_s = 48$ kHz, Signal Path = DAC_SDATA to ASRC to DSP (Without Processing) to ASRC to ADC_SDATA0

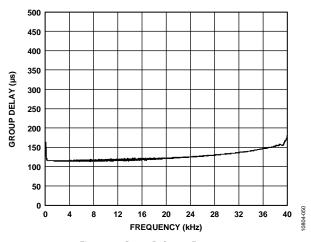


Figure 51. Group Delay vs. Frequency, fs = 96 kHz, Signal Path = DAC_SDATA to ASRC to DSP (Without Processing) to ASRC to ADC_SDATA0

ADAU1772

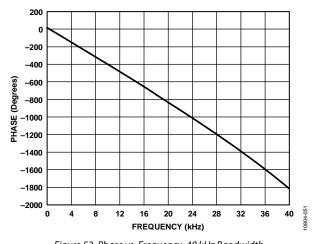


Figure 52. Phase vs. Frequency, 40 kHz Bandwidth, fs = 96 kHz, Signal Path = DAC_SDATA to ASRC to DSP (Without Processing) to ASRC to ADC_SDATA0

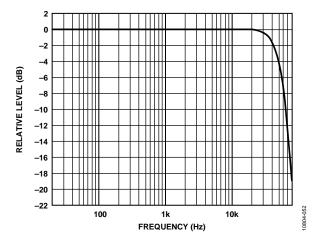
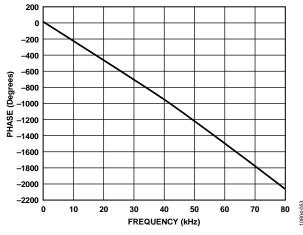
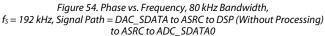




Figure 53. Relative Level vs. Frequency, $f_s = 192 \text{ kHz}$, Signal Path = DAC_SDATA to ASRC to DSP (Without Processing) to ASRC to ADC_SDATA0

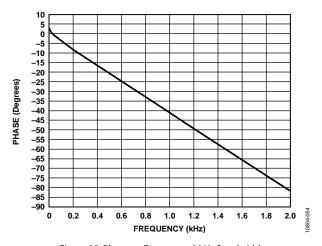


Figure 55. Phase vs. Frequency, 2 kHz Bandwidth, $f_5 = 96$ kHz, Signal Path = DAC_SDATA to ASRC to DSP (Without Processing) to ASRC to ADC_SDATA0

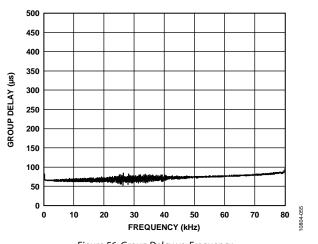


Figure 56. Group Delay vs. Frequency, f_s = 192 kHz, Signal Path = DAC_SDATA to ASRC to DSP (Without Processing) to ASRC to ADC_SDATA0

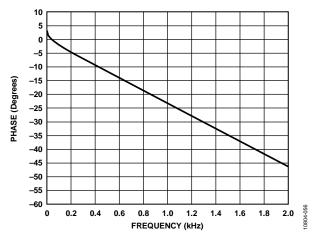
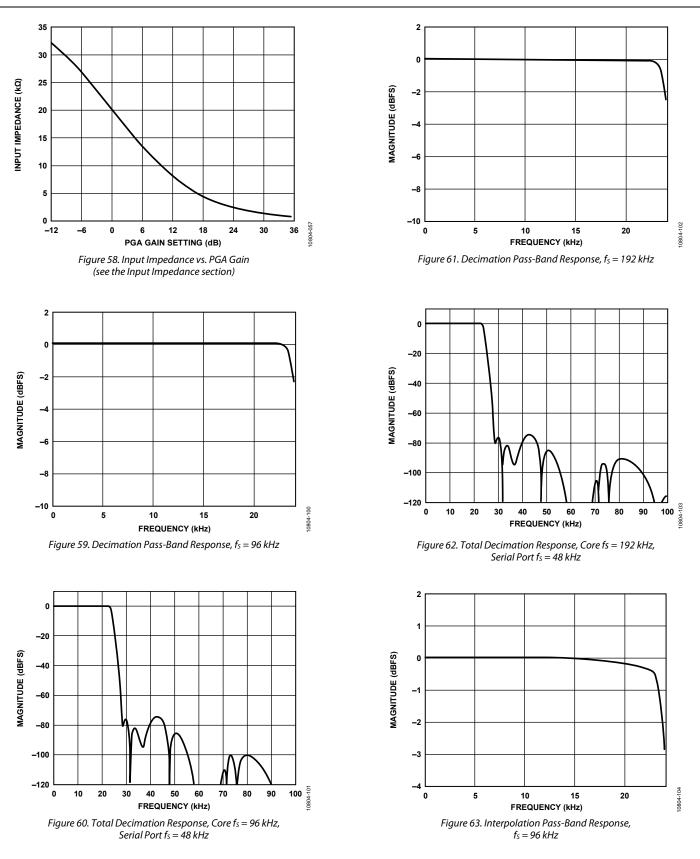
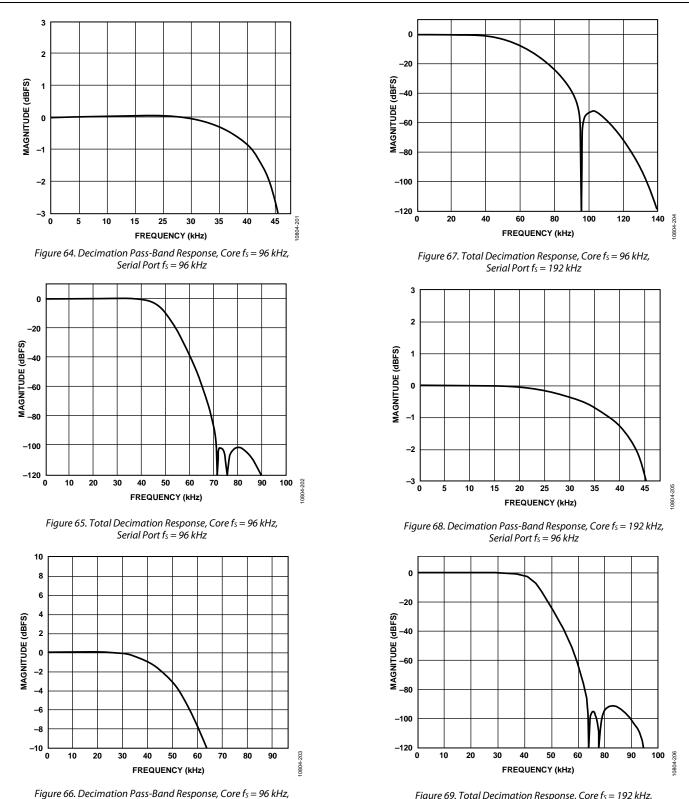
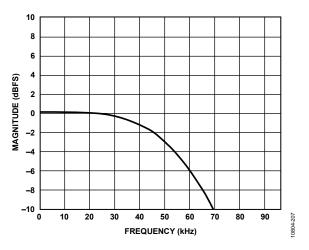
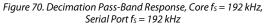



Figure 57. Phase vs. Frequency, 2 kHz Bandwidth, f_s = 192 kHz, Signal Path = DAC_SDATA to ASRC to DSP (Without Processing) to ASRC to ADC_SDATA0

Rev. C | Page 24 of 116

ADAU1772


Figure 69. Total Decimation Response, Core fs = 192 kHz, Serial Port fs = 96 kHz

Rev. C | Page 26 of 116

Serial Port $f_s = 192$ kHz

ADAU1772

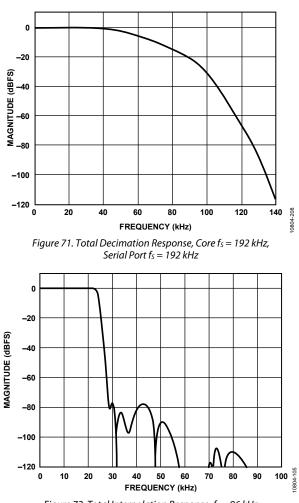


Figure 72. Total Interpolation Response, $f_s = 96 \text{ kHz}$

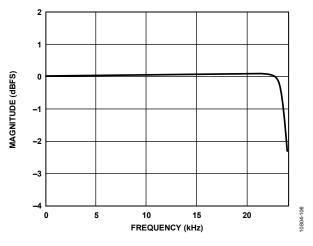


Figure 73. Interpolation Pass-Band Response, f_s = 192 kHz

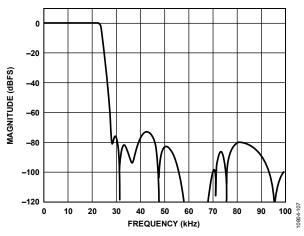


Figure 74. Total Interpolation Response, f_s = 192 kHz

SYSTEM BLOCK DIAGRAMS

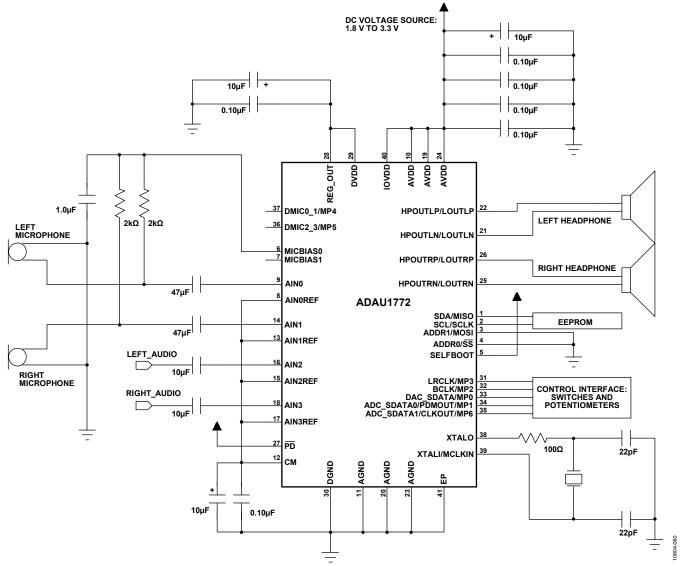


Figure 75. ADAU1772 System Block Diagram with Analog Microphones, Self-Boot Mode

THEORY OF OPERATION

The ADAU1772 is a low power audio codec with an optimized audio processing core, making it ideal for noise cancelling applications that require high quality audio, low power, small size, and low latency. The four ADC and two DAC channels each have an SNR of at least +96 dB and a THD + N of at least -88 dB. The serial data port is compatible with I²S, left justified, right justified, and TDM modes, with tristating for interfacing to digital audio data. The operating voltage range is 1.8 V to 3.63 V, with an on-board regulator generating the internal digital supply voltage. If desired, the regulator can be powered down and the voltage can be supplied externally.

The input signal path includes flexible configurations that can accept single-ended analog microphone inputs as well as up to four digital microphone inputs. Two microphone bias pins provide seamless interfacing to electret microphones. Each input signal has its own programmable gain amplifier (PGA) for volume adjustment.

The ADCs and DACs are high quality, 24-bit Σ - Δ converters that operate at a selectable 192 kHz or 96 kHz sampling rate. The ADCs have an optional high-pass filter with a cutoff frequency of 1 Hz, 4 Hz, or 8 Hz. The ADCs and DACs also include very fine-step digital volume controls.

The stereo DAC output is capable of differentially driving a headphone earpiece speaker with 16 Ω impedance or higher. One side of the differential output can be powered down if single-ended operation is required. There is also the option to change to line output mode when the output is lightly loaded.

The core has a reduced instruction set that optimizes this codec for noise cancellation. The program and parameter RAMs can be loaded with custom audio processing signal flow built using the SigmaStudio[™] graphical programming software from Analog Devices, Inc. The values stored in the parameter RAM control individual signal processing blocks. The ADAU1772 also has a self-boot function that can be used to load the program and parameter RAM along with the register settings on powerup using an external EEPROM.

The SigmaStudio software is used to program and control the core through the control port. Along with designing and tuning a signal flow, the tools can be used to configure all of the ADAU1772 registers. The SigmaStudio graphical interface allows anyone with digital or analog audio processing knowledge to easily design the DSP signal flow and port it to a target application. The interface also provides enough flexibility and programmability for an experienced DSP programmer to have in-depth control of the design. In SigmaStudio, the user can connect graphical blocks (such as biquad filters, volume controls, and arithmetic operations), compile the design, and load the program and parameter files into the ADAU1772 memory through the control port. SigmaStudio also allows the user to download the design to an external EEPROM for self-boot operation. Signal processing blocks available in the provided libraries include the following:

- Single-precision biquad filters
- Second order filters
- Absolute value and two-input adder
- Volume controls
- Limiter

The ADAU1772 can generate its internal clocks from a wide range of input clocks by using the on-board fractional PLL. The PLL accepts inputs from 8 MHz to 27 MHz. For standalone operation, the clock can be generated using the on-board crystal oscillator.

The ADAU1772 is provided in a small, 40-lead, 6 mm \times 6 mm LFCSP with an exposed bottom pad.

SYSTEM CLOCKING AND POWER-UP CLOCK INITIALIZATION

The ADAU1772 can generate its clocks either from an externally provided clock or from a crystal oscillator. In both cases, the onboard PLL can be used or the clock can be fed directly to the core. When a crystal oscillator is used, it is desirable to use a 12.288 MHz crystal, and the crystal oscillator function must be enabled in the COREN bit (Address 0x0000). If the PLL is used, it should always be set to output 24.576 MHz. The PLL can be bypassed if a clock of 12.288 MHz or 24.576 MHz is available in the system. Bypassing the PLL saves system power.

The CC_MDIV and CC_CDIV bits should not be changed after setup, but the CLKSRC bit can be switched while the core is running.

The CC_MDIV and CC_CDIV bits should be set so that the core and internal master clock are always 12.288 MHz; for example, when using a 24.576 MHz external source clock or if using the PLL, it is necessary to use the internal divide by 2 (see Table 11).

Table 11. Clock Configuration Settings

CC_MDIV	CC_CDIV	Description
1	1	Divide PLL/external clock by 1. Use these settings for a 12.288 MHz direct input clock source.
0	0	Divide PLL/external clock by 2. Use these settings for a 24.576 MHz direct input clock source or if using the PLL.

PLL Bypass Setup

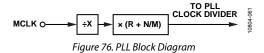
On power up, the ADAU1772 comes out of an internal reset after 12 ms. The rate of the internal master clock must be set properly using the CC_MDIV bit in the clock control register (Address 0x0000). When bypassing the PLL, the clock associated with MCLKIN must be either 12.288 MHz or 24.576 MHz. The internal master clock of the ADAU1772 is disabled until the COREN bit is asserted.

PLL Enabled Setup

The core clock of the ADAU1772 is disabled by the default setting of Bit COREN and should remain disabled during the PLL lock acquisition period. The user can poll the LOCK bit to determine when the PLL has locked. After lock is acquired, the ADAU1772 can be started by asserting the COREN bit. This bit enables the core clock for all the internal blocks of the ADAU1772.

To program the PLL during initialization or reconfiguration of the codec, the following procedure must be followed:

- 1. Ensure that PLL_EN (Bit 7, Address 0x0000) is set low.
- 2. Set/reset the PLL control registers (Address 0x0001 to Address 0x0005).
- 3. Enable the PLL using the PLL_EN bit.
- 4. Poll the PLL lock bit in Register 0x0006.
- 5. Set the COREN bit in Register 0x0000 after PLL lock is acquired.


Control Port Access During Initialization

During the lock acquisition period, only Register 0x0000 to Register 0x0006 are accessible through the control port. A read or write to any other register is prohibited until the core clock enable bit and the lock bit are both asserted.

After the CORE_RUN bit (Address 0x0009) is set high, the DAC_SOURCE0 and DAC_SOURCE1 register bits should not be changed. If these bits must be changed after the ADAU1772 is running, the CORE_RUN bit first must be disabled.

PLL

The PLL uses the MCLKIN signal as a reference to generate the core clock. The PLL settings are set in Register 0x0000 to Register 0x0005. Depending on the MCLK frequency, the PLL must be set for either integer or fractional mode. The PLL can accept input frequencies in the range of 8 MHz to 27 MHz.

Input Clock Divider

Before reaching the PLL, the input clock signal goes through an integer clock divider to ensure that the clock frequency is within a suitable range for the PLL. The X bits in the PLL_CTRL4 register (Bits[2:1], Address 0x0005) sets the PLL input clock divide ratio.

Integer Mode

Integer mode is used when the clock input is an integer multiple of the PLL output.

For example, if MCLKIN = 12.288 MHz and (X + 1) = 1, and $f_s = 48$ kHz, then

PLL Required Output = 24.576 MHz

R/2 = 24.576 MHz/12.288 MHz = 2

where R/2 = 2 or R = 4.

In integer mode, the values set for N and M are ignored. Table 12 lists common integer PLL parameter settings for 48 kHz sampling rates.

Fractional Mode

Fractional mode is used when the clock input is a fractional multiple of the PLL output.

For example, if MCLKIN = 13 MHz, (X + 1) = 1, and $f_s = 48$ kHz, then

PLL Required Output = 24.576 MHz

$$(1/2) \times (R + (N/M)) = 24.576$$
 MHz/13 MHz = $(1/2) \times (3 + (1269/1625))$

where: *R* = 3. *N* = 1269. *M* = 1625. Table 13 lists common fractional PLL parameter settings for 48 kHz sampling rates. When the PLL is used in fractional mode, it is very important that the N/M fraction be kept in the range of 0.1 to 0.9 to ensure correct operation of the PLL.

The PLL can output a clock in the range of 20.5 MHz to 27 MHz, which should be taken into account when calculating PLL values and MCLK frequencies.

CLOCK OUTPUT

The CLKOUT pin can be used as a master clock output to clock other ICs in the system or as the clock for the digital microphone inputs and PDM output. This clock can be generated from the 12.288 MHz master clock of the ADAU1772 by factors of 2, 1, ½, ¼, and ⅓. If PDM mode is enabled, only ½, ¼, and ⅓ settings produce a clock signal on CLKOUT. The factor of 2 multiplier works properly only if the input clock was previously divided by 2 using the CC_MDIV bit.

POWER SEQUENCING

AVDD and IOVDD can each be set to any voltage between 1.8 V and 3.3 V, and DVDD can be set between 1.1 V and 1.8 V or between 1.1 V and 1.2 V if using the on-board regulator.

On power-up, AVDD must be powered up before or at the same time as IOVDD. IOVDD should not be powered up when power is not applied to AVDD.

Enabling the $\overline{\text{PD}}$ pin powers down all analog and digital circuits. Before enabling $\overline{\text{PD}}$ (that is, setting it low), be sure to mute the outputs to avoid any pops when the IC is powered down.

PD can be tied directly to IOVDD for normal operation.

Power-Down Considerations

When powering down the ADAU1772, be sure to mute the outputs before AVDD power is removed; otherwise, pops or clicks may be heard. The easiest way to achieve this is to use a regulator that has a power good (PGOOD) signal to power the ADAU1772 or generate a power good signal using additional circuitry external to the regulator itself. Typically, on such regulators the power good signal changes state when the regulated voltage drops below ~90% of its target value. This power good signal can be connected to one of the ADAU1772 multipurpose pins and used to mute the DAC outputs by setting the multipurpose pin functionality to mute both DACs in Register 0x0038 to Register 0x003E. This ensures that the outputs are muted before power is completely removed.

Table 12. Integer PLL Parameter	Settings for PLL Output = 24.576 MHz
rubie 12, integer i EE i urumeter	occurrent and output ano, o mile

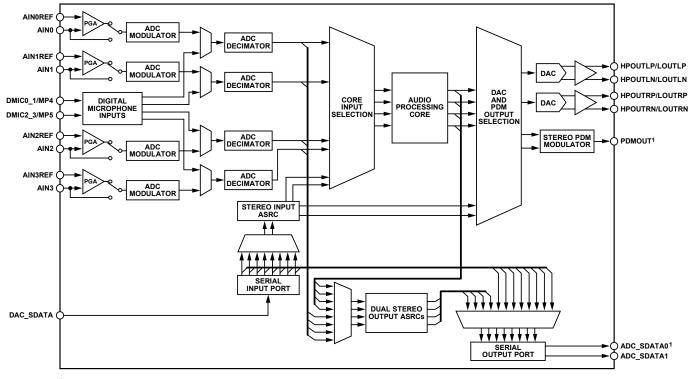

MCLK Input (MHz)	Input Divider (X + 1)	Integer (R)	Denominator (M)	Numerator (N)	PLL_CTRL4 Settings (Address 0x0005)	
12.288	1	4	Don't care	Don't care	0x20	
24.576	1	2	Don't care	Don't care	0x10	

Table 13. Fractional PLL Parameter Settings for PLL Output = 24.576 MHz

MCLK	Input				PLL_CTRL[4:0] Settings (Address 0x0005 to Address 0x0001)				
lnput (MHz)	Divider (X + 1)	Integer (R)	Denominator (M)	Numerator (N)	PLL_CTRL4 (0x0005)	PLL_CTRL3 (0x0004)	PLL_CTRL2 (0x0003)	PLL_CTRL1 (0x0002)	PLL_CTRL0 (0x0001)
8	1	6	125	18	0x31	0x12	0x00	0x7D	0x00
13	1	3	1625	1269	0x19	0xF5	0x04	0x59	0x06
14.4	2	6	75	62	0x33	0x3E	0x00	0x4B	0x00
19.2	2	5	25	3	0x2B	0x03	0x00	0x19	0x00
26	2	3	1625	1269	0x1B	0xF5	0x04	0x59	0x06
27	2	3	1125	721	0x1B	0xD1	0x02	0x65	0x04

10804-062

SIGNAL ROUTING

¹THE ADC_SDATA0 AND PDMOUT FUNCTIONS SHARE A PHYSICAL PIN, SO ONLY ONE OF THESE FUNCTIONS CAN BE USED AT A TIME. Figure 77. Input and Output Signal Routing

Rev. C | Page 32 of 116

INPUT SIGNAL PATHS

There are four input paths, from either an ADC or a digital microphone, that can be routed to the core. The input sources (ADC or digital microphone) must be configured in pairs (for example, 0 and 1, 2 and 3), but each channel can be routed individually. The core inputs can also be sourced from a stereo input ASRC.

ANALOG INPUTS

The ADAU1772 can accept both line level and microphone inputs. Each of the four analog input channels can be configured in a single-ended mode or a single-ended with PGA mode. There are also inputs for up to four digital microphones. The analog inputs are biased at AVDD/2. Unused input pins should be connected to the CM pin or ac-coupled to ground.

Signal Polarity

Signals routed through the PGAs are inverted. As a result, signals input through the PGA are output from the ADCs with a polarity that is opposite that of the input. Single-ended inputs are not inverted. The ADCs are noninverting.

Input Impedance

The input impedance of the analog inputs varies with the gain of the PGA. This impedance ranges from 0.68 k Ω at the 35.25 dB gain setting to 32.0 k Ω at the –12 dB setting. The input impedance on each pin can be calculated as follows:

$$R_{IN} = \frac{40}{10^{(Gain/20)} + 1} k\Omega$$

where Gain is set by PGA_GAINx.

The optional 10 dB PGA boost set in PGA_x_BOOST does not affect the input impedance. This is an alternative way of increasing gain without decreasing input impedance; however, it causes some degradation in performance.

Analog Microphone Inputs

For microphone signals, the ADAU1772 analog inputs can be configured in single-ended with PGA mode.

The PGA settings are controlled in Register 0x0023 to Register 0x0026. The PGA is enabled by setting the PGA_ENx bits.

Connect the AINxREF pins to the CM pin and connect the microphone signal to the inverting input of the PGAs (AINx), as shown in Figure 78.

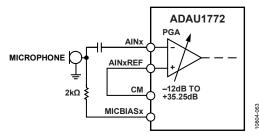


Figure 78. Single-Ended Microphone Configuration

Analog Line Inputs

Line level signals can be input on the AINx pins of the analog inputs. Figure 79 shows a single-ended line input using the AINx pins. The AINxREF pins should be tied to CM. When using single-ended line input, the PGA should be disabled using the PGA_ENx bits, and the corresponding PGA pop suppression bit should be disabled using the POP_SUPPRESS register (Address 0x0029).

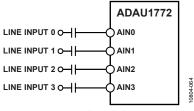


Figure 79. Single-Ended Line Inputs

Precharging Input Capacitors

Precharge amplifiers are enabled by default to quickly charge large series capacitors on the inputs and outputs. Precharging these capacitors helps to prevent pops in the audio signal. The precharge circuits are powered up by default on startup and can be disabled in the POP_SUPPRESS register. The precharge amplifiers are automatically disabled when the PGA or headphone amplifiers are enabled. For unused PGAs and headphone outputs, these precharge amplifiers should be disabled using the POP_SUPPRESS register. The precharging time is dependent on the input/output series capacitors. The impedance looking into the pin is 500 Ω in this mode. However, at startup, the impedance looking into the pin because the precharge amplifiers reference the CM voltage.

Microphone Bias

The ADAU1772 includes two microphone bias outputs: MICBIAS0 and MICBIAS1. These pins provide a voltage reference for electret analog microphones. The MICBIASx pins can also be used to cleanly supply voltage to digital or analog MEMS microphones with separate power supply pins. The MICBIASx voltage is set in the microphone bias control register (Address 0x002D). Using this register, either the MICBIAS0 or MICBIAS1 output can be enabled and disabled. The gain options provide two possible voltages: $0.65 \times \text{AVDD}$ or $0.90 \times \text{AVDD}$.

Many applications require enabling only one of the two bias outputs. The two bias outputs should both be enabled when many microphones are used in the system or when the positioning of the microphones on the PCB does not allow one pin to bias all microphones.

DIGITAL MICROPHONE INPUT

When using a digital microphone connected to the DMIC0_1/MP4 and DMIC2_3/MP5 pins, the DCM_0_1 and DCM_2_3 bits in Register 0x001D and Register 0x001E must be set to enable the digital microphone signal paths. The pin functions should also be set to digital microphone input in the corresponding pin mode registers (Address 0x003C and Address 0x003D). The DMIC0/DMIC2 and DMIC1/DMIC3 channels can be swapped (left/right swap) by writing to the DMIC_SW0 and DMIC_SW1 bits in the ADC_CONTROL2 and ADC_CONTROL3 registers (Address 0x001D and Address 0x001E). In addition, the microphone polarity can be reversed by setting the DMIC_POLx bit, which reverses the phase of the incoming audio by 180°.

The digital microphone inputs are clocked from the CLKOUT pin. The digital microphone data stream must be clocked by this pin and not by a clock from another source, such as another audio IC, even if the other clock is of the same frequency as CLKOUT.

The digital microphone signal bypasses the analog input path and the ADCs and is routed directly into the decimation filters. The digital microphone and the ADCs share digital filters and, therefore, both cannot be used simultaneously. The digital microphone inputs are enabled in pairs. The ADAU1772 inputs can be set for either four analog inputs, four digital microphone inputs, or two analog inputs and two digital microphone inputs. Figure 80 depicts the digital microphone interface and signal routing.

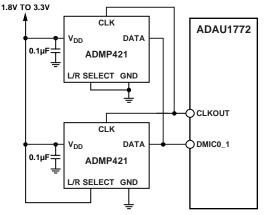


Figure 80. Digital Microphone Interface Block Diagram

Figure 80 shows two ADMP421 digital microphones connected to Pin DMIC0_1 of the ADAU1772. These microphones could also be connected to DMIC2_3 if that signal path is to be used for digital microphones. If more than two digital microphones are to be used in a system, then up to two microphones would be connected to both DMIC0_1 and DMIC2_3 and the CLKOUT signal would be fanned out to the clock input of all of the microphones.

ANALOG-TO-DIGITAL CONVERTERS

The ADAU1772 includes four 24-bit Σ - Δ analog-to-digital converters (ADCs) with a selectable sample rate of 192 kHz or 96 kHz.

ADC Full-Scale Level

The full-scale input to the ADCs (0 dBFS) scales linearly with AVDD. At AVDD = 3.3 V, the full-scale input level is 1 V rms. Signal levels above the full-scale value cause the ADCs to clip.

Digital ADC Volume Control

The volume setting of each ADC can be digitally attenuated in the ADCx_VOLUME registers (Address 0x001F to Address 0x0022). The volume can be set between 0 dB and -95.625 dB in 0.375 dB steps. The ADC volume can also be digitally muted in the ADC_CONTROLx registers (Address 0x001B to Address 0x001E).

High-Pass Filter

A high-pass filter is available on the ADC path to remove dc offsets; this filter can be enabled or disabled using the HP_x_x_EN bits. At $f_s = 192$ kHz, the corner frequency of this high-pass filter can be set to 1 Hz, 4 Hz, or 8 Hz.

OUTPUT SIGNAL PATHS

Data from the serial input port can be routed to the core either directly or through a sample rate converter. Data can be routed to the serial output port, the stereo DAC, and the stereo PDM modulator.

The analog outputs of the ADAU1772 can be configured as differential or single-ended outputs. The analog output pins are capable of driving headphone or earpiece speakers. The line outputs can drive a load of at least 10 k Ω or can be put into headphone mode to drive headphones or earpiece speakers. The analog output pins are biased at AVDD/2.

ANALOG OUTPUTS

Headphone Output

The output pins can be driven by either a line output driver or a headphone driver by setting the HP_EN_L and HP_EN_R bits in the headphone line output select register (Address 0x0043). The headphone outputs can drive a load of at least 16 Ω .

Headphone Output Power-Up Sequencing

To prevent pops when turning on the headphone outputs, the user must wait at least 6 ms to unmute these outputs after enabling the headphone output using the HP_EN_x bits. Waiting 6 ms allows an internal capacitor to charge before these outputs are used. Figure 81 illustrates the headphone output power-up sequencing.

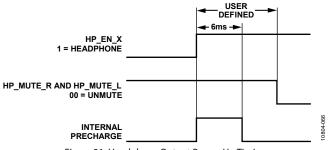


Figure 81. Headphone Output Power-Up Timing

Ground-Centered Headphone Configuration

The headphone outputs can also be configured as groundcentered outputs by connecting coupling capacitors in series with the output pins. Ground-centered headphones should use the AGND pin as the ground reference.

When the headphone outputs are configured in this manner, the capacitors create a high-pass filter on the outputs. The corner frequency of this filter, which has an attenuation of 3 dB at this point, is calculated by the following formula:

 $f_{3dB} = 1/(2\pi \times R \times C)$

where :

R is the impedance of the headphones. *C* is the capacitor value.

For a typical headphone impedance of 32 Ω and a 220 μF capacitor, the corner frequency is 23 Hz.

Pop-and-Click Suppression

On power-up, the precharge circuitry is enabled on all four analog output pins to suppress pops and clicks. After powerup, the precharge circuitry can be put into a low power mode using the HP_POP_DISx bits in the POP_SUPRRESS register (Address 0x0029).

The precharge time depends on the value of the capacitor connected to the CM pin and the RC time constant of the load on the output pin. For a typical line output load, the precharge time is between 2 ms and 3 ms. After this precharge time, the HP_POP_DISx bit can be set to low power mode.

To avoid clicks and pops, all analog outputs that are in use should be muted while changing any register settings that may affect the signal path. These outputs can then be unmuted after the changes have been made.

Line Outputs

The analog output pins (HPOUTLP/LOUTLP, HPOUTLN/ LOUTLN, HPOUTRP/LOUTRP, and HPOUTRN/LOUTRN) can be used to drive both differential and single-ended loads. In their default settings, these pins can drive typical line loads of 10 k Ω or greater.

When the line output pins are used in single-ended mode, the HPOUTLP/LOUTLP and HPOUTRP/LOUTRP pins should be used to output the signals, and the HPOUTLN/LOUTLN and HPOUTRN/LOUTRN pins should be powered down.

DIGITAL-TO-ANALOG CONVERTERS

The ADAU1772 includes two 24-bit Σ - Δ digital-to-analog converters (DACs).

DAC Full-Scale Level

The full-scale output from the DACs (0 dBFS) scales linearly with AVDD. At AVDD = 3.3 V, the full-scale output level is 1.94 V rms for a differential output or 0.97 V rms for a single-ended output.

Digital DAC Volume Control

The volume of each DAC can be digitally attenuated using the DACx_VOLUME registers (Address 0x002F and Address 0x0030). The volume can be set to be between 0 dB and -95.625 dB in 0.375 dB steps.

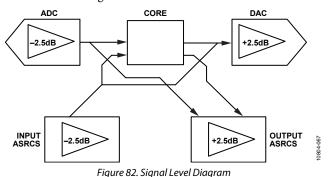
PDM OUTPUT

The ADAU1772 includes a 2-channel pulse density modulated (PDM) modulator. The PDMOUT pin can be used to drive a PDM input amplifier, such as the SSM2517 mono 2.4 W amplifier. Two SSM2517 devices can be connected to the PDMOUT data stream to enable a stereo output. The PDM output signal is clocked by the CLKOUT pin output. The PDM output stream must be clocked by this pin and not by a clock from another source, such as another audio IC, even if the other clock is of the same frequency as CLKOUT. The PDM output data is clipped at the –6 dB level to prevent overdriving a connected amplifier like the SSM2517.

The ADAU1772 has the ability to output PDM control patterns to configure devices such as the SSM2517. Each pattern is a byte long and is written with a user defined pattern in the PDM_PATTERN register (Address 0x0037). The control pattern is enabled and the output channel selection is configured in the PDM_OUT register (Address 0x0036). The PDM pattern should not be changed while the ADAU1772 is outputting the control pattern to the external device. After the external device is configured, the control pattern can be disabled. For the SSM2517, the control pattern must be repeated a minimum of 128 times to configure the part. Table 14 describes typical control patterns for the SSM2517.

Pattern	Control Description
0xAC	Power-down. All blocks off except for the PDM interface. Normal start-up time.
0xD8	Gain optimized for PVDD = 5 V operation. Overrides GAIN_FS pin setting.
0xD4	Gain optimized for PVDD = 3.6 V operation. Overrides GAIN_FS pin setting.
0xD2	Gain optimized for PVDD = 2.5 V operation. Overrides GAIN_FS pin setting.
0xD1	fs set to opposite value determined by GAIN_FS pin.
0xE1	Ultralow EMI mode.
0xE2	Half clock cycle pulse mode for power savings.
0xE4	Special 32 kHz/128 \times fs operation mode.

ASYNCHRONOUS SAMPLE RATE CONVERTERS


The ADAU1772 includes asynchronous sample rate converters (ASRCs) to enable synchronous full-duplex operation of the serial ports. Two stereo ASRCs are available for the digital outputs, and one stereo ASRC is available for the digital input signals.

The ASRCs can convert serial output data from the core rate of up to 192 kHz back down to less than 8 kHz. All intermediate frequencies and ratios are also supported.

SIGNAL LEVELS

The ADCs, DACs, and ASRCs have fixed gain settings that should be considered when configuring the system. These settings were chosen to maximize performance of the converters and to ensure that there is 0 dB gain for any signal path from the input of the ADAU1772 to its output. Therefore, the full-scale level of a signal in the processing core will be slightly different from a full-scale level external to the IC.

Input paths, such as through the ADCs and input ASRCs, are scaled by 0.75, or about –2.5 dB. Output paths, such as through the DACs or output ASRCs, are scaled by 1.33, or about 2.5 dB. This is shown in Figure 82.

Because of this input and output scaling, output signals from the core should be limited to -2.5 dB full scale to prevent the

DACs and ASRCs from clipping.

SIGNAL PROCESSING

The ADAU1772 processing core is optimized for active noise cancelling (ANC) processing. The processing capabilities of the core include biquad filters, limiters, volume controls, and mixing. The core has four inputs and four outputs. The core is controlled with a 10-bit program word, with a maximum of 32 instructions per frame.

INSTRUCTIONS

A complete list of instructions/processing blocks along with documentation can be found in the SigmaStudio software for the ADAU1772. The processing blocks available are

- Single-precision biquad/second order filters
- Absolute value
- Two-input addition
- T connection in SigmaStudio
- Limiter with/without external detector loop
- Linear gain
- Volume slider
- Mute
- DBREG level detection

DATA MEMORY

The ADAU1772 data path is 26 bits (5.21 format). The data memory is 32 words of 2×26 bits. The double length memory enables the core to double precision arithmetic with double length data and single length coefficients.

PARAMETERS

Parameters, such as filter coefficients, limiter settings, and volume control settings, are saved in parameter registers. Each parameter is a 32-bit number. The format of this number depends on whether it is controlling a filter or a limiter. The number formats of different parameters are shown in Table 15. When the parameter formats use less than the full 32-bit memory space, as with the limiter parameters, the data is LSB-aligned.

Parameter Type	Format
Filter Coefficient (B0, B1, B2)	5.27
Filter Coefficient (A1)	2.27 (sign extended)
Filter Coefficient (A2)	1.27 (sign extended)
Maximum Gain	2.23
Minimum Gain	2.23
Attack Time	24.0
Decay Time	24.0
Threshold	2.23

There are two parameter banks available. Each bank can hold a full set of 160 parameters (32 filters \times 5 coefficients). Users can switch between Bank A and Bank B, allowing for two sets of parameters to be saved in memory and switched on the fly

while the codec is running. Bank switching can be achieved by writing to the CORE_CONTROL register (Address 0x0009) or by using the multipurpose push-button switches, but not using a combination of the two. Parameters in the active bank should not be updated while the core is running; this will likely result in noises on the outputs.

Parameters are assigned to instructions in the order in which the instructions are instantiated in the code. The instruction types that use parameters are the biguad filters and limiters.

Table 17 shows the addresses of each parameter in Bank A that are associated with each of the 32 instructions, and Table 18 shows the addresses of each parameter in Bank B. Table 16 shows the addresses of the LSB aligned, 10-bit program words.

Table 16. Program Addresses

Instruction	Instruction Address
0	0x0080
1	0x0081
2	0x0082
3	0x0083
4	0x0084
5	0x0085
6	0x0086
7	0x0087
8	0x0088
9	0x0089
10	0x008A
11	0x008B
12	0x008C
13	0x008D
14	0x008E
15	0x008F
16	0x0090
17	0x0091
18	0x0092
19	0x0093
20	0x0094
21	0x0095
22	0x0096
23	0x0097
24	0x0098
25	0x0099
26	0x009A
27	0x009B
28	0x009C
29	0x009D
30	0x009E
31	0x009F

Table 17. Parameter Addresses, Bank A

Assignment Order	B0/Max Gain	B1/Min Gain	B2/Attack	A1/Decay	A2/Threshold
0	0x00E0	0x0100	0x0120	0x0140	0x0160
1	0x00E1	0x0101	0x0121	0x0141	0x0161
2	0x00E2	0x0102	0x0122	0x0142	0x0162
3	0x00E3	0x0103	0x0123	0x0143	0x0163
4	0x00E4	0x0104	0x0124	0x0144	0x0164
5	0x00E5	0x0105	0x0125	0x0145	0x0165
б	0x00E6	0x0106	0x0126	0x0146	0x0166
7	0x00E7	0x0107	0x0127	0x0147	0x0167
8	0x00E8	0x0108	0x0128	0x0148	0x0168
9	0x00E9	0x0109	0x0129	0x0149	0x0169
10	0x00EA	0x010A	0x012A	0x014A	0x016A
11	0x00EB	0x010B	0x012B	0x014B	0x016B
12	0x00EC	0x010C	0x012C	0x014C	0x016C
13	0x00ED	0x010D	0x012D	0x014D	0x016D
14	0x00EE	0x010E	0x012E	0x014E	0x016E
15	0x00EF	0x010F	0x012F	0x014F	0x016F
16	0x00F0	0x0110	0x0130	0x0150	0x0170
17	0x00F1	0x0111	0x0131	0x0151	0x0171
18	0x00F2	0x0112	0x0132	0x0152	0x0172
19	0x00F3	0x0113	0x0133	0x0153	0x0173
20	0x00F4	0x0114	0x0134	0x0154	0x0174
21	0x00F5	0x0115	0x0135	0x0155	0x0175
22	0x00F6	0x0116	0x0136	0x0156	0x0176
23	0x00F7	0x0117	0x0137	0x0157	0x0177
24	0x00F8	0x0118	0x0138	0x0158	0x0178
25	0x00F9	0x0119	0x0139	0x0159	0x0179
26	0x00FA	0x011A	0x013A	0x015A	0x017A
27	0x00FB	0x011B	0x013B	0x015B	0x017B
28	0x00FC	0x011C	0x013C	0x015C	0x017C
29	0x00FD	0x011D	0x013D	0x015D	0x017D
30	0x00FE	0x011E	0x013E	0x015E	0x017E
31	0x00FF	0x011F	0x013F	0x015F	0x017F

Table 18. Parameter Addresses, Bank B

Assignment Order	B0/Max Gain	B1/Min Gain	B2/Attack	A1/Decay	A2/Threshold
0	0x0180	0x01A0	0x01C0	0x01E0	0x0200
1	0x0181	0x01A1	0x01C1	0x01E1	0x0201
2	0x0182	0x01A2	0x01C2	0x01E2	0x0202
3	0x0183	0x01A3	0x01C3	0x01E3	0x0203
4	0x0184	0x01A4	0x01C4	0x01E4	0x0204
5	0x0185	0x01A5	0x01C5	0x01E5	0x0205
6	0x0186	0x01A6	0x01C6	0x01E6	0x0206
7	0x0187	0x01A7	0x01C7	0x01E7	0x0207
8	0x0188	0x01A8	0x01C8	0x01E8	0x0208
9	0x0189	0x01A9	0x01C9	0x01E9	0x0209
10	0x018A	0x01AA	0x01CA	0x01EA	0x020A
11	0x018B	0x01AB	0x01CB	0x01EB	0x020B
12	0x018C	0x01AC	0x01CC	0x01EC	0x020C
13	0x018D	0x01AD	0x01CD	0x01ED	0x020D
14	0x018E	0x01AE	0x01CE	0x01EE	0x020E
15	0x018F	0x01AF	0x01CF	0x01EF	0x020F

Data Sheet

ADAU1772

Assignment Order	B0/Max Gain	B1/Min Gain	B2/Attack	A1/Decay	A2/Threshold		
16	0x0190	0x01B0	0x01D0	0x01F0	0x0210		
17	0x0191	0x01B1	0x01D1	0x01F1	0x0211		
18	0x0192	0x01B2	0x01D2	0x01F2	0x0212		
19	0x0193	0x01B3	0x01D3	0x01F3	0x0213		
20	0x0194	0x01B4	0x01D4	0x01F4	0x0214		
21	0x0195	0x01B5	0x01D5	0x01F5	0x0215		
22	0x0196	0x01B6	0x01D6	0x01F6	0x0216		
23	0x0197	0x01B7	0x01D7	0x01F7	0x0217		
24	0x0198	0x01B8	0x01D8	0x01F8	0x0218		
25	0x0199	0x01B9	0x01D9	0x01F9	0x0219		
26	0x019A	0x01BA	0x01DA	0x01FA	0x021A		
27	0x019B	0x01BB	0x01DB	0x01FB	0x021B		
28	0x019C	0x01BC	0x01DC	0x01FC	0x021C		
29	0x019D	0x01BD	0x01DD	0x01FD	0x021D		
30	0x019E	0x01BE	0x01DE	0x01FE	0x021E		
31	0x019F	0x01BF	0x01DF	0x01FF	0x021F		

CONTROL PORT

The ADAU1772 has both a 4-wire SPI control port and a 2-wire I²C bus control port. Each can be used to set the memories and registers. The IC defaults to I²C mode but can be put into SPI control mode by pulling the \overline{SS} pin low three times.

The control port is capable of full read/write operation for all addressable memories and registers. Most signal processing parameters are controlled by writing new values to the parameter memories using the control port. Other functions, such as mute and input/output mode control, are programmed through the registers.

All addresses can be accessed in either single-address mode or burst mode. The first byte (Byte 0) of a control port write contains the 7-bit IC address plus the R/\overline{W} bit. The next two bytes (Byte 1 and Byte 2) are the 16-bit subaddress of the memory or register location within the ADAU1772. All subsequent bytes (starting with Byte 3) contain the data, such as register data, program data, or parameter data. The number of bytes per word depends on the type of data that is being written. Table 19 shows the word length of the ADAU1772's different data types. The exact formats for specific types of writes are shown in Figure 85 and Figure 86.

Table 19. Data Word Sizes

Data Type	Word Size (bytes)
Registers	1
Program	2
Parameters	4

If large blocks of data need to be downloaded to the ADAU1772, the output of the core can be halted (using the CORE_RUN bit in the core control register (Address 0x0009)), new data can be loaded, and then the core can be restarted. This is typically done during the booting sequence at start-up or when loading a new program into memory.

Registers and bits shown as reserved in the register map read back 0s. When writing to these registers and bits, such as during a burst write across a reserved register, or when writing to reserved bits in a register with other used bits, write 0s.

The control port pins are multifunctional, depending on the mode in which the part is operating. Table 20 details these multiple functions.

Pin	I ² C Mode	SPI Mode
SCL/SCLK	SCL—input	SCLK—input
SDA/MISO	SDA—open-collector output	MISO—output
ADDR1/MOSI	I ² C Address Bit 1—input	MOSI—input
ADDR0/SS	I ² C Address Bit 0—input	SS—input

BURST MODE COMMUNICATION

Burst mode addressing, in which the subaddresses are automatically incremented at word boundaries, can be used for writing large amounts of data to contiguous memory locations. This increment happens automatically after a single-word write unless the control port communication is stopped (that is, a stop condition is issued for I²C, or SS is brought high for SPI). The registers and RAMs in the ADAU1772 range in width from one to four bytes, so the auto-increment feature knows the mapping between subaddresses and the word length of the destination register (or memory location).

I²C PORT

The ADAU1772 supports a 2-wire serial (I²C-compatible) microprocessor bus driving multiple peripherals. I²C uses two pins—serial data (SDA) and serial clock (SCL)—to carry data between the ADAU1772 and the system I²C master controller. In I²C mode, the ADAU1772 is always a slave on the bus, except when the IC is self-booting. See the Self-Boot section for details about using the ADAU1772 in self-boot mode.

Each slave device is recognized by a unique 7-bit address. The ADAU1772 I²C address format is shown in Table 21. The LSB of this first byte sent from the I²C master sets either a read or write operation. Logic Level 1 corresponds to a read operation, and Logic Level 0 corresponds to a write operation.

Pin ADDR0 and Pin ADDR1 set the LSBs of the I²C address (Table 22); therefore, each ADAU1772 can be set to one of four unique addresses. This allows multiple ICs to exist on the same I²C bus without address contention. The 7-bit I²C addresses are shown in Table 22.

An I²C data transfer is always terminated by a stop condition.

Both SDA and SCL should have 2.0 k Ω pull-up resistors on the lines connected to them. The voltage on these signal lines should not be higher than IOVDD.

Table 21. I²C Address Format

Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	1	1	1	1	ADDR1	ADDR0

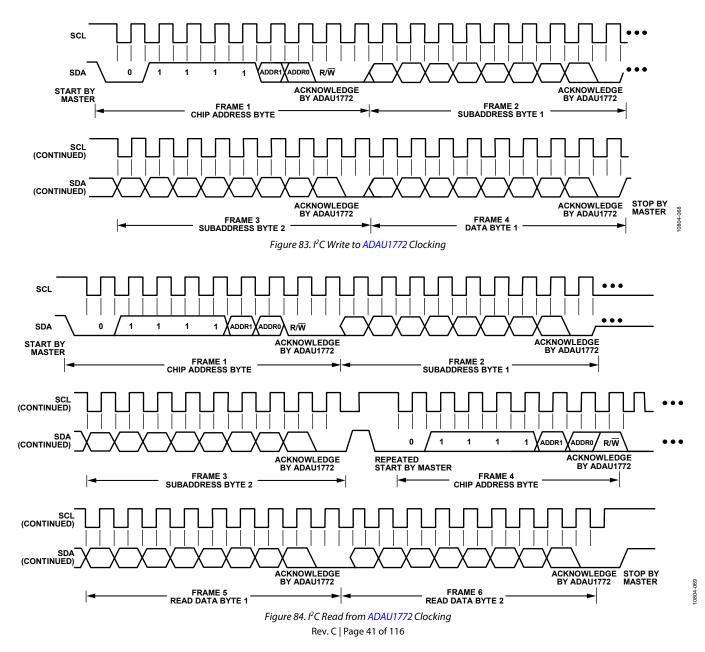
Table 22. I²C Addresses

ADDR1	ADDR0	Slave Address	
0	0	0x3C	
0	1	0x3D	
1	0	0x3E	
1	1	0x3F	

Addressing

Initially, each device on the I²C bus is in an idle state and monitoring the SDA and SCL lines for a start condition and the proper address. The I²C master initiates a data transfer by establishing a start condition, defined by a high-to-low transition on SDA while SCL remains high. This indicates that an address/ data stream follows. All devices on the bus respond to the start condition and shift the next eight bits (the 7-bit address plus the

Rev. C | Page 40 of 116


Data Sheet

ADAU1772

R/W bit) MSB first. The device that recognizes the transmitted address responds by pulling the data line low during the ninth clock pulse. This ninth bit is known as an acknowledge bit. All other devices withdraw from the bus at this point and return to the idle condition. The R/W bit determines the direction of the data. A Logic 0 on the LSB of the first byte indicates that the master will write information to the peripheral, whereas a Logic 1 indicates that the master will read information from the peripheral after writing the subaddress and repeating the start address. A data transfer takes place until a stop condition is encountered. A stop condition occurs when SDA transitions from low to high while SCL is held high. Figure 83 shows the timing of an I²C write, and Figure 84 shows an I²C read.

Stop and start conditions can be detected at any stage during the data transfer. If these conditions are asserted out of sequence with normal read and write operations, the ADAU1772 immediately

jumps to the idle condition. During a given SCL high period, the user should only issue one start condition, one stop condition, or a single stop condition followed by a single start condition. If an invalid subaddress is issued by the user, the ADAU1772 does not issue an acknowledge and returns to the idle condition. If the user exceeds the highest subaddress while in auto-increment mode, one of two actions is taken. In read mode, the ADAU1772 outputs the highest subaddress register contents until the master device issues a no acknowledge, indicating the end of a read. A no-acknowledge condition is where the SDA line is not pulled low on the ninth clock pulse on SCL. If the highest subaddress location is reached while in write mode, the data for the invalid byte is not loaded into any subaddress register, a no acknowledge is issued by the ADAU1772, and the part returns to the idle condition.

I²C Read and Write Operations

Figure 85 shows the timing of a single-word write operation. Every ninth clock pulse, the ADAU1772 issues an acknowledge by pulling SDA low.

Figure 86 shows the timing of a burst mode write sequence. This figure shows an example where the target destination words are two bytes, such as the program memory. The ADAU1772 knows to increment its subaddress register every two bytes because the requested subaddress corresponds to a register or memory area with a 2-byte word length.

The timing of a single-word read operation is shown in Figure 87. Note that the first R/W bit is 0, indicating a write operation. This is because the subaddress still needs to be written to set up the internal address. After the ADAU1772 acknowledges the receipt of the subaddress, the master must issue a repeated start command followed by the chip address byte with the R/W set to 1 (read). This causes the ADAU1772 SDA to reverse and begin driving data

back to the master. The master then responds every ninth pulse with an acknowledge pulse to the ADAU1772.

Figure 88 shows the timing of a burst mode read sequence. This figure shows an example where the target read words are two bytes. The ADAU1772 increments its subaddress every two bytes because the requested subaddress corresponds to a register or memory area with word lengths of two bytes. Other address ranges may have a variety of word lengths, ranging from one to four bytes. The ADAU1772 always decodes the subaddress and sets the auto-increment circuit so that the address increments after the appropriate number of bytes.

Figure 85 to Figure 88 use the following abbreviations:

S = start bit

P = stop bit

AM = acknowledge by master

AS = acknowledge by slave

s	I ² C ADDRESS, R/W = 0	AS	SUBADDRES	S HIGH	AS SUB	SUBADDRESS LOW		SUBADDRESS LOW		SUBADDRESS LOW		AS SUBADDRESS LO		RESS LOW AS		DATA BYTE 1		AS D		DATA BYTE 2		AS		AS [АТА В	TA BYTE N		10804-070
Figure 85. Single-Word I ² C Write Format												_																	
s	I ² C A <u>D</u> DRESS, R/W = 0	AS	SUBADDRESS HIGH	AS	SUBADDRESS LOW	AS		AWORD 1, BYTE 1	AS		/ORD 1 TE 2	AS		WORD 2, YTE 1	AS		AWOR BYTE 2		AS	P	10804-071								
Figure 86. Burst Mode I ² C Write Format										10804-072																			
$\mathbf{R}_{W} = 0^{\prime \prime} + \mathbf{A}_{V} + \mathbf{H}_{G} + \mathbf{A}_{V} + \mathbf{A}_{V$																													
s	I ² C A <u>DD</u> RESS, R/W = 0	AS	SUBADDRESS HIGH	AS	SUBADDRESS LOW	AS	s	I ² C ADD R/W		A	s	DATAW BYT	ORD 1, E 1	АМ	DAT	AWOF BYTE	RD 1, 2	AM		Р	10804-073								
					Fig	gure 88	3. Bur	st Mode I ²	C Rea	d Form	at										_								

SPI PORT

By default, the ADAU1772 is in I^2C mode, but it can be put into SPI control mode by pulling \overline{SS} low three times. This can be easily accomplished by issuing three SPI writes, which are in turn ignored by the ADAU1772. The next (fourth) SPI write is then latched into the SPI port.

The SPI port uses a 4-wire interface—consisting of \overline{SS} , SCLK, MOSI, and MISO signals—and is always a slave port. The \overline{SS} signal should go low at the beginning of a transaction and high at the end of a transaction. The SCLK signal latches MOSI on a low-to-high transition. MISO data is shifted out of the ADAU1772 on the falling edge of SCLK and should be clocked into a receiving device, such as a microcontroller, on the SCLK rising edge. The MOSI signal carries the serial input data, and the MISO signal is the serial output data. The MISO signal remains tristated until a read operation is requested. This allows other SPI-compatible peripherals to share the same readback line.

All SPI transactions have the same basic format shown in Table 23. A timing diagram is shown in Figure 89 and Figure 90. All data should be written MSB first. The ADAU1772 can only be taken out of SPI mode by pulling the $\overline{\text{PD}}$ pin low or by powering down the IC.

Read/Write

The first byte of an SPI transaction indicates whether the communication is a read or a write with the R/\overline{W} bit. The LSB of this first byte determines whether the SPI transaction is a read (Logic Level 1) or a write (Logic Level 0).

Subaddress

The 16-bit subaddress word is decoded into a location in one of the memories or registers. This subaddress is the location of the appropriate memory location or register.

Data Bytes

The number of data bytes varies according to the register or memory being accessed. During a burst mode write, an initial subaddress is written followed by a continuous sequence of data for consecutive memory/register locations.

A sample timing diagram for a single-write SPI operation to the parameter RAM is shown in Figure 89. A sample timing diagram of a single-read SPI operation is shown in Figure 90. The MISO pin goes from tristate to being driven at the beginning of Byte 3. In this example, Byte 0 to Byte 2 contain the addresses and the R/\overline{W} bit and subsequent bytes carry the data.

Table 23. Generic SPI Word Format

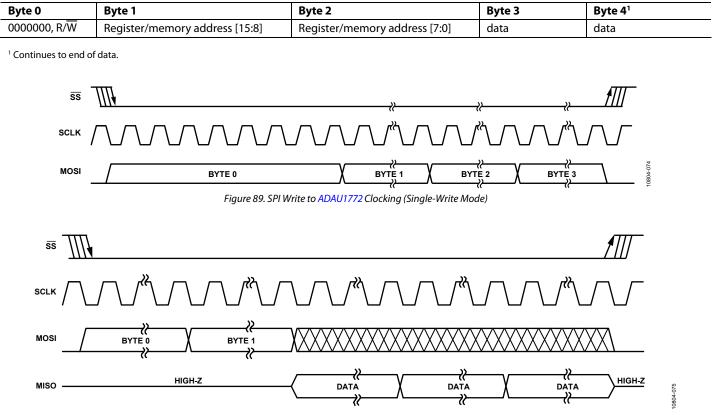


Figure 90. SPI Read from ADAU1772 Clocking (Single-Read Mode)

Rev. C | Page 43 of 116

SELF-BOOT

The ADAU1772 boots up from an EEPROM over the I²C bus when the SELFBOOT pin is set high at power-up and the PD pin is set high. The state of the SELFBOOT pin is checked only when the ADAU1772 comes out of a reset via the PD pin, and the EEPROM is not used after a self-boot is complete. During booting, ensure that there is a stable DVDD in the system. The PD pin should remain high during the self-boot operation. The master SCL clock output from the ADAU1772 is derived from the input clock on XTALI/MCLKIN. A divide-by-64 circuit ensures that the SCL output frequency during the self-boot operation is never greater than 400 kHz for most input clock frequencies. With the external master clock to the ADAU1772 being between 12 MHz and 27 MHz, the SCL frequency ranges from 176 kHz to 422 kHz. If the self-boot EEPROM is not rated for operation above 400 kHz, be sure to use a master clock that is no faster than 25.6 MHz.

Table 25 shows the list of instructions that are possible during an ADAU1772 self-boot. The 0x01 and 0x05 instruction bytes are used to load the register, program, and parameter settings.

EEPROM Size

The self-boot circuit is compatible with an EEPROM that has a 2-byte address. For most EEPROM families, a 2-byte address is used on devices that are 32 kB or larger. The EEPROM must be set to Address 0x50. Examples of two compatible EEPROMs include Atmel AT24C32D and STMicroelectronics M24C32-F.

Table 24 lists the maximum necessary EEPROM size, assuming that there is 100% utilization of the program and parameters (both banks). There is inherently some overhead for instructions to control the self-boot procedure.

Table 24. Maximum EEPROM Size

ADAU1772 Memory Blocks	Word Size (Bytes per Word)	Words	Total EEPROM Space Requirement (Bytes)
Program	2	32	64
Bank 0 Parameters	4	160 (32 × 5)	640
Bank 1 Parameters	4	160	640
Registers	1	65	65
Total Bytes			1409

CRC

An 8-bit CRC validates the content of the EEPROM. This CRC is strong enough to detect single error bursts of up to eight bits in size.

The terminate self-boot instruction (0x00 instruction byte) must be followed by a CRC byte. The CRC is generated using all of the EEPROM bytes from Address 0x0000 to the last 0x00 instruction byte. The polynomial for the CRC is

 $x^{8} + x^{2} + x + 1$

If the CRC is incorrect or if an unrecognized instruction byte is read during self-boot, the boot process is immediately stopped and restarted after a 250 ms delay (for a 12.288 MHz input clock). When SigmaStudio is used, the CRC byte is generated automatically when a configuration is downloaded to the EEPROM.

Delay

The delay instruction (0x02 instruction byte) delays by the 16-bit setting \times 2048 clock cycles.

Boot Time

The time to self-boot the ADAU1772 from an EEPROM can be calculated using the following equation:

Boot Time = 64/*MCLK Frequency* × *Total Bytes* + *Wait Time*

The self-boot operation starts after 16,568 clock cycles are seen on the XTALI/MCLKIN pin after PD is set high. With a 12.288 MHz clock, this corresponds to approximately a 1.35 ms wait time from power-up. This delay ensures that the crystal used for generating the master clock has ramped up to a stable oscillation.

Table 25. EEPROM Self-Boot Instructions

1 abic 25. L	LI KOM SCH-DOOL HISH uch	.10115
Instruction Byte ID	Instruction Byte Description	Following Bytes
0x00	End self-boot	CRC
0x01	Write multibyte length minus two bytes, starting at target address	Length (high byte), length (low byte), address (high byte), address (low byte), data (0), data (1), data (length – 3)
0x02	Delays by the 16-bit setting × 2048 clock cycles	Delay (high byte), delay (low byte)
0x03	No operation	None
0x04	Wait for PLL lock	None
0x05	Write single byte to target address	Address (high byte), address (low byte), data

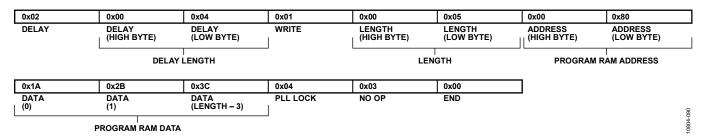


Figure 91. A List of Example Self-Boot EEPROM Instructions

MULTIPURPOSE PINS

The ADAU1772 has seven multipurpose (MP) pins that can be used for serial data I/O, clock outputs, and control in a system without a microcontroller. Each pin can be individually set to either its default or MP setting. The functions include pushbutton volume controls, enabling the compressors, parameter bank switching, DSP bypass mode, and muting the outputs.

The function of each of these pins is set in Register 0x0038 to Register 0x003E. By default, each pin is configured as an input.

Pin No.	Default Pin Function	Secondary Pin Functions
31	LRCLK	Multipurpose control inputs
32	BCLK	Multipurpose control inputs
33	DAC_SDATA	Multipurpose control inputs
34	MP1 acting as push- button volume up	ADC_SDATA0, PDM output, multipurpose control inputs
35	MP6 acting as push- button volume down	ADC_SDATA1, CLKOUT, multipurpose control inputs
36	DMIC2_3	Multipurpose control inputs
37	DMIC0_1	Multipurpose control inputs

Table 26. Multipurpose Pin Functions

PUSH-BUTTON VOLUME CONTROLS

The ADC and DAC volume controls can be set up to be controlled with two push-buttons—one for volume up and one for volume down. The volume setting can either be changed with a click of the button or be ramped by holding the button. The volume settings change when the signal on the pin from the button goes from low to high.

When in push-button mode, the initial volume level is set with Bits PB_VOL_INIT_VAL. By default, MP1 acts as the pushbutton volume up and MP6 acts as the push-button volume down; however, any of the MPx pins can be set to act as the push-button up and push-button down volume controls. When the ADC and/or DAC volumes are controlled with the push-buttons, the corresponding volume control registers no longer allow control of the volume from the control port. Therefore, writing to these volume control registers has no effect on the codec volume level.

LIMITER COMPRESSION ENABLE

This function allows a user to enable limiter compression regardless of the signal level. Setting an MPx pin low when this function is enabled causes the limiter to compress the incoming signal by the minimum gain setting. When the MPx pin is released, the limiter resumes normal behavior.

PARAMETER BANK SWITCHING

An MPx pin can be used to switch the active parameter bank between Bank A and Bank B. When this setting is selected, Bank A is active when the pin is high and Bank B is active when the pin is low. Care should be taken to set the BANK_SL bits in the CORE_CONTROL register (Address 0x0009) to the default value of 0x00 before enabling MPx pin control over bank switching. Simultaneous control of bank switching by both register setting and MPx pin selection is not possible.

Bit ZERO_STATE selects whether the data memory of the codec is set to 0 during a bank switch. If the data is not set to 0 when a new set of filter coefficients is enabled via a bank switch, there may be a pop in the audio as the old data is circulated in the new filters.

MUTE

The MPx pins can be put into a mode to mute the ADCs or DACs. When in this mode, mute is enabled when an MPx pin is set low. The full combination of possible mutes for ADCs and DACs using MPx pins are set in Register 0x0038 to Register 0x003E.

DSP BYPASS MODE

When DSP bypass mode is enabled, a direct path from the ADC outputs to the DACs is set up to enable bypassing the core processing to listen to environmental sounds. This is useful for listening to someone speaking without having to remove the noise cancelling headphones. The DSP bypass path is enabled by setting an MPx pin low. Figure 92 shows the DSP bypass path disabled, and Figure 93 shows the DSP bypass path enabled by pressing the push-button switch. The DSP bypass feature works for both analog and digital microphone inputs.

DSP bypass is enabled when a switch connected to an MPx pin that is set to DSP bypass mode is closed and the MPx pin signal

is pulled low. Pressing and holding the switch closed enables the DSP bypass signal path as defined in the TALKTHRU register (Address 0x002A). The DAC volume control setting is switched from the default gain setting to the new TALKTHRU_GAINx register setting (Address 0x002B and Address 0x002C). DSP bypass is enabled only on ADC0 and ADC1. The DSP bypass signal path is from the output of ADCx to the input of the DAC(s).

When DSP bypass is enabled, the current DAC volume setting is ramped down to -95.625 dB and the DSP bypass volume setting is ramped up to avoid pops when switching paths.

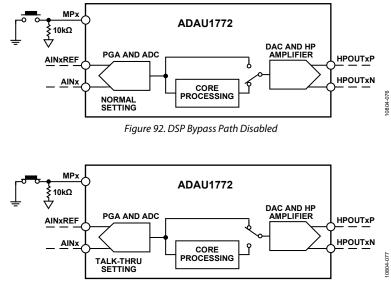


Figure 93. DSP Bypass Path Enabled

SERIAL DATA INPUT/OUTPUT PORTS

The serial data input and output ports of the ADAU1772 can be set to accept or transmit data in a 2-channel format or in a 4-channel or 8-channel TDM stream to interface to external ADCs, DACs, DSPs, and SOCs. Data is processed in twos complement, MSB first format. The left-channel data field always precedes the right-channel data field in the 2-channel streams. In 8-channel TDM mode, the data channels are output sequentially, starting with the channel set by the ADC_SDATA0_ST and ADC_SDATA1_ST bits. The serial modes and the position of the data in the frame are set in the serial data port (SAI_0, SAI_1) and serial output control registers (SOUT_SOURCE_x_x, Address 0x0013 to Address 0x0016).

The serial data clocks do not need to be synchronous with the ADAU1772 master clock input, but the LRCLK and BCLK must be synchronous to each other. The LRCLK and BCLK pins are used to clock both the serial input and output ports. The ADAU1772 can be set to be either the master or the slave in a system. Because there is only one set of serial data clocks, the input and output ports must always both be either master or slave.

The serial data control registers allow control of the clock polarity and the data input modes. The valid data formats are I²S, left justified, right justified (24- or 16-bit), PCM, and TDM. In all modes except for the right justified modes, the serial port inputs an arbitrary number of bits up to a limit of 24. Extra bits do not cause an error, but they are truncated internally. The serial port can operate with an arbitrary number of BCLK transitions in each LRCLK frame. The LRCLK in TDM mode can be input to the ADAU1772 either as a 50% duty cycle clock or as a bit-wide pulse. Table 27 lists the modes in which the serial input/output port can function. When using low IOVDD (1.8 V) with a high

Table 28. Serial Port Data Format Settings

BCLK rate (12.288 MHz), a sample rate of 192 kHz, or a TDM8 mode operating at a sample rate of 48 kHz, it is recommended to use the high drive settings on the serial port pins. The high drive strength effectively speeds up the transition times of the waveforms, thereby improving the signal integrity of the clock and data lines. These can be set in the PAD_CONTROL4 register (Address 0x004C).

fssd	2-Channel Modes (I ² S, Left Justified, Right Justified)	4-Channel TDM	8-Channel TDM
48 kHz	Yes	Yes	Yes
96 kHz	Yes	Yes	No
192 kHz	Yes	No	No

Table 27. Serial In/Out Port Master/Slave Mode Capabilities

Table 28 describes the proper serial port settings for standard audio data formats. More information about the settings in this table can be found in the Serial Port Control 0 and Serial Port Control 1 registers (Address 0x0032 and Address 0x0033) descriptions.

TRISTATING UNUSED CHANNELS

Unused outputs can be tristated so that multiple ICs can drive a single TDM line. This function is available only when the serial ports of the ADAU1772 are operating in TDM mode. Channels that are inactive can be set in the SOUT_CONTROL0 register (Address 0x0034). The tristating of inactive channels is set in the SAI_1 register (Address 0x0033), which offers the option of tristating or driving the inactive channel.

In a 32-bit TDM frame with 24-bit data, the eight unused bits are tristated. Inactive channels are also tristated for the full frame.

Format	LRCLK Polarity (LR POL)	LRCLK Type (LR MODE)	BCLK Polarity (BCLKEDGE) ¹	MSB Position (SDATA FMT)
I ² S (Figure 94)	0	0	0	00
Left Justified (Figure 95)	1	0	0	01
Right Justified (Figure 96 and Figure 97)	1	0	0	10 or 11
TDM (Figure 98 and Figure 99)	1	0 or 1	0	00
PCM/DSP Short Frame Sync (Figure 100)	1	1	Х	00
PCM/DSP Long Frame Sync (Figure 101)	1	0	Х	01

 1 X = don't care.

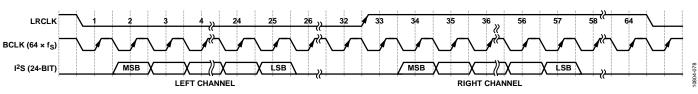


Figure 94. I²S Mode—16 Bits to 24 Bits per Channel

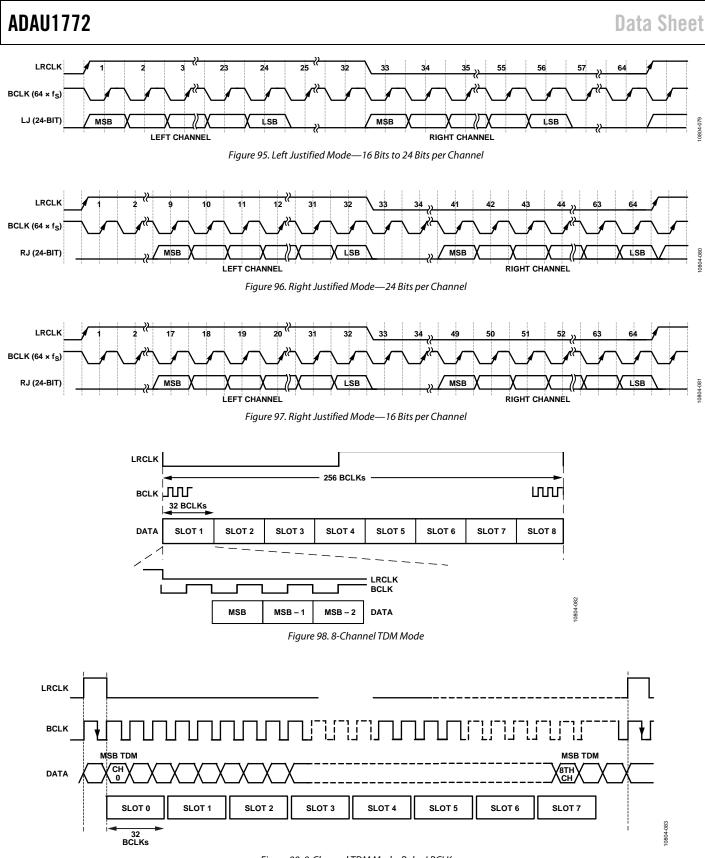
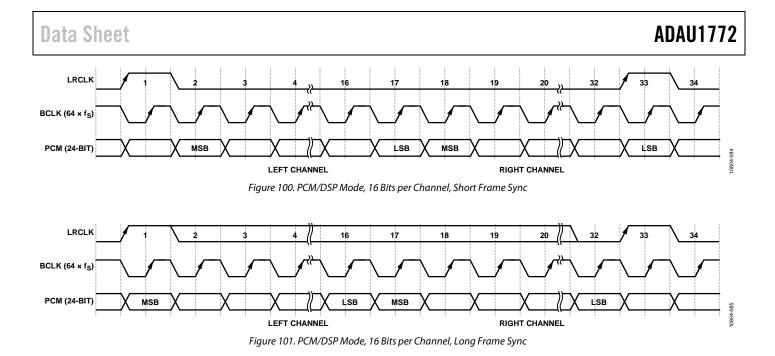



Figure 99. 8-Channel TDM Mode, Pulse LRCLK

APPLICATIONS INFORMATION **POWER SUPPLY BYPASS CAPACITORS**

Each analog and digital power supply pin should be bypassed to its nearest appropriate ground pin with a single 0.1 µF capacitor. The connections to each side of the capacitor should be as short as possible, and the trace should be routed on a single layer with no vias. For maximum effectiveness, locate the capacitor equidistant from the power and ground pins or slightly closer to the power pin if equidistant placement is not possible. Thermal connections to the ground planes should be made on the far side of the capacitor.

Each supply signal on the board should also be bypassed with a single bulk capacitor (10 μ F to 47 μ F).

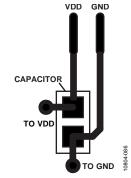


Figure 102. Recommended Power Supply Bypass Capacitor Layout

LAYOUT

Pin 24 is the AVDD supply for the headphone amplifiers. If the headphone amplifiers are enabled, the PCB trace to this pin should be wider than traces to other pins to increase the current carrying capacity. A wider trace should also be used for the headphone output lines.

GROUNDING

A single ground plane should be used in the application layout. Components in an analog signal path should be placed away from digital signals.

EXPOSED PAD PCB DESIGN

The ADAU1772 has an exposed pad on the underside of the LFCSP. This pad is used to couple the package to the PCB for heat dissipation. When designing a board for the ADAU1772, special consideration should be given to the following:

- A copper layer equal in size to the exposed pad should be on all layers of the board, from top to bottom, and should connect somewhere to a dedicated copper board layer (see Figure 103).
- Vias should be placed to connect all layers of copper, allowing for efficient heat and energy conductivity. For an example, see Figure 104, which has nine vias arranged in a 3×3 grid in the pad area.

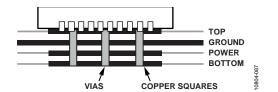


Figure 103. Exposed Pad Layout Example, Side View (Not to Scale)

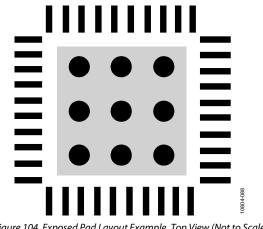
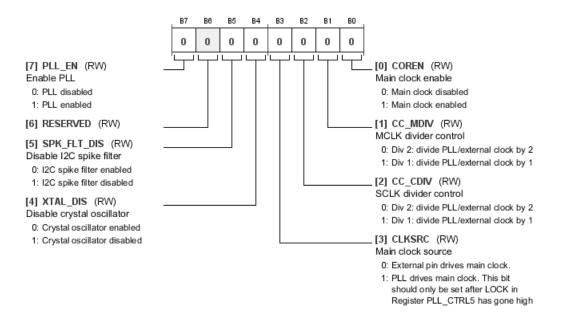


Figure 104. Exposed Pad Layout Example, Top View (Not to Scale)

REGISTER SUMMARY

Table 29. Low Latency Codec Register Summary

I able	29. LOW Latency	COU	iet Register	Summary								
			Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2		Bit 0	Reset	_
	CLK_CONTROL		PLL_EN	RESERVED	SPK_FLT_DIS	XTAL_DIS	CLKSRC	CC_CDIV	CC_MDIV	COREN	0x00	RW
	PLL_CTRL0	[7:0]		M_MSB C						0x00	RW	
	PLL_CTRL1	[7:0]					_LSB				0x00	RW
	PLL_CTRL2	[7:0]				N_	_MSB				0x00	RW
0x0004	PLL_CTRL3	[7:0]				N	_LSB			-	0x00	RW
0x0005	PLL_CTRL4	[7:0]	RESERVED			R			x	PLL_TYPE	0x00	RW
0x0006	PLL_CTRL5	[7:0]				RESERVED				LOCK	0x00	R
0x0007	CLKOUT_SEL	[7:0]			RESERVED				CLKOUT_FREQ		0x00	RW
0x0008	REGULATOR	[7:0]			RESERVED			REG_PD	RE	GV	0x00	RW
0x0009	CORE_CONTROL	[7:0]	ZERO_STATE	BAN	IK_SL	RES	ERVED	COR	E_FS	CORE_RUN	0x04	RW
0x000B	CORE_ENABLE	[7:0]		1	RESI	ERVED			LIM_EN	DSP_CLK_EN	0x03	RW
0x000C	DBREG0	[7:0]				DE	VAL0			u	0x00	R
0x000D	DBREG1	[7:0]				DE	VAL1				0x00	R
	DBREG2	[7:0]					VAL2				0x00	R
0x000F	CORE_IN_MUX_0_1	[7:0]		CORE IN	MUX_SEL_1			CORE IN A	MUX_SEL_0		0x10	RW
	CORE_IN_MUX_2_3				MUX_SEL_3				MUX_SEL_2		0x32	RW
	DAC_SOURCE_0_1	[7:0]			OURCE1				OURCE0		0x10	RW
		[7:0]			OURCE1				OURCE0		0x32	RW
					SOURCE1						0x52	RW
	SOUT_SOURCE_0_1 SOUT_SOURCE_2_3				SOURCE3			_	OURCE0		_	_
								SOUT_S			0x76	RW
	SOUT_SOURCE_4_5				SOURCES				OURCE4		0x54	RW
	SOUT_SOURCE_6_7				SOURCE7				OURCE6		0x76	RW
	ADC_SDATA_CH	[7:0]		RESERVED ADC_SDATA1_ST ADC_SDATA0_ST						ATA0_ST	0x04	RW
		[7:0]		ASRC_OUT_SOURCE1 ASRC_OUT_SOURCE0							0x10	RW
0x0019	ASRCO_SOURCE_2_3	[7:0]			T_SOURCE3			_	_SOURCE2		0x32	RW
0x001A	ASRC_MODE	[7:0]			RVED			_IN_CH	ASRC_OUT_EN		0x00	RW
0x001B	ADC_CONTROL0	[7:0]	RESE	RVED	RESERVED	ADC1_MUTE	ADC0_MUTE	RESERVED		0_1_FS	0x19	RW
0x001C	ADC_CONTROL1	[7:0]	RESE	RVED	RESERVED	ADC3_MUTE	ADC2_MUTE	RESERVED	ADC_2	2_3_FS	0x19	RW
0x001D	ADC_CONTROL2	[7:0]	RESERVED	HP_0)_1_EN	DMIC_POL0	DMIC_SW0	DCM_0_1	ADC_1_EN	ADC_0_EN	0x00	RW
0x001E	ADC_CONTROL3	[7:0]	RESERVED	RESERVED HP_2_3_EN DMIC_POL1 DMIC_SW1 DCM_2_3 ADC_3_EN ADC_2_EN						0x00	RW	
0x001F	ADC0_VOLUME	[7:0]				ADC	_0_VOL				0x00	RW
0x0020	ADC1_VOLUME	[7:0]								0x00	RW	
0x0021	ADC2_VOLUME	[7:0]								0x00	RW	
0x0022	ADC3_VOLUME	[7:0]					_3_VOL				0x00	RW
0x0023	PGA_CONTROL_0	[7:0]	PGA_EN0	PGA_MUTE0				GAIN0			0x40	RW
	PGA_CONTROL_1		PGA_EN1	PGA_MUTE1			PGA	GAIN1			0x40	RW
	PGA_CONTROL_2	[7:0]	 PGA_EN2	PGA_MUTE2			PGA	GAIN2			0x40	RW
	PGA_CONTROL_3	[7:0]	PGA_EN3	PGA_MUTE3				GAIN3			0x40	RW
		[7:0]		RVED	SI FW	/_RATE	SLEW PD3	SLEW PD2	SLEW_PD1	SLEW_PD0	0x00	RW
	PGA_10DB_BOOST	[7:0]			ERVED		_	PGA_2_BOOST	PGA 1 BOOST	_		RW
	POP SUPPRESS	[7:0]	DECE	RVED	HP_POP_DIS1			PGA_POP_DIS2				RW
	-	[7:0]	ILSL	INVED		ERVED	I GA_I OI _DI33			RU_PATH		
	TALKTHRU_GAIN0	[7:0]			NESI		J_GAIN0_VAL		TALKIN		0x00	RW
	_										_	
	TALKTHRU_GAIN1	[7:0]	0505	0.00			J_GAIN1_VAL				0x00	RW
	MIC_BIAS	[7:0]		RVED	MIC_EN1	MIC_EN0	RESERVED	RESERVED	MIC_GAIN1	MIC_GAIN0	0x00	RW
	DAC_CONTROL1	[7:0]	RESE	RVED	DAC_POL	DAC1_MUTE	DAC0_MUTE	RESERVED	DAC1_EN	DAC0_EN	0x18	RW
	DAC0_VOLUME	[7:0]					_0_VOL				0x00	RW
	DAC1_VOLUME	[7:0]				DAC	_1_VOL		•		0x00	RW
0x0031	OP_STAGE_MUTES	[7:0]		RESI	ERVED		HP_N	AUTE_R	HP_M	UTE_L	0x0F	RW
0x0032	SAI_0	[7:0]	SDAT	A_FMT	S	SAI		SER_PO	ORT_FS		0x00	RW
0x0033	SAI_1	[7:0]	TDM_TS	BCLK_TDMC	LR_MODE	LR_POL	SAI_MSB	BCLKRATE	BCLKEDGE	SAI_MS	0x00	RW
0x0034	SOUT_CONTROL0	[7:0]	TDM7_DIS	TDM6_DIS	TDM5_DIS	TDM4_DIS	TDM3_DIS	TDM2_DIS	TDM1_DIS	TDM0_DIS	0x00	RW
0x0036	PDM_OUT	[7:0]		RESERVED		PDM_CTRL	PDI	И_СН	PDN	I_EN	0x00	RW
0x0037	PDM_PATTERN	[7:0]				PA	TTERN		•		0x00	RW
	 MODE_MP0	[7:0]		RESERVED				MODE_MP0_VA	L		0x00	RW
	MODE_MP1	[7:0]		RESERVED		1		MODE_MP1_VAI			0x10	RW
	MODE_MP2	[7:0]	1	RESERVED		1		MODE_MP2_VAI			0x00	RW
	MODE_MP3	[7:0]		RESERVED		1		MODE_MP3_VAI			0x00	RW
	MODE_MP4	[7:0]		RESERVED				MODE_MP4_VAI			0x00	RW
0x003C								······································				1


Reg	Name	Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	RW
0x003D	MODE_MP5	[7:0]		RESERVED				MODE_MP5_VAL				RW
0x003E	MODE_MP6	[7:0]		RESERVED				MODE_MP6_VA	L		0x11	RW
0x003F	PB_VOL_SET	[7:0]			PB_VOL_INIT_V	AL			HOLD		0x00	RW
0x0040	PB_VOL_CONV	[7:0]	GA	INSTEP		RAMPSPEED		PI	B_VOL_CONV_V	AL	0x87	RW
0x0041	DEBOUNCE_MODE	[7:0]			RESERVED				DEBOUNCE		0x05	RW
0x0043	OP_STAGE_CTRL	[7:0]	RES	SERVED	HP_EN_R	HP_EN_L	HP_	PDN_R	HP_I	PDN_L	0x0F	RW
0x0044	DECIM_PWR_MODES	[7:0]	DEC_3_EN	DEC_2_EN	DEC_1_EN	DEC_0_EN	SINC_3_EN	SINC_2_EN	SINC_1_EN	SINC_0_EN	0x00	RW
0x0045	INTERP_PWR_MODES	[7:0]	RESERVED MOD_1_EN MOD_0_EN INT_1_EN INT_0_EN		INT_0_EN	0x00	RW					
0x0046	BIAS_CONTROL0	[7:0]	HP	_IBIAS	AFE_	IBIAS01	ADC	_IBIAS23	ADC_IBIAS01		0x00	RW
0x0047	BIAS_CONTROL1	[7:0]	RESERVED	CBIAS_DIS	AFE_	IBIAS23	MIC	_IBIAS	DAC	_IBIAS	0x00	RW
0x0048	PAD_CONTROL0	[7:0]	RESERVED	DMIC2_3_PU	DMIC0_1_PU	LRCLK_PU	BCLK_PU	ADC_SDATA1_ PU	ADC_SDATA0_ PU	DAC_SDATA_ PU	0x7F	RW
0x0049	PAD_CONTROL1	[7:0]		RESERVED		SELFBOOT_PU	SCL_PU	SDA_PU	ADDR1_PU	ADDR0_PU	0x1F	RW
0x004A	PAD_CONTROL2	[7:0]	RESERVED	DMIC2_3_PD	DMIC0_1_PD	LRCLK_PD	BCLK_PD	ADC_SDATA1_ PD	ADC_SDATA0_ PD	DAC_SDATA_ PD	0x00	RW
0x004B	PAD_CONTROL3	[7:0]		RESERVED	-	SELFBOOT_PD	SCL_PD	SDA_PD	ADDR1_PD	ADDR0_PD	0x00	RW
0x004C	PAD_CONTROL4	[7:0]	RESERVED	RESERVED	RESERVED	LRCLK_DRV	BCLK_DRV	ADC_SDATA1_ DRV	ADC_SDATA0_ DRV	RESERVED	0x00	RW
0x004D	PAD_CONTROL5	[7:0]		RESERVED	•	RESERVED	SCL_DRV	SDA_DRV	RESERVED	RESERVED	0x00	RW

REGISTER DETAILS

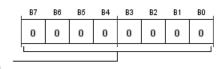
CLOCK CONTROL REGISTER

Address: 0x0000, Reset: 0x00, Name: CLK_CONTROL

This register is used to enable the internal clocks.

Table 30. Bit Descriptions for CLK_CONTROL

Bits	Bit Name	Settings	Description	Reset	Access
7	PLL_EN		Enable PLL. When this bit is set to 0, the PLL is powered down and the PLL output clock is disabled. The PLL should not be enabled until after all the PLL control settings (Register PLL_CTRL0 to Register PLL_CTRL5) have been set. The PLL clock output is active when both PLL_EN = 1 and COREN = 1.	0x0	RW
		0	PLL disabled		
		1	PLL enabled		
5	SPK_FLT_DIS		Disable I ² C spike filter. By default, the SDA and SCL inputs have a 50 ns spike suppression filter. When the control interface is in SPI mode, this filter is disabled regardless of this setting.	0x0	RW
		0	I ² C spike filter enabled		
		1	I ² C spike filter disabled		
4 XT/	XTAL_DIS		Disable crystal oscillator.	0x0	RW
		0	Crystal oscillator enabled		
		1	Crystal oscillator disabled		
3	CLKSRC		Main clock source.	0x0	RW
		0	External pin drives main clock.		
		1	PLL drives main clock. This bit should only be set after LOCK in Register PLL_CTRL5 has gone high.		
2	CC_CDIV		SCLK divider control. The core clock (SCLK) is used only by the core. It must run at 12.288 MHz.	0x0	RW
		0	Div 2: divide PLL/external clock by 2		
		1	Div 1: divide PLL/external clock by 1		
1	CC_MDIV		MCLK divider control. The internal master clock (MCLK) of the IC is used by all digital logic except the core. It must run at 12.288 MHz.	0x0	RW
		0	Div 2: divide PLL/external clock by 2		
		1	Div 1: divide PLL/external clock by 1		


Data Sheet

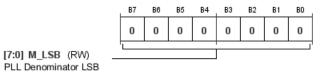
Bits	Bit Name	Settings	Description	Reset	Access
0	COREN	0	Main clock enable. When COREN = 0, it is only possible to write to this register and the PLL control registers (PLL_CTRL0 to PLL_CTRL5). This control also enables the PLL clock. If using the PLL, do not set COREN = 1 until LOCK in Register PLL_CTRL5 is 1. Note that after COREN is enabled, writing to the parameters is disabled until setting DSP_CLK_EN in the CORE_ENABLE register. Main clock disabled Main clock enabled	0x0	RW

PLL DENOMINATOR MSB REGISTER

Address: 0x0001, Reset: 0x00, Name: PLL_CTRL0

This register should only be written when PLL_EN = 0 in Register CLK_CONTROL.

[7:0] M_MSB (RW) PLL Denominator MSB


Table 31. Bit Descriptions for PLL_CTRL0

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	M_MSB		PLL denominator MSB.	0x00	RW

PLL DENOMINATOR LSB REGISTER

Address: 0x0002, Reset: 0x00, Name: PLL_CTRL1

This register should only be written when PLL_EN = 0 in Register CLK_CONTROL.

Table 32. Bit Descriptions for PLL_CTRL1

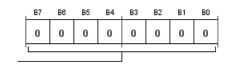
Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	M_LSB		PLL denominator LSB.	0x00	RW

PLL NUMERATOR MSB REGISTER

Address: 0x0003, Reset: 0x00, Name: PLL_CTRL2

This register should only be written when PLL_EN = 0 in Register CLK_CONTROL.

[7:0] N_MSB (RW) Numerator MSB


Table 33. Bit Descriptions for PLL_CTRL2

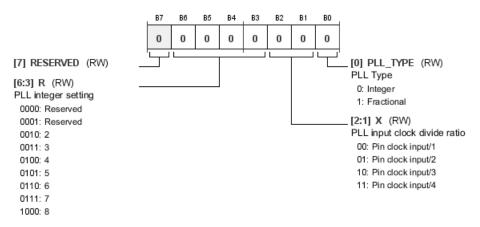
Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	N_MSB		PLL numerator MSB.	0x00	RW

PLL NUMERATOR LSB REGISTER

Address: 0x0004, Reset: 0x00, Name: PLL_CTRL3

This register should only be written when PLL_EN = 0 in Register CLK_CONTROL.

[7:0] N_LSB (RW) PLL Numerator LSB


Table 34. Bit Desc	riptions for PLL_CTRL3
--------------------	------------------------

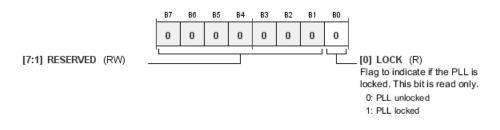
Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	N_LSB		PLL numerator LSB.	0x00	RW

PLL INTEGER SETTING REGISTER

Address: 0x0005, Reset: 0x00, Name: PLL_CTRL4

This register should only be written when PLL_EN = 0 in Register CLK_CONTROL.

Table 35.	Bit Descrip	tions for	PLL_CTRL4

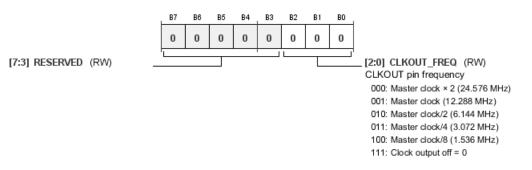

Bits	Bit Name	Settings	Description	Reset	Access
[6:3]	R		PLL integer setting.	0x0	RW
		0000	Reserved		
		0001	Reserved		
		0010	2		
		0011	3		
		0100	4		
		0101	5		
		0110	6		
		0111	7		
		1000	8		

Data Sheet

Bits	Bit Name	Settings	Description	Reset	Access
[2:1]	Х		PLL input clock divide ratio.	0x0	RW
		00	Pin clock input/1		
		01	Pin clock input/2		
		10	Pin clock input/3		
		11	Pin clock input/4		
0	PLL_TYPE		PLL type.	0x0	RW
		0	Integer		
		1	Fractional		

PLL LOCK FLAG REGISTER

Address: 0x0006, Reset: 0x00, Name: PLL_CTRL5

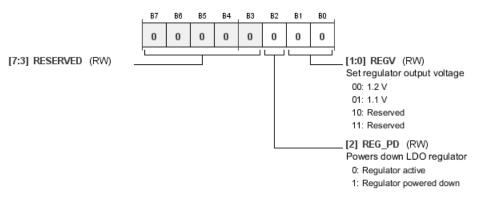

Table 36. Bit Descriptions for PLL_CTRL5

Bits	Bit Name	Settings	Description	Reset	Access
0	LOCK		Flag to indicate if the PLL is locked. This bit is read only.	0x0	R
		0	PLL unlocked		
		1	PLL locked		

CLKOUT SETTING SELECTION REGISTER

Address: 0x0007, Reset: 0x00, Name: CLKOUT_SEL

When Pin ADC_SDATA1/CLKOUT/MP6 is set to clock output mode, the frequency of the output clock is set here. CLKOUT can be used to provide a master clock to another IC, the clock for digital microphones, or as the clock for the PDM output stream. The 12 MHz/24 MHz setting is used when clocking another IC, 3 MHz/6 MHz for PDMOUT, and 1.5 MHz/3 MHz when clocking digital microphones. The CLKOUT frequency is derived from the master clock frequency, which is assumed to (and always should) be 12.288 MHz. The 12.288 MHz and 24.576 MHz output modes are not functional if PDM is enabled (Register PDM_OUT, Bits[1:0]).



Bits	Bit Name	Settings	Description	Reset	Access
[2:0]	CLKOUT_FREQ		CLKOUT pin frequency.	0x0	RW
		000	Master clock × 2 (24.576 MHz)		
		001	Master clock (12.288 MHz)		
		010	Master clock/2 (6.144 MHz)		
		011	Master clock/4 (3.072 MHz)		
		100	Master clock/8 (1.536 MHz)		
		111	Clock output off = 0		

Table 37. Bit Descriptions for CLKOUT_SEL

REGULATOR CONTROL REGISTER

Address: 0x0008, Reset: 0x00, Name: REGULATOR

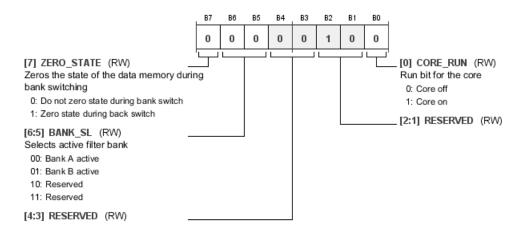
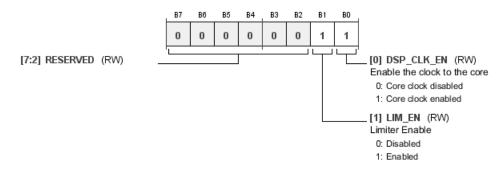


Table 38. Bit Descriptions for REGULATOR

Bits	Bit Name	Settings	Description	Reset	Access
2	REG_PD		Powers down LDO regulator.	0x0	RW
		0	Regulator active		
		1	Regulator powered down		
[1:0] F	REGV		Set regulator output voltage.	0x0	RW
		00	1.2 V		
		01	1.1 V		
		10	Reserved		
		11	Reserved		

CORE CONTROL REGISTER

Address: 0x0009, Reset: 0x04, Name: CORE_CONTROL

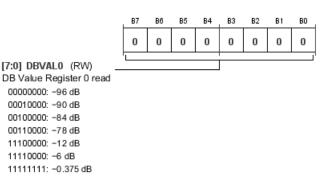

Table 39. Bit Descriptions for CORE_CONTROL

Bits	Bit Name	Settings	Description	Reset	Access
7	ZERO_STATE		Zeroes the state of the data memory during bank switching. When switching active parameter banks between two settings, zeroing the state of the bank prevents the new filter settings from being active on old data that is recirculating in filters. Zeroing the state may prevent filter instability or unwanted noises upon bank switching.	0x0	RW
		0	Do not zero state during bank switch		
		1	Zero state during back switch		
[6:5]	BANK_SL		Selects active filter bank.	0x0	RW
		00	Bank A active		
		01	Bank B active		
		10	Reserved		
		11	Reserved		
[2:1]	CORE_FS		This bit sets the core sample rate. This setting should not be changed while the core is running. CORE_RUN must be set to 0 for this setting to be updated.		
		00	Reserved		
		01	96 kHz		
		10	192 kHz		
		11	Reserved		
0	CORE_RUN		Run bit for the core. This bit should only be enabled when the program and parameters are loaded and the sample rate settings have been set. CORE_RUN starts and stops the core at the beginning of the program.	0x0	RW
		0	Core off		
		1	Core on		

FILTER ENGINE AND LIMITER CONTROL REGISTER

Address: 0x000B, Reset: 0x03, Name: CORE_ENABLE

Disabling the limiter only disables the attack operation. The decay operation is always active, so a limiter can be safely disabled while it performs gain adjustments.


Table 40. Bit Descriptions for CORE_ENABLE

Bits	Bit Name	Settings	Description	Reset	Access
1	LIM_EN		Limiter enable. When the limiter function is disabled, a fixed max gain setting is applied to instructions using the limiters.	0x1	RW
		0	Disabled		
		1	Enabled		
0	DSP_CLK_EN	0	Enable the clock to the core. Directly controls the clock to the core. It should be set to 0 when the chip is used in a codec-only configuration, in which the core is not used. Writing to any of the biquad coefficient registers (Parameter Memory Address 0x0E0 to Address 0x2BF) is blocked until this bit is 1. This bit should not be used to start or stop the core while it is running, because it would immediately start or stop the core clock and not allow the program to finish. Instead, use CORE_RUN in Register CORE_CONTROL to start or stop the core. Core clock disabled	0x1	RW
		1	Core clock enabled		

DB VALUE REGISTER 0 READ

Address: 0x000C, Reset: 0x00, Name: DBREG0

The core can write data to this register, and the data is automatically converted to a level in dB. The most common usage is to determine the rms value of a signal by taking the absolute value, and then performing low-pass filtering and moving the result to the DBREG0 register.

Table 41. Bit Descriptions for DBREG0

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	DBVAL0		DB Value Register 0 read.	0x00	R
		00000000	-96 dB		
		00010000	-90 dB		
		00100000	-84 dB		
		00110000	-78 dB		
		11100000	–12 dB		
		11110000	-6 dB		
		11111111	–0.375 dB		

DB VALUE REGISTER 1 READ

Address: 0x000D, Reset: 0x00, Name: DBREG1

The core can write data to this register, and the data is automatically converted to a level in dB. The most common usage is to determine the rms value of a signal by taking the absolute value, and then performing low-pass filtering and moving the result to the DBREG1 register.

во 0

	B7	B6	B5	В4	B3	B2	B1	
	0	0	0	0	0	0	0	
[7:0] DBVAL1 (RW)	۲ <u>ـــــ</u>							_
DB Value Register 1 read								
0000000: -96 dB								
00010000: -90 dB								
00100000: -84 dB								
00110000: -78 dB								
11100000: -12 dB								
11110000: -6 dB								
11111111: -0.375 dB								

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	DBVAL1		DB Value Register 1 read.	0x00	R
		00000000	-96 dB		
		00010000	-90 dB		
		00100000	-84 dB		
		00110000	–78 dB		
		11100000	–12 dB		
		11110000	-6 dB		
		11111111	–0.375 dB		

Table 42. Bit Descriptions for DBREG1

DB VALUE REGISTER 2 READ

Address: 0x000E, Reset: 0x00, Name: DBREG2

The core can write data to this register, and the data is automatically converted to a level in dB. The most common usage is to determine the rms value of a signal by taking the absolute value, and then performing low-pass filtering and moving the result to the DBREG2 register.

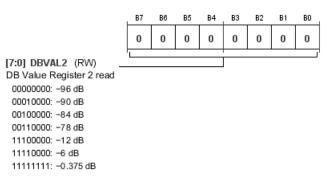
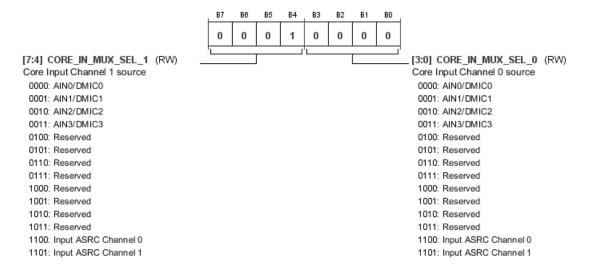



Table 43. Bit Descriptions for DBREG2

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	DBVAL2		DB Value Register 2 read.	0x00	R
		00000000	-96 dB		
		00010000	-90 dB		
		00100000	-84 dB		
		00110000	-78 dB		
		11100000	–12 dB		
		11110000	-6 dB		
		11111111	–0.375 dB		

CORE CHANNEL 0/CORE CHANNEL 1 INPUT SELECT REGISTER

Address: 0x000F, Reset: 0x10, Name: CORE_IN_MUX_0_1

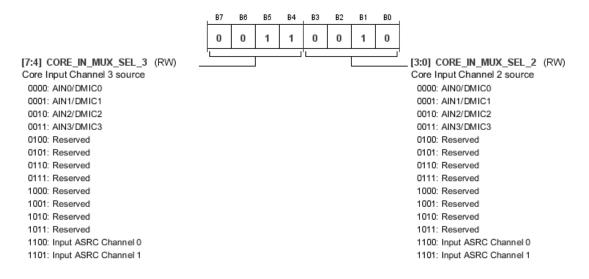


Table 44. Bit Descriptions for CORE_IN_MUX_0_1

Bits	Bit Name	Settings	Description	Reset	Access
[7:4]	CORE_IN_MUX_SEL_1		Core Input Channel 1 source.	0x1	RW
		0000	AIN0/DMIC0		
		0001	AIN1/DMIC1		
		0010	AIN2/DMIC2		
		0011	AIN3/DMIC3		
		0100	Reserved		
		0101	Reserved		
		0110	Reserved		
		0111	Reserved		
		1000	Reserved		
		1001	Reserved		
		1010	Reserved		
		1011	Reserved		
		1100	Input ASRC Channel 0		
		1101	Input ASRC Channel 1		
[3:0]	CORE_IN_MUX_SEL_0		Core Input Channel 0 source.	0x0	RW
		0000	AIN0/DMIC0		
		0001	AIN1/DMIC1		
		0010	AIN2/DMIC2		
		0011	AIN3/DMIC3		
		0100	Reserved		
		0101	Reserved		
		0110	Reserved		
		0111	Reserved		
		1000	Reserved		
		1001	Reserved		
		1010	Reserved		
		1011	Reserved		
		1100	Input ASRC Channel 0		
		1101	Input ASRC Channel 1		

CORE CHANNEL 2/CORE CHANNEL 3 INPUT SELECT REGISTER

Address: 0x0010, Reset: 0x32, Name: CORE_IN_MUX_2_3

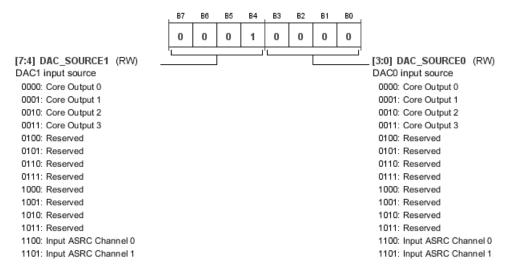
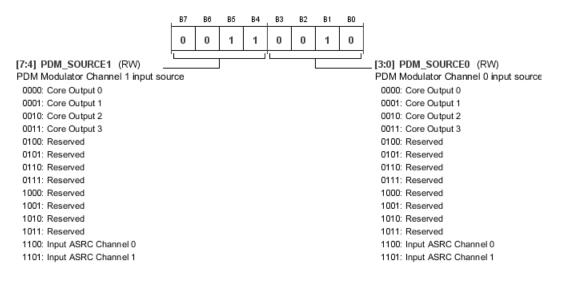


Table 45. Bit Descriptions for CORE_IN_MUX_2_3

Bits	Bit Name	Settings	Description	Reset	Access
[7:4]	CORE_IN_MUX_SEL_3		Core Input Channel 3 source.	0x3	RW
		0000	AIN0/DMIC0		
		0001	AIN1/DMIC1		
		0010	AIN2/DMIC2		
		0011	AIN3/DMIC3		
		0100	Reserved		
		0101	Reserved		
		0110	Reserved		
		0111	Reserved		
		1000	Reserved		
		1001	Reserved		
		1010	Reserved		
		1011	Reserved		
		1100	Input ASRC Channel 0		
		1101	Input ASRC Channel 1		
[3:0]	CORE_IN_MUX_SEL_2		Core Input Channel 2 source.	0x2	RW
		0000	AIN0/DMIC0		
		0001	AIN1/DMIC1		
		0010	AIN2/DMIC2		
		0011	AIN3/DMIC3		
		0100	Reserved		
		0101	Reserved		
		0110	Reserved		
		0111	Reserved		
		1000	Reserved		
		1001	Reserved		
		1010	Reserved		
		1011	Reserved		
		1100	Input ASRC Channel 0		
		1101	Input ASRC Channel 1		

DAC INPUT SELECT REGISTER

Address: 0x0011, Reset: 0x10, Name: DAC_SOURCE_0_1


Table 46. Bit Descriptions for DAC_SOURCE_0_1

Bits	Bit Name	Settings	Description	Reset	Access
[7:4]	DAC_SOURCE1		DAC1 input source. This setting should not be changed while the core is	0x1	RW
			running. CORE_RUN must be set to 0 for this setting to be updated.		
		0000	Core Output 0		
		0001	Core Output 1		
		0010	Core Output 2		
		0011	Core Output 3		
		0100	Reserved		
		0101	Reserved		
		0110	Reserved		
		0111	Reserved		
		1000	Reserved		
		1001	Reserved		
		1010	Reserved		
		1011	Reserved		
		1100	Input ASRC Channel 0		
		1101	Input ASRC Channel 1		
[3:0]	DAC_SOURCE0		DAC0 input source. This setting should not be changed while the core is	0x0	RW
			running. CORE_RUN must be set to 0 for this setting to be updated.		
		0000	Core Output 0		
		0001	Core Output 1		
		0010	Core Output 2		
		0011	Core Output 3		
		0100	Reserved		
		0101	Reserved		
		0110	Reserved		
		0111	Reserved		
		1000	Reserved		
		1001	Reserved		
		1010	Reserved		
		1011	Reserved		
		1100	Input ASRC Channel 0		
		1101	Input ASRC Channel 1		

Rev. C | Page 64 of 116

PDM MODULATOR INPUT SELECT REGISTER

Address: 0x0012, Reset: 0x32, Name: PDM_SOURCE_0_1

Table 47. Bit Descriptions for PDM_SOURCE_0_1

Bits	Bit Name	Settings	Description	Reset	Access
[7:4]	PDM_SOURCE1		PDM Modulator Channel 1 input source.	0x3	RW
		0000	Core Output 0		
		0001	Core Output 1		
		0010	Core Output 2		
		0011	Core Output 3		
		0100	Reserved		
		0101	Reserved		
		0110	Reserved		
		0111	Reserved		
		1000	Reserved		
		1001	Reserved		
		1010	Reserved		
		1011	Reserved		
		1100 Input ASRC Channel 0			
		1101	Input ASRC Channel 1		
[3:0]	PDM_SOURCE0		PDM Modulator Channel 0 input source.	0x2	RW
		0000	Core Output 0		
		0001	Core Output 1		
		0010	Core Output 2		
		0011	Core Output 3		
		0100	Reserved		
		0101	Reserved		
		0110	Reserved		
		0111	Reserved		
		1000	Reserved		
		1001	Reserved		
		1010	Reserved		
		1011	Reserved		
		1100	Input ASRC Channel 0		
		1101	Input ASRC Channel 1		

SERIAL DATA OUTPUT 0/SERIAL DATA OUTPUT 1 INPUT SELECT REGISTER

Address: 0x0013, Reset: 0x54, Name: SOUT_SOURCE_0_1

	B7	B6	B5	B4	B3	B2	B1	BO	
	0	1	0	1	0	1	0	0	
[7:4] SOUT_SOURCE1 (RW) _ Serial Data Output Channel 1 source	'L]		l'L			'	[3:0] SOUT_SOURCE0 (RW) Serial Data Output Channel 0 source
select									select
0000: Reserved									0000: Reserved
0001: Reserved									0001: Reserved
0010: Reserved									0010: Reserved
0011: Reserved									0011: Reserved
0100: Output ASRC Channel 0									0100: Output ASRC Channel 0
0101: Output ASRC Channel 1									0101: Output ASRC Channel 1
0110: Output ASRC Channel 2									0110: Output ASRC Channel 2
0111: Output ASRC Channel 3									0111: Output ASRC Channel 3
1000: Serial Input 0									1000: Serial Input 0
1001: Serial Input 1									1001: Serial Input 1
1010: Serial Input 2									1010: Serial Input 2
1011: Serial Input 3									1011: Serial Input 3
1100: Serial Input 4									1100: Serial Input 4
1101: Serial Input 5									1101: Serial Input 5
1110: Serial Input 6									1110: Serial Input 6
1111: Serial Input 7									1111: Serial Input 7

Table 48. Bit Descriptions for SOUT_SOURCE_0_1

Bits	Bit Name	Settings	Description	Reset	Access
[7:4]	SOUT_SOURCE1		Serial Data Output Channel 1 source select.	0x5	RW
		0000	Reserved		
		0001	Reserved		
		0010	Reserved		
		0011	Reserved		
		0100	Output ASRC Channel 0		
		0101	Output ASRC Channel 1		
		0110	Output ASRC Channel 2		
		0111	Output ASRC Channel 3		
		1000	Serial Input 0		
		1001	Serial Input 1		
		1010	Serial Input 2		
		1011	Serial Input 3		
		1100	Serial Input 4		
		1101	Serial Input 5		
		1110	Serial Input 6		
		1111	Serial Input 7		
[3:0]	SOUT_SOURCE0		Serial Data Output Channel 0 source select.	0x4	RW
		0000	Reserved		
		0001	Reserved		
		0010	Reserved		
		0011	Reserved		
		0100	Output ASRC Channel 0		
		0101	Output ASRC Channel 1		
		0110	Output ASRC Channel 2		
		0111	Output ASRC Channel 3		
		1000	Serial Input 0		
		1001	Serial Input 1		
		1010	Serial Input 2		

Data Sheet

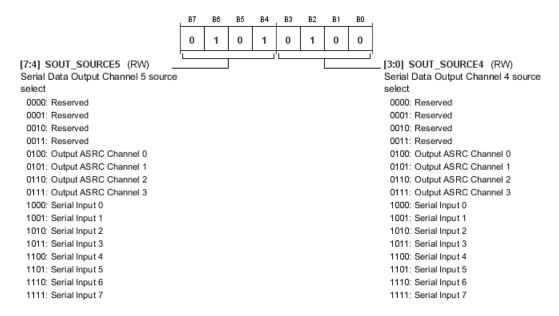
ADAU1772

Bits	Bit Name	Settings	Description	Reset	Access
		1011	Serial Input 3		
		1100	Serial Input 4		
		1101	Serial Input 5		
		1110	Serial Input 6		
		1111	Serial Input 7		

SERIAL DATA OUTPUT 2/SERIAL DATA OUTPUT 3 INPUT SELECT REGISTER

Address: 0x0014, Reset: 0x76, Name: SOUT_SOURCE_2_3

0 1 1 0 1 1 0 [7:4] SOUT_SOURCE3 (RW) [3:0] SOUT_SOURCE2 (RW) Serial Data Output Channel 3 source select 0000: Reserved 0000: Reserved 0000: Reserved 0001: Reserved 0001: Reserved 0011: Reserved 0011: Reserved 0011: Reserved 0011: Reserved 0111: Reserved 0111: Reserved 0100: Output ASRC Channel 0 0101: Output ASRC Channel 0 0101: Output ASRC Channel 1 0110: Output ASRC Channel 1 0110: Output ASRC Channel 2 0111: Output ASRC Channel 3 0100: Serial Input 0 1001: Serial Input 1 1001: Serial Input 1 1010: Serial Input 2 1010: Serial Input 2 1010: Serial Input 2
Serial Data Output Channel 3 sourceSerial Data Output Channel 2 sourceselectselect0000: Reserved0000: Reserved0001: Reserved0001: Reserved0010: Reserved0010: Reserved0011: Reserved0011: Reserved0011: Reserved0011: Reserved0010: Output ASRC Channel 00100: Output ASRC Channel 00111: Output ASRC Channel 10101: Output ASRC Channel 10110: Output ASRC Channel 20110: Output ASRC Channel 20111: Output ASRC Channel 30111: Output ASRC Channel 31000: Serial Input 01000: Serial Input 01001: Serial Input 11001: Serial Input 1
1011: Serial Input 3 1011: Serial Input 3 1100: Serial Input 4 1100: Serial Input 4 1101: Serial Input 5 1101: Serial Input 5

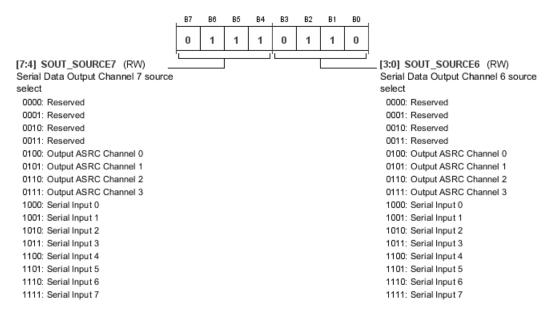

Table 49. Bit Descriptions for SOUT_SOURCE_2_3

Bits	Bit Name	Settings	Description	Reset	Access
[7:4]	SOUT_SOURCE3		Serial Data Output Channel 3 source select.	0x7	RW
		0000	Reserved		
		0001	Reserved		
		0010	Reserved		
		0011	Reserved		
		0100	Output ASRC Channel 0		
		0101	Output ASRC Channel 1		
		0110	Output ASRC Channel 2		
		0111	Output ASRC Channel 3		
		1000	Serial Input 0		
		1001	Serial Input 1		
		1010	Serial Input 2		
		1011	Serial Input 3		
		1100	Serial Input 4		
		1101	Serial Input 5		
		1110	Serial Input 6		
		1111	Serial Input 7		
[3:0]	SOUT_SOURCE2		Serial Data Output Channel 2 source select.	0x6	RW
		0000	Reserved		
		0001	Reserved		
		0010	Reserved		

Bits	Bit Name	Settings	Description	Reset	Access
		0011	Reserved		
		0100	Output ASRC Channel 0		
		0101	Output ASRC Channel 1		
		0110	Output ASRC Channel 2		
		0111	Output ASRC Channel 3		
		1000	Serial Input 0		
		1001	Serial Input 1		
		1010	Serial Input 2		
		1011	Serial Input 3		
		1100	Serial Input 4		
		1101	Serial Input 5		
		1110	Serial Input 6		
		1111	Serial Input 7		

SERIAL DATA OUTPUT 4/SERIAL DATA OUTPUT 5 INPUT SELECT REGISTER

Address: 0x0015, Reset: 0x54, Name: SOUT_SOURCE_4_5

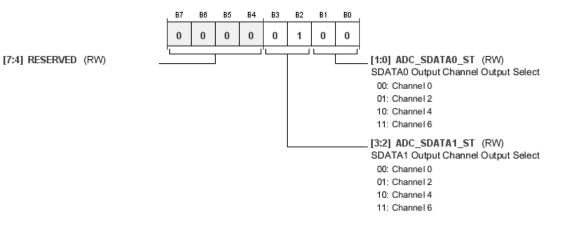

Table 50. Bit Descriptions for SOUT_SOURCE_4_5

Bits	Bit Name	Settings	Description	Reset	Access
[7:4]	SOUT_SOURCE5		Serial Data Output Channel 5 source select.	0x5	RW
		0000	Reserved		
		0001	Reserved		
		0010	Reserved		
		0011	Reserved		
		0100	Output ASRC Channel 0		
		0101	Output ASRC Channel 1		
		0110	Output ASRC Channel 2		
		0111	Output ASRC Channel 3		
		1000	Serial Input 0		
		1001	Serial Input 1		
		1010	Serial Input 2		
		1011	Serial Input 3		

Bits	Bit Name	Settings	Description	Reset	Access
		1100	Serial Input 4		
		1101	Serial Input 5		
		1110	Serial Input 6		
		1111	Serial Input 7		
[3:0]	SOUT_SOURCE4		Serial Data Output Channel 4 source select.	0x4	RW
		0000	Reserved		
		0001	Reserved		
		0010	Reserved		
		0011	Reserved		
		0100	Output ASRC Channel 0		
		0101	Output ASRC Channel 1		
		0110	Output ASRC Channel 2		
		0111	Output ASRC Channel 3		
		1000	Serial Input 0		
		1001	Serial Input 1		
		1010	Serial Input 2		
		1011	Serial Input 3		
		1100	Serial Input 4		
		1101	Serial Input 5		
		1110	Serial Input 6		
		1111	Serial Input 7		

SERIAL DATA OUTPUT 6/SERIAL DATA OUTPUT 7 INPUT SELECT REGISTER

Address: 0x0016, Reset: 0x76, Name: SOUT_SOURCE_6_7


Table 51. Bit Descriptions for SOUT_SOURCE_6_7

Bits	Bit Name	Settings	Description	Reset	Access
[7:4]	SOUT_SOURCE7		Serial Data Output Channel 7 source select.	0x7	RW
		0000	Reserved		
		0001	Reserved		
		0010	Reserved		
		0011	Reserved		

Bits	Bit Name	Settings	Description	Reset	Access
		0100	Output ASRC Channel 0		
		0101	Output ASRC Channel 1		
		0110	Output ASRC Channel 2		
		0111	Output ASRC Channel 3		
		1000	Serial Input 0		
		1001	Serial Input 1		
		1010	Serial Input 2		
		1011	Serial Input 3		
		1100	Serial Input 4		
		1101	Serial Input 5		
		1110	Serial Input 6		
		1111	Serial Input 7		
[3:0]	SOUT_SOURCE6		Serial Data Output Channel 6 source select.	0x6	RW
		0000	Reserved		
		0001	Reserved		
		0010	Reserved		
		0011	Reserved		
		0100	Output ASRC Channel 0		
		0101	Output ASRC Channel 1		
		0110	Output ASRC Channel 2		
		0111	Output ASRC Channel 3		
		1000	Serial Input 0		
		1001	Serial Input 1		
		1010	Serial Input 2		
		1011	Serial Input 3		
		1100	Serial Input 4		
		1101	Serial Input 5		
		1110	Serial Input 6		
		1111	Serial Input 7		

ADC_SDATA0/ADC_SDATA1 CHANNEL SELECT REGISTER

Address: 0x0017, Reset: 0x04, Name: ADC_SDATA_CH

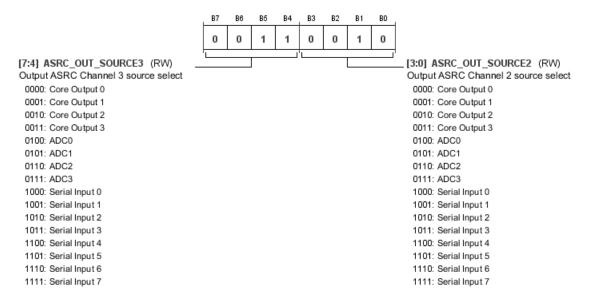
Bits	Bit Name	Settings	Description	Reset	Access
[3:2]	ADC_SDATA1_ST		SDATA1 output channel output select. Selects the output channel at which ADC_SDATA1 starts to output data. The output port sequentially outputs data following this start channel according to the setting of Bit SAI.	0x1	RW
		00	Channel 0		
		01	Channel 2		
		10	Channel 4		
		11	Channel 6		
[1:0]	ADC_SDATA0_ST		SDATA0 output channel output select. Selects the output channel at which ADC_SDATA0 starts to output data. The output port sequentially outputs data following this start channel according to the setting of Bit SAI.	0x0	RW
		00	Channel 0		
		01	Channel 2		
		10	Channel 4		
		11	Channel 6		

Table 52. Bit Descriptions for ADC_SDATA_CH

OUTPUT ASRC0/OUTPUT ASRC1 SOURCE REGISTER

Address: 0x0018, Reset: 0x10, Name: ASRCO_SOURCE_0_1

	B7	B6	B5	B4	B3	B2	B1	в0	
	0	0	0	1	0	0	0	0	
 [7:4] ASRC_OUT_SOURCE1 (RW) Output ASRC Channel 1 source select 0000: Core Output 0 0001: Core Output 1 0010: Core Output 2 0011: Core Output 3 0100: ADC0 0101: ADC1 0110: ADC2 0111: ADC3 1000: Serial Input 0 1001: Serial Input 1 1010: Serial Input 3 1100: Serial Input 4 1101: Serial Input 5 1110: Serial Input 6 1111: Serial Input 7 					<u> </u>				[3:0] ASRC_OUT_SOURCE0 (RW) Output ASRC Channel 0 source select 0000: Core Output 0 0001: Core Output 1 0010: Core Output 2 0011: Core Output 3 0100: ADC0 0101: ADC1 0110: ADC2 0111: ADC3 1000: Serial Input 0 1001: Serial Input 1 1010: Serial Input 2 1011: Serial Input 3 1100: Serial Input 4 1101: Serial Input 5 1110: Serial Input 6 1111: Serial Input 7


Table 53. Bit Descriptions for ASRCO_SOURCE_0_1

Bits	Bit Name	Settings	Description	Reset	Access
[7:4]	ASRC_OUT_SOURCE1		Output ASRC Channel 1 source select.	0x1	RW
		0000	Core Output 0		
		0001	Core Output 1		
		0010	Core Output 2		
		0011	Core Output 3		
		0100	ADC0		
		0101	ADC1		
		0110	ADC2		
		0111	ADC3		
		1000	Serial Input 0		
		1001	Serial Input 1		
		1010	Serial Input 2		

Bits	Bit Name	Settings	Description	Reset	Access
		1011	Serial Input 3		
		1100	Serial Input 4		
		1101	Serial Input 5		
		1110	Serial Input 6		
		1111	Serial Input 7		
[3:0]	ASRC_OUT_SOURCE0		Output ASRC Channel 0 source select.	0x0	RW
		0000	Core Output 0		
		0001	Core Output 1		
		0010	Core Output 2		
		0011	Core Output 3		
		0100	ADC0		
		0101	ADC1		
		0110	ADC2		
		0111	ADC3		
		1000	Serial Input 0		
		1001	Serial Input 1		
		1010	Serial Input 2		
		1011	Serial Input 3		
		1100	Serial Input 4		
		1101	Serial Input 5		
		1110	Serial Input 6		
		1111	Serial Input 7		

OUTPUT ASRC2/OUTPUT ASRC3 SOURCE REGISTER

Address: 0x0019, Reset: 0x32, Name: ASRCO_SOURCE_2_3

Table 54. Bit Descriptions for ASRCO_SOURCE_2_3

Bits	Bit Name	Settings	Description	Reset	Access
[7:4]	ASRC_OUT_SOURCE3		Output ASRC Channel 3 source select.	0x3	RW
		0000	Core Output 0		
		0001	Core Output 1		
		0010	Core Output 2		
		0011	Core Output 3		

Rev. C | Page 72 of 116

Data Sheet

ADAU1772

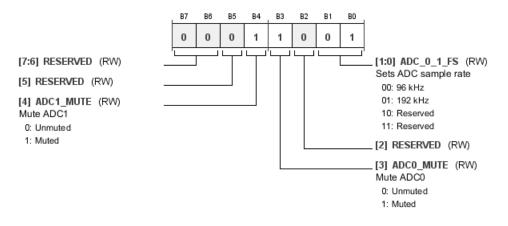
Bits	Bit Name	Settings	Description	Reset	Access
		0100	ADC0		
		0101	ADC1		
		0110	ADC2		
		0111	ADC3		
		1000	Serial Input 0		
		1001	Serial Input 1		
		1010	Serial Input 2		
		1011	Serial Input 3		
		1100	Serial Input 4		
		1101	Serial Input 5		
		1110	Serial Input 6		
		1111	Serial Input 7		
[3:0]	ASRC_OUT_SOURCE2		Output ASRC Channel 2 source select.	0x2	RW
		0000	Core Output 0		
		0001	Core Output 1		
		0010	Core Output 2		
		0011	Core Output 3		
		0100	ADC0		
		0101	ADC1		
		0110	ADC2		
		0111	ADC3		
		1000	Serial Input 0		
		1001	Serial Input 1		
		1010	Serial Input 2		
		1011	Serial Input 3		
		1100	Serial Input 4		
		1101	Serial Input 5		
		1110	Serial Input 6		
		1111	Serial Input 7		

INPUT ASRC CHANNEL SELECT REGISTER

Address: 0x001A, Reset: 0x00, Name: ASRC_MODE

Table 55. Bit Descriptions for ASRC_MODE

Bits	Bit Name	Settings	Description	Reset	Access
[3:2]	ASRC_IN_CH		Input ASRC channel select.	0x0	RW
		00	Serial Input Port Channel 0/Serial Input Port Channel 1		
		01	Serial Input Port Channel 2/Serial Input Port Channel 3		


ADAU1772

Data Sheet

Bits	Bit Name	Settings	Description	Reset	Access
		10	Serial Input Port Channel 4/Serial Input Port Channel 5		
		11	Serial Input Port Channel 6/Serial Input Port Channel 7		
1	ASRC_OUT_EN		Output ASRC enable.	0x0	RW
		0	Disabled		
		1	Enabled		
0	ASRC_IN_EN		Input ASRC enable.	0x0	RW
		0	Disabled		
		1	Enabled		

ADC0/ADC1 CONTROL 0 REGISTER

Address: 0x001B, Reset: 0x19, Name: ADC_CONTROL0

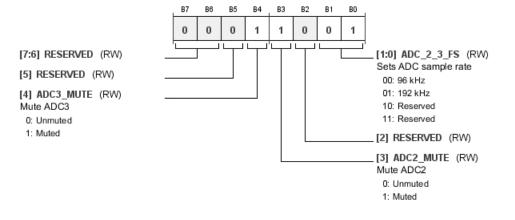


Table 56. Bit Descriptions for ADC_CONTROL0

Bits	Bit Name	Settings	Description	Reset	Access
4	ADC1_MUTE		Mute ADC1. Muting is accomplished by setting the volume control to maximum attenuation. This bit has no effect if volume control is bypassed.	0x1	RW
		0	Unmuted		
		1	Muted		
3	ADC0_MUTE		Mute ADC0. Muting is accomplished by setting the volume control to maximum attenuation. This bit has no effect if volume control is bypassed.	0x1	RW
		0	Unmuted		
		1	Muted		
[1:0]	ADC_0_1_FS		Sets ADC sample rate.	0x1	RW
		00	96 kHz		
		01	192 kHz		
		10	Reserved		
		11	Reserved		

ADC2/ADC3 CONTROL 0 REGISTER

Address: 0x001C, Reset: 0x19, Name: ADC_CONTROL1

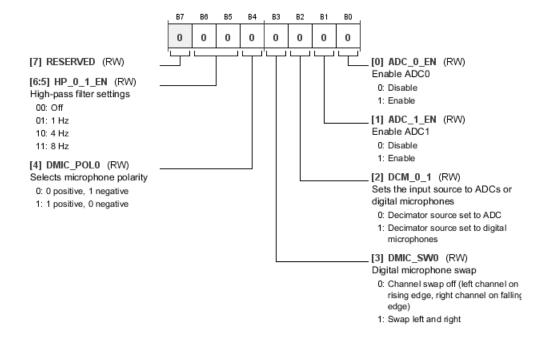
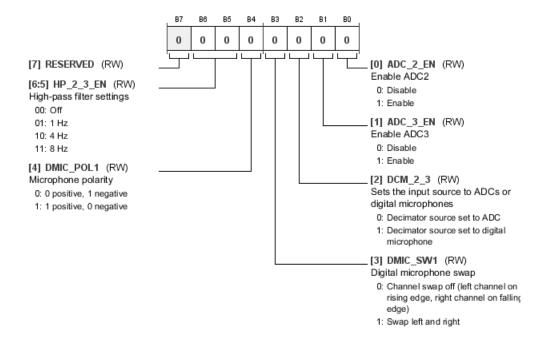


Table 57. Bit Descriptions for ADC_CONTROL1

Bits	Bit Name	Settings	Description	Reset	Access
4	ADC3_MUTE		Mute ADC3.	0x1	RW
		0	Unmuted		
		1	Muted		
3	ADC2_MUTE		Mute ADC2. Muting is accomplished by setting the volume control to maximum attenuation. This bit has no effect if volume control is bypassed.	0x1	RW
		0	Unmuted		
		1	Muted		
[1:0]	ADC_2_3_FS		Sets ADC sample rate.	0x1	RW
		00	96 kHz		
		01	192 kHz		
		10	Reserved		
		11	Reserved		

ADC0/ADC1 CONTROL 1 REGISTER

Address: 0x001D, Reset: 0x00, Name: ADC_CONTROL2



Bits	Bit Name	Settings	Description	Reset	Access
[6:5]	HP_0_1_EN		High-pass filter settings.	0x0	RW
		00	Off		
		01	1 Hz		
		10	4 Hz		
		11	8 Hz		
4	DMIC_POL0		Selects microphone polarity.	0x0	RW
		0	0 positive, 1 negative		
		1	1 positive, 0 negative		
3	DMIC_SW0		Digital microphone swap.	0x0	RW
		0	Channel swap off (left channel on rising edge, right channel on falling edge)		
		1	Swap left and right		
2	DCM_0_1		Sets the input source to ADCs or digital microphones.	0x0	RW
		0	Decimator source set to ADC		
		1	Decimator source set to digital microphones		
1	ADC_1_EN		Enable ADC1. This bit must be set in conjunction with the SINC_1_EN bit in the DECIM_PWR_MODES register to fully enable or disable the ADC.	0x0	RW
		0	Disable		
		1	Enable		
0	ADC_0_EN		Enable ADC0. This bit must be set in conjunction with the SINC_0_EN bit in the DECIM_PWR_MODES register to fully enable or disable the ADC.	0x0	RW
		0	Disable		
		1	Enable		

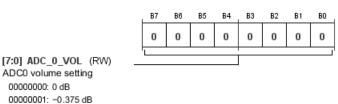
Table 58. Bit Descriptions for ADC_CONTROL2

ADC2/ADC3 CONTROL 1 REGISTER

Address: 0x001E, Reset: 0x00, Name: ADC_CONTROL3

Bits	Bit Name	Settings	Description	Reset	Access
[6:5]	HP_2_3_EN		High-pass filter settings.	0x0	RW
		00	Off		
		01	1 Hz		
		10	4 Hz		
		11	8 Hz		
4	DMIC_POL1		Microphone polarity.	0x0	RW
		0	0 positive, 1 negative		
		1	1 positive, 0 negative		
3	DMIC_SW1		Digital microphone swap.	0x0	RW
		0	Channel swap off (left channel on rising edge, right channel on falling edge)		
		1	Swap left and right		
2	DCM_2_3		Sets the input source to ADCs or digital microphones.	0x0	RW
		0	Decimator source set to ADC		
		1	Decimator source set to digital microphone		
1	ADC_3_EN		Enable ADC3. This bit must be set in conjunction with the SINC_3_EN bit in the DECIM_PWR_MODES register to fully enable or disable the ADC.	0x0	RW
		0	Disable		
		1	Enable		
0	ADC_2_EN		Enable ADC2. This bit must be set in conjunction with the SINC_2_EN bit in the DECIM_PWR_MODES register to fully enable or disable the ADC.	0x0	RW
		0	Disable		
		1	Enable		

Table 59. Bit Descriptions for ADC_CONTROL3

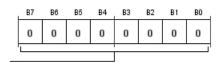

ADC0 VOLUME CONTROL REGISTER

Address: 0x001F, Reset: 0x00, Name: ADC0_VOLUME

00000000: 0 dB

11111111: -95.625 dB

When SINC_0_EN is set, the volume starts to ramp from -95.625 dB to the value in this register. The volume ramp time is (number of steps) $\times 16/f_s$, where there are 256 steps between 0 dB and -95.625 dB. For example, with $f_s = 192$ kHz, the volume ramps from -95.625 dB to 0 dB in 21 ms.


Table 60. Bit Descriptions for ADC0_VOLUME

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	ADC_0_VOL		ADC0 volume setting.	0x00	RW
		00000000	0 dB		
		00000001	–0.375 dB		
		11111111	–95.625 dB		

ADC1 VOLUME CONTROL REGISTER

Address: 0x0020, Reset: 0x00, Name: ADC1_VOLUME

When SINC_1_EN is set, the volume starts to ramp from -95.625 dB to the value in this register. The volume ramp time is (number of steps) \times 16/fs, where there are 256 steps between 0 dB and -95.625 dB. For example, with fs = 192 kHz, the volume ramps from -95.625 dB to 0 dB in 21 ms.

[7:0] ADC_1_VOL (RW) ADC1 volume setting 00000000: 0 dB 00000001: -0.375 dB 111111111: -95.625 dB

Table 61.	Bit Descriptions f	or ADC1_	VOLUME
-----------	--------------------	----------	--------

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	ADC_1_VOL		ADC1 volume setting.	0x00	RW
		00000000	0 dB		
		00000001	–0.375 dB		
		11111111	–95.625 dB		

ADC2 VOLUME CONTROL REGISTER

Address: 0x0021, Reset: 0x00, Name: ADC2_VOLUME

ADC2 volume setting 00000000: 0 dB 00000001: -0.375 dB 11111111: -95.625 dB

When SINC_2_EN is set, the volume starts to ramp from -95.625 dB to the value in this register. The volume ramp time is (number of steps) \times 16/fs, where there are 256 steps between 0 dB and -95.625 dB. For example, with fs = 192 kHz, the volume ramps from -95.625 dB to 0 dB in 21 ms.

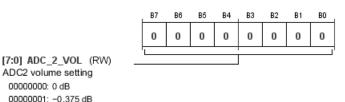
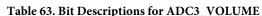


Table 62. Bit Descriptions for ADC2_VOLUME

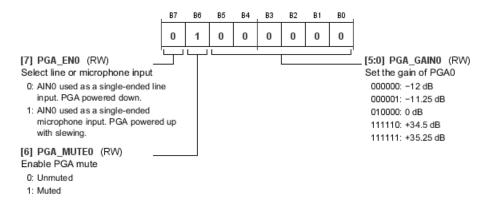
Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	ADC_2_VOL		ADC2 volume setting.	0x00	RW
		00000000	0 dB		
		00000001	–0.375 dB		
		11111111	–95.625 dB		


ADC3 VOLUME CONTROL REGISTER

Address: 0x0022, Reset: 0x00, Name: ADC3_VOLUME

When SINC_3_EN is set, the volume starts to ramp from -95.625 dB to the value in this register. The volume ramp time is (number of steps) $\times 16/f_s$, where there are 256 steps between 0 dB and -95.625 dB. For example, with $f_s = 192$ kHz, the volume ramps from -95.625 dB to 0 dB in 21 ms.

[7:0] ADC 3 VOL (RW) ADC3 volume setting 00000000: 0 dB 00000001: -0.375 dB 11111111: -95.625 dB

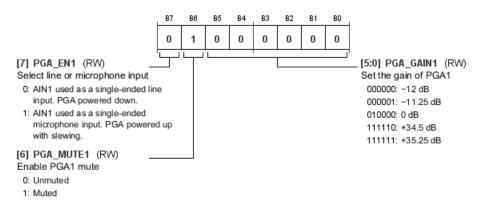


Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	ADC_3_VOL		ADC3 volume setting.	0x00	RW
		00000000	0 dB		
		00000001	–0.375 dB		
		11111111	–95.625 dB		

PGA CONTROL 0 REGISTER

Address: 0x0023, Reset: 0x40, Name: PGA_CONTROL_0

This register controls the PGA connected to AIN0.


Table 64. Bit Descriptions for PGA_CONTROL_0

Bits	Bit Name	Settings	Description	Reset	Access
7	PGA_EN0		Select line or microphone input. Note that the PGA inverts the signal going through it.	0x0	RW
		0	AIN0 used as a single-ended line input. PGA powered down.		
		1	AIN0 used as a single-ended microphone input. PGA powered up with slewing.		
6	PGA_MUTE0		Enable PGA mute. When PGA is muted, PGA_GAIN0 is ignored.	0x1	RW
		0	Unmuted		
		1	Muted		
[5:0]	PGA_GAIN0		Set the gain of PGA0.	0x0	RW
		000000	-12 dB		
		000001	–11.25 dB		
		010000	0 dB		
		111110	+34.5 dB		
		111111	+35.25 dB		

PGA CONTROL 1 REGISTER

Address: 0x0024, Reset: 0x40, Name: PGA_CONTROL_1

This register controls the PGA connected to AIN1.

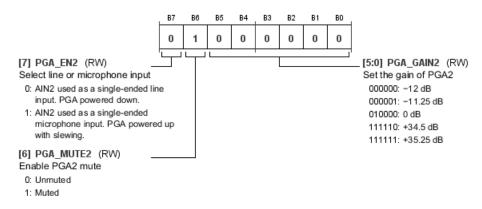
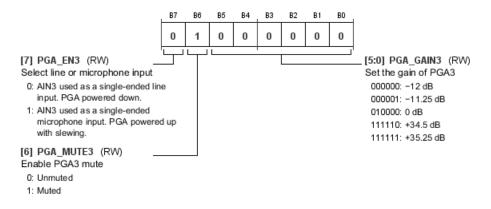

Bits	Bit Name	Settings	Description	Reset	Access
7	PGA_EN1		Select line or microphone input. Note that the PGA inverts the signal going through it.	0x0	RW
		0	AIN1 used as a single-ended line input. PGA powered down.		
		1	AIN1 used as a single-ended microphone input. PGA powered up with slewing.		
6	PGA_MUTE1		Enable PGA1 mute. When PGA is muted, PGA_GAIN1 is ignored.	0x1	RW
		0	Unmuted		
		1	Muted		
[5:0]	PGA_GAIN1		Set the gain of PGA1.	0x0	RW
		000000	–12 dB		
		000001	–11.25 dB		
		010000	0 dB		
		111110	+34.5 dB		
		111111	+35.25 dB		

Table 65. Bit Descriptions for PGA_CONTROL_1

PGA CONTROL 2 REGISTER

Address: 0x0025, Reset: 0x40, Name: PGA_CONTROL_2

This register controls the PGA connected to AIN2.

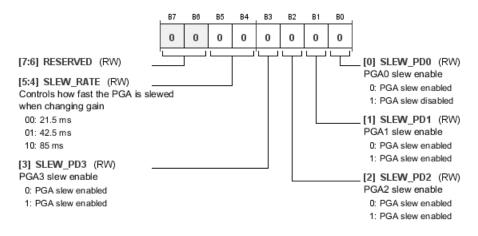

Table 66. Bit Descriptions for PGA_CONTROL_2

Bits	Bit Name	Settings	Description	Reset	Access	
7	PGA_EN2		Select line or microphone input. Note that the PGA inverts the signal going through it.	0x0	RW	
		0	AIN2 used as a single-ended line input. PGA powered down.			
		1	AIN2 used as a single-ended microphone input. PGA powered up with slewing.			
6	PGA_MUTE2		Enable PGA2 mute. When PGA is muted, PGA_GAIN2 is ignored.	0x1	RW	
		0	Unmuted			
		1	Muted			
[5:0]	PGA_GAIN2		Set the gain of PGA2.	0x0	RW	
		000000	-12 dB			
		000001	–11.25 dB			
		010000	0 dB			
		111110	+34.5 dB			
		111111	+35.25 dB			

PGA CONTROL 3 REGISTER

Address: 0x0026, Reset: 0x40, Name: PGA_CONTROL_3

This register controls the PGA connected to AIN3.

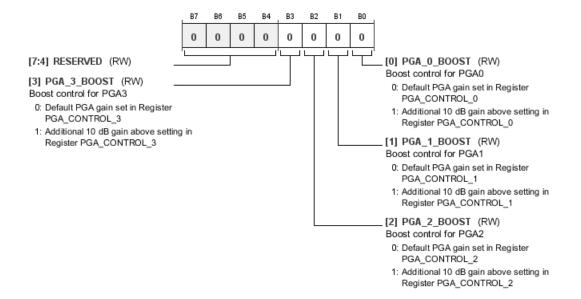

Table 67. Bit Descriptions for PGA_CONTROL_3

Bits	Bit Name	Settings	Description	Reset	Access
7	PGA_EN3		Select line or microphone input. Note that the PGA inverts the signal going through it.	0x0	RW
		0	AIN3 used as a single-ended line input. PGA powered down.		
		1	AIN3 used as a single-ended microphone input. PGA powered up with slewing.		
6	PGA_MUTE3		Enable PGA3 mute. When PGA is muted, PGA_GAIN3 is ignored.	0x1	RW
		0	Unmuted		
		1	Muted		
[5:0]	PGA_GAIN3		Set the gain of PGA3.	0x0	RW
		000000	-12 dB		
		000001	–11.25 dB		
		010000	0 dB		
		111110	+34.5 dB		
		111111	+35.25 dB		

PGA SLEW CONTROL REGISTER

Address: 0x0027, Reset: 0x00, Name: PGA_STEP_CONTROL

If PGA slew is disabled with the SLEW_PDx controls, the SLEW_RATE parameter is ignored for that PGA block.



Bits	Bit Name	Settings	Description	Reset	Access
[5:4]	SLEW_RATE		Controls how fast the PGA is slewed when changing gain.	0x0	RW
		00	21.5 ms		
		01	42.5 ms		
		10	85 ms		
3	SLEW_PD3		PGA3 slew disable.	0x0	RW
		0	PGA slew enabled		
		1	PGA slew disabled		
2	SLEW_PD2		PGA2 slew disable.	0x0	RW
		0	PGA slew enabled		
		1	PGA slew disabled		
1	SLEW_PD1		PGA1 slew disable.	0x0	RW
		0	PGA slew enabled		
		1	PGA slew disabled		
0	SLEW_PD0		PGA0 slew disable.	0x0	RW
		0	PGA slew enabled		
		1	PGA slew disabled		

PGA 10 dB GAIN BOOST REGISTER

Address: 0x0028, Reset: 0x00, Name: PGA_10DB_BOOST

Each PGA can have an additional +10 dB gain added, making the PGA gain range -2 dB to +46 dB.

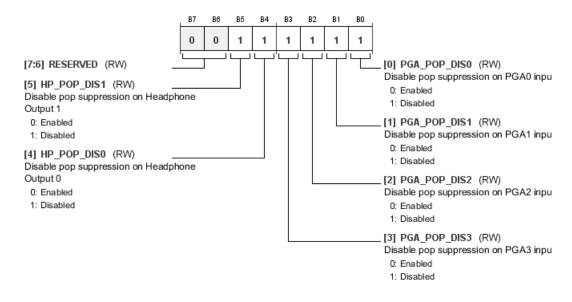


Table 69. Bit Descriptions for PGA_10DB_BOOST

Bits	Bit Name	me Settings Description		Reset	Access
3	PGA_3_BOOST		Boost control for PGA3.	0x0	RW
		0	Default PGA gain set in Register PGA_CONTROL_3		
		1	Additional 10 dB gain above setting in Register PGA_CONTROL_3		
2	PGA_2_BOOST		Boost control for PGA2.	0x0	RW
		0	Default PGA gain set in Register PGA_CONTROL_2		
		1	Additional 10 dB gain above setting in Register PGA_CONTROL_2		
1	PGA_1_BOOST		Boost control for PGA1.	0x0	RW
		0	Default PGA gain set in Register PGA_CONTROL_1		
		1	Additional 10 dB gain above setting in Register PGA_CONTROL_1		
0	PGA_0_BOOST		Boost control for PGA0.	0x0	RW
		0	Default PGA gain set in Register PGA_CONTROL_0		
		1	Additional 10 dB gain above setting in Register PGA_CONTROL_0		

INPUT AND OUTPUT CAPACITOR CHARGING REGISTER

Address: 0x0029, Reset: 0x3F, Name: POP_SUPPRESS

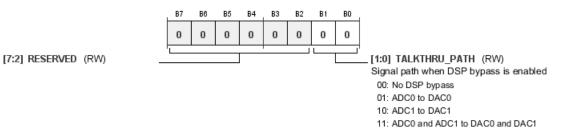


Table 70. Bit Descriptions for POP_SUPPRESS

Bits	Bit Name	Settings	Description	Reset	Access
5	HP_POP_DIS1		Disable pop suppression on Headphone Output 1.	0x1	RW
		0	Enabled		
		1	Disabled		
4	HP_POP_DIS0		Disable pop suppression on Headphone Output 0.	0x1	RW
		0	Enabled		
		1	Disabled		
3	PGA_POP_DIS3		Disable pop suppression on PGA3 input.	0x1	RW
		0	Enabled		
		1	Disabled		
2	PGA_POP_DIS2		Disable pop suppression on PGA2 input.	0x1	RW
		0	Enabled		
		1	Disabled		
1	PGA_POP_DIS1		Disable pop suppression on PGA1 input.	0x1	RW
		0	Enabled		
		1	Disabled		
0	PGA_POP_DIS0		Disable pop suppression on PGA0 input.	0x1	RW
		0	Enabled		
		1	Disabled		

DSP BYPASS PATH REGISTER

Address: 0x002A, Reset: 0x00, Name: TALKTHRU

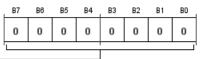


Table 71. Bit Descriptions for TALKTHRU

Bits	Bit Name	Settings	Description	Reset	Access
[1:0]	TALKTHRU_PATH		Signal path when DSP bypass is enabled.	0x0	RW
		00	No DSP bypass		
		01	ADC0 to DAC0		
		10	ADC1 to DAC1		
		11	ADC0 and ADC1 to DAC0 and DAC1		

DSP BYPASS GAIN FOR PGA0 REGISTER

Address: 0x002B, Reset: 0x00, Name: TALKTHRU_GAIN0

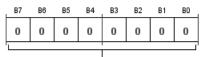

[7:0] TALKTHRU_GAIN0_VAL (RW) _ Sets the DAC_0 volume when DSP bypass mode is enabled.

Table 72. Bit Descriptions for TALKTHRU_GAIN0

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	TALKTHRU_GAIN0_VAL		Sets the DAC0 volume when DSP bypass mode is enabled.	0x00	RW

DSP BYPASS GAIN FOR PGA1 REGISTER

Address: 0x002C, Reset: 0x00, Name: TALKTHRU_GAIN1

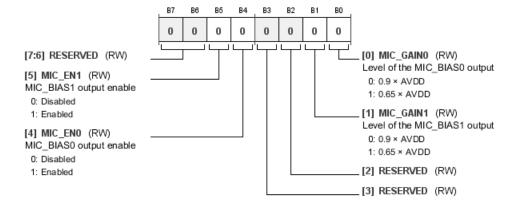

[7:0] TALKTHRU_GAIN1_VAL (RW) __ Sets the DAC_1 volume when DSP bypass mode is enabled

Table 73. Bit Descriptions for TALKTHRU_GAIN1

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	TALKTHRU_GAIN1_VAL		Sets the DAC1 volume when DSP bypass mode is enabled.	0x00	RW

MIC_BIAS0_1 CONTROL REGISTER

Address: 0x002D, Reset: 0x00, Name: MIC_BIAS

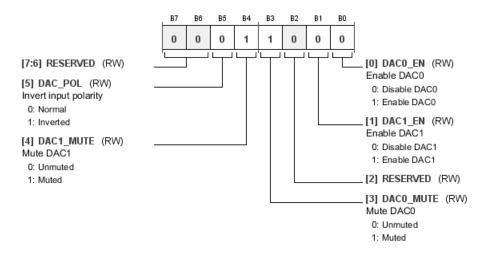


Table 74. Bit Descriptions for MIC_BIAS

Bits	Bit Name	Settings	Description	Reset	Access
5	MIC_EN1		MICBIAS1 output enable.	0x0	RW
		0	Disabled		
		1	Enabled		
4	MIC_EN0		MICBIAS0 output enable.	0x0	RW
		0	Disabled		
		1	Enabled		
1	MIC_GAIN1		Level of the MICBIAS1 output.	0x0	RW
		0	0.9 imes AVDD		
		1	$0.65 \times AVDD$		
0	MIC_GAIN0		Level of the MICBIAS0 output.	0x0	RW
		0	0.9 imes AVDD		
		1	$0.65 \times AVDD$		

DAC CONTROL REGISTER

Address: 0x002E, Reset: 0x18, Name: DAC_CONTROL1

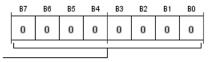


Table 75. Bit Descriptions for DAC_CONTROL1

Bits	Bit Name	Settings	Description	Reset	Access
5	DAC_POL		Invert input polarity.	0x0	RW
		0	Normal		
		1	Inverted		
4	DAC1_MUTE		Mute DAC1.	0x1	RW
		0	Unmuted		
		1	Muted		
3	DAC0_MUTE		Mute DAC0.	0x1	RW
		0	Unmuted		
		1	Muted		
1	DAC1_EN		Enable DAC1.	0x0	RW
		0	Disable DAC1		
		1	Enable DAC1		
0	DAC0_EN		Enable DAC0.	0x0	RW
		0	Disable DAC0		
		1	Enable DAC0		

DAC0 VOLUME CONTROL REGISTER

Address: 0x002F, Reset: 0x00, Name: DAC0_VOLUME

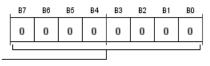
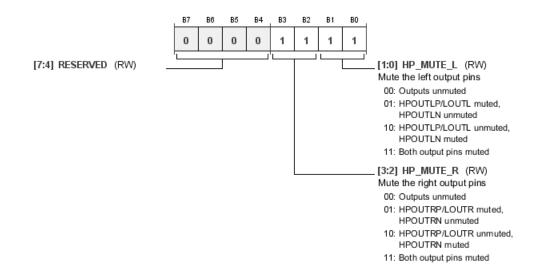

[7:0] DAC_0_VOL (RW) DAC0 volume setting 00000000: 0 dB 00000001: -0.375 dB 11111111: -95.625 dB

Table 76. Bit Descriptions for DAC0_VOLUME

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	DAC_0_VOL		DAC0 volume setting.	0x00	RW
		00000000	0 dB		
		00000001	–0.375 dB		
		11111111	–95.625 dB		

DAC1 VOLUME CONTROL REGISTER

Address: 0x0030, Reset: 0x00, Name: DAC1_VOLUME

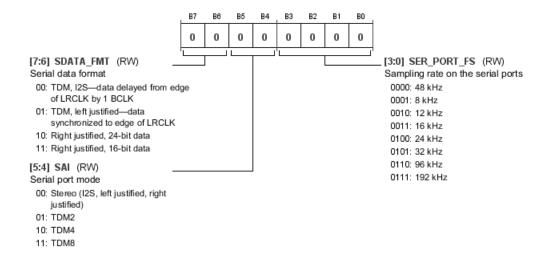

[7:0] DAC_1_VOL (RW) DAC1 volume setting 00000000: 0 dB 00000001: -0.375 dB 11111111: -95.625 dB

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	DAC_1_VOL		DAC1 volume setting.	0x00	RW
		00000000	0 dB		
		00000001	–0.375 dB		
		11111111	–95.625 dB		

Table 77. Bit Descriptions for DAC1_VOLUME

HEADPHONE OUTPUT MUTES REGISTER

Address: 0x0031, Reset: 0x0F, Name: OP_STAGE_MUTES


Table 78. Bit Descriptions for OP_STAGE_MUTES

Bits	Bit Name	Settings	Description	Reset	Access
[3:2]	HP_MUTE_R		Mute the right output pins. When a pin is muted, it can be used as a common-mode output.	0x3	RW
		00	Outputs unmuted		
		01	HPOUTRP/LOUTRP muted, HPOUTRN/LOUTRN unmuted		
		10	HPOUTRP/LOUTRP unmuted, HPOUTRN/LOUTRN muted		
		11	Both output pins muted		
[1:0]	HP_MUTE_L		Mute the left output pins. When a pin is muted, it can be used as a common-mode output.	0x3	RW
		00	Outputs unmuted		
		01	HPOUTLP/LOUTLP muted, HPOUTLN/LOUTLN unmuted		
		10	HPOUTLP/LOUTLP unmuted, HPOUTLN/LOUTLN muted		
		11	Both output pins muted		

SERIAL PORT CONTROL 0 REGISTER

Address: 0x0032, Reset: 0x00, Name: SAI_0

Using 16-bit serial I/O limits device performance.

Table 79. Bit Descriptions for SAI_0

Bits	Bit Name	Settings	Description	Reset	Access
[7:6]	SDATA_FMT		Serial data format.	0x0	RW
		00	TDM, I ² S—data delayed from edge of LRCLK by 1 BCLK cycle		
		01	TDM, left justified—data synchronized to edge of LRCLK		
		10	Right justified, 24-bit data		
		11	Right justified, 16-bit data		
[5:4]	SAI		Serial port mode.	0x0	RW
		00	Stereo (I ² S, left justified, right justified)		
		01	TDM2		
		10	TDM4		
		11	TDM8		
[3:0]	SER_PORT_FS		Sampling rate on the serial ports.	0x0	RW
		0000	48 kHz		
		0001	8 kHz		
		0010	12 kHz		
		0011	16 kHz		
		0100	24 kHz		
		0101	32 kHz		
		0110	96 kHz		
		0111	192 kHz		

SERIAL PORT CONTROL 1 REGISTER

Address: 0x0033, Reset: 0x00, Name: SAI_1

Using 16-bit serial I/O limits device performance.

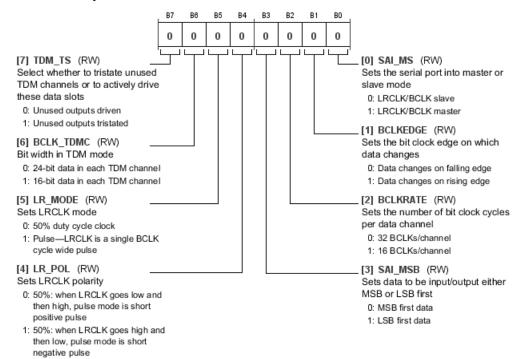
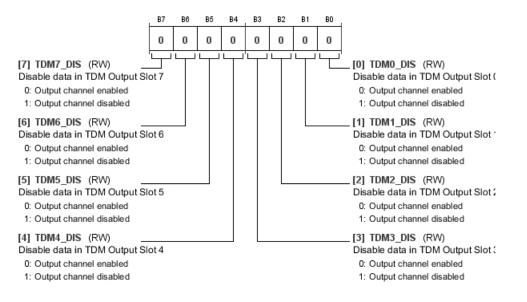


Table 80. Bit Descriptions for SAI_1


Bits	Bit Name	Settings	Description	Reset	Access
7	TDM_TS		Select whether to tristate unused TDM channels or to actively drive these	0x0	RW
			data slots.		
		0	Unused outputs driven		
		1	Unused outputs tristated		
6	BCLK_TDMC		Bit width in TDM mode.	0x0	RW
		0	24-bit data in each TDM channel		
		1	16-bit data in each TDM channel		
5	LR_MODE		Sets LRCLK mode.	0x0	RW
		0	50% duty cycle clock		
		1	Pulse—LRCLK is a single BCLK cycle wide pulse		
4	LR_POL		Sets LRCLK polarity.	0x0	RW
		0	50%: when LRCLK goes low and then high, pulse mode is short positive pulse		
		1	50%: when LRCLK goes high and then low, pulse mode is short negative pulse		
3	SAI_MSB		Sets data to be input/output either MSB or LSB first.	0x0	RW
		0	MSB first data		
		1	LSB first data		
2	BCLKRATE		Sets the number of bit clock cycles per data channel.	0x0	RW
		0	32 BCLK cycles/channel		
		1	16 BCLK cycles/channel		
1	BCLKEDGE		Sets the bit clock edge on which data changes.	0x0	RW
		0	Data changes on falling edge		
		1	Data changes on rising edge		
0	SAI_MS		Sets the serial port into master or slave mode.	0x0	RW
	_	0	LRCLK/BCLK slave		
		1	LRCLK/BCLK master		

Rev. C | Page 91 of 116

TDM OUTPUT CHANNEL DISABLE REGISTER

Address: 0x0034, Reset: 0x00, Name: SOUT_CONTROL0

This register is for use only in TDM mode.

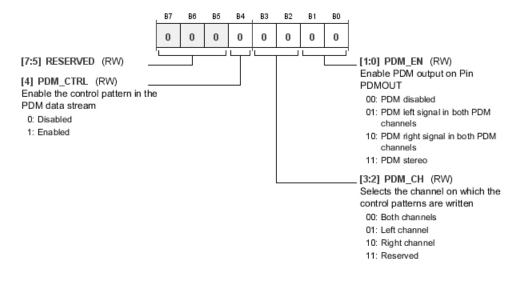


Table 81. Bit Descriptions for SOUT_CONTROL0

Bits	Bit Name	Settings	Description	Reset	Access
7	TDM7_DIS		Disable data in TDM Output Slot 7.	0x0	RW
		0	Output channel enabled		
		1	Output channel disabled		
6	TDM6_DIS		Disable data in TDM Output Slot 6.	0x0	RW
		0	Output channel enabled		
		1	Output channel disabled		
5	TDM5_DIS		Disable data in TDM Output Slot 5.	0x0	RW
		0	Output channel enabled		
		1	Output channel disabled		
4	TDM4_DIS		Disable data in TDM Output Slot 4.	0x0	RW
		0	Output channel enabled		
		1	Output channel disabled		
3	TDM3_DIS		Disable data in TDM Output Slot 3.	0x0	RW
		0	Output channel enabled		
		1	Output channel disabled		
2	TDM2_DIS		Disable data in TDM Output Slot 2.	0x0	RW
		0	Output channel enabled		
		1	Output channel disabled		
1	TDM1_DIS		Disable data in TDM Output Slot 1.	0x0	RW
		0	Output channel enabled		
		1	Output channel disabled		
0	TDM0_DIS		Disable data in TDM Output Slot 0.	0x0	RW
		0	Output channel enabled		
		1	Output channel disabled		

PDM ENABLE REGISTER

Address: 0x0036, Reset: 0x00, Name: PDM_OUT



Table 82. Bit Descriptions for PDM_OUT

Bits	Bit Name	Settings	Description	Reset	Access
4	PDM_CTRL		Enable the control pattern in the PDM data stream.	0x0	RW
		0	Disabled		
		1	Enabled		
[3:2]	PDM_CH		Selects the channel on which the control patterns are written. These control bits should not be changed while the PDM channel is operating and transmitting audio.	0x0	RW
		00	Both channels		
		01	Left channel		
		10	Right channel		
		11	Reserved		
[1:0]	PDM_EN		Enable PDM output on Pin PDMOUT.	0x0	RW
		00	PDM disabled		
		01	PDM left signal in both PDM channels		
		10	PDM right signal in both PDM channels		
		11	PDM stereo		

PDM PATTERN SETTING REGISTER

Address: 0x0037, Reset: 0x00, Name: PDM_PATTERN

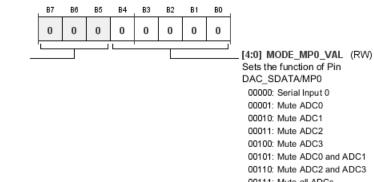

[7:0] PATTERN (RW) PDM pattern byte

Table 83. Bit Descriptions for PDM_PATTERN

Bits	Bit Name	Settings	Description	Reset	Access
[7:0]	PATTERN		PDM pattern byte. The PDM pattern byte should not be changed while the PDM channel is operating and transmitting the pattern.	0x00	RW

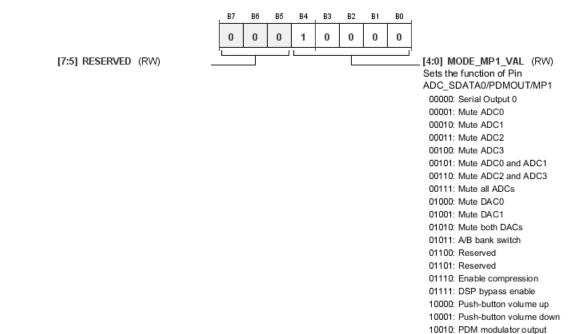
MP0 FUNCTION SETTING REGISTER

Address: 0x0038, Reset: 0x00, Name: MODE_MP0

[7:5] RESERVED (RW)

Sets the function of Pin
DAC SDATA/MP0
00000: Serial Input 0
00001: Mute ADC0
00010: Mute ADC1
00011: Mute ADC2
00100: Mute ADC3
00101: Mute ADC0 and ADC1
00110: Mute ADC2 and ADC3
00111: Mute all ADCs
01000: Mute DAC0
01001: Mute DAC1
01010: Mute both DACs
01011: A/B bank switch
01100: Reserved
01101: Reserved
01110: Enable compression
01111: DSP bypass enable
10000: Push-button volume up
10001: Push-button volume down

Table 84. Bit Descriptions for MODE_MP0


Bits	Bit Name	Settings	Description	Reset	Access
[4:0]	MODE_MP0_VAL		Sets the function of Pin DAC_SDATA/MP0.	0x00	RW
		00000	Serial Input 0		
		00001	Mute ADC0		
		00010	Mute ADC1		
		00011	Mute ADC2		
		00100	Mute ADC3		
		00101	Mute ADC0 and ADC1		
		00110	Mute ADC2 and ADC3		
		00111	Mute all ADCs		
		01000	Mute DAC0		
		01001	Mute DAC1		
		01010	Mute both DACs		

ADAU1772

Bits	Bit Name	Settings	Description	Reset	Access
		01011	A/B bank switch		
		01100	Reserved		
		01101	Reserved		
		01110	Enable compression		
		01111	DSP bypass enable		
		10000	Push-button volume up		
		10001	Push-button volume down		

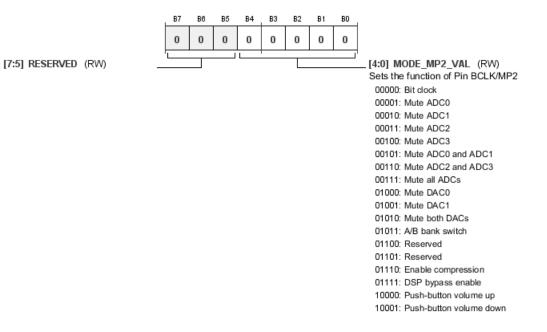
MP1 FUNCTION SETTING REGISTER

Address: 0x0039, Reset: 0x10, Name: MODE_MP1

Table 85. Bit Descriptions for MODE_MP1

Bits	Bit Name	Settings	Description	Reset	Access
[4:0]	MODE_MP1_VAL		Sets the function of Pin ADC_SDATA0/PDMOUT/MP1.	0x10	RW
		00000	Serial Output 0		
		00001	Mute ADC0		
		00010	Mute ADC1		
		00011	Mute ADC2		
		00100	Mute ADC3		
		00101	Mute ADC0 and ADC1		
		00110	Mute ADC2 and ADC3		
		00111	Mute all ADCs		
		01000	Mute DAC0		
		01001	Mute DAC1		
		01010	Mute both DACs		
		01011	A/B bank switch		
		01100	Reserved		
		01101	Reserved		
		01110	Enable compression		
		01111	DSP bypass enable		

Rev. C | Page 95 of 116


ADAU1772

Data Sheet

Bits	Bit Name	Settings	Description	Reset	Access
		10000	Push-button volume up		
		10001	Push-button volume down		
		10010	PDM modulator output		

MP2 FUNCTION SETTING REGISTER

Address: 0x003A, Reset: 0x00, Name: MODE_MP2

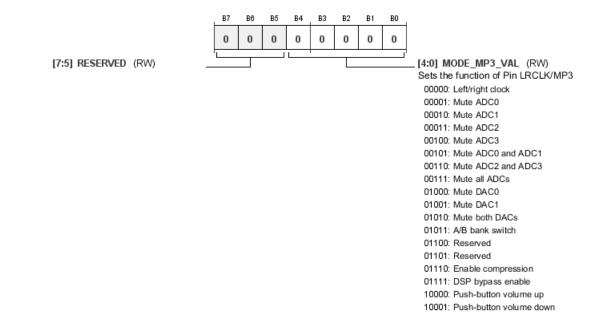


Table 86. Bit Descriptions for MODE_MP2

Bits	Bit Name	Settings	Description	Reset	Access
[4:0]	MODE_MP2_VAL		Sets the function of Pin BCLK/MP2.	0x00	RW
		00000	Bit clock		
		00001	Mute ADC0		
		00010	Mute ADC1		
		00011	Mute ADC2		
		00100	Mute ADC3		
		00101	Mute ADC0 and ADC1		
		00110	Mute ADC2 and ADC3		
		00111	Mute all ADCs		
		01000	Mute DAC0		
		01001	Mute DAC1		
		01010	Mute both DACs		
		01011	A/B bank switch		
		01100	Reserved		
		01101	Reserved		
		01110	Enable compression		
		01111	DSP bypass enable		
		10000	Push-button volume up		
		10001	Push-button volume down		

MP3 FUNCTION SETTING REGISTER

Address: 0x003B, Reset: 0x00, Name: MODE_MP3

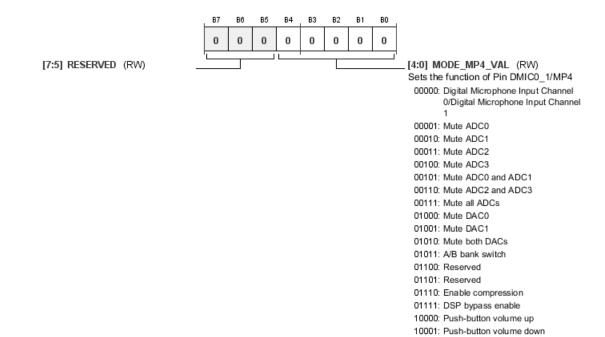


Table 87. Bit Descriptions for MODE_MP3

Bits	Bit Name	Settings	Description	Reset	Access
[4:0]	MODE_MP3_VAL		Sets the function of Pin LRCLK/MP3.	0x00	RW
		00000	Left/right clock		
		00001	Mute ADC0		
		00010	Mute ADC1		
		00011	Mute ADC2		
		00100	Mute ADC3		
		00101	Mute ADC0 and ADC1		
		00110	Mute ADC2 and ADC3		
		00111	Mute all ADCs		
		01000	Mute DAC0		
		01001	Mute DAC1		
		01010	Mute both DACs		
		01011	A/B bank switch		
		01100	Reserved		
		01101	Reserved		
		01110	Enable compression		
		01111	DSP bypass enable		
		10000	Push-button volume up		
		10001	Push-button volume down		

MP4 FUNCTION SETTING REGISTER

Address: 0x003C, Reset: 0x00, Name: MODE_MP4

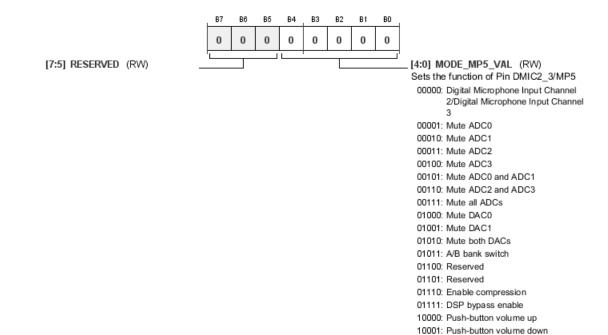


Table 88. Bit Descriptions for MODE_MP4

Bits	Bit Name	Settings	Description	Reset	Access
[4:0]	MODE_MP4_VAL		Sets the function of Pin DMIC0_1/MP4.	0x00	RW
		00000	Digital Microphone Input Channel 0/Digital Microphone Input Channel 1		
		00001	Mute ADC0		
		00010	Mute ADC1		
		00011	Mute ADC2		
		00100	Mute ADC3		
		00101	Mute ADC0 and ADC1		
		00110	Mute ADC2 and ADC3		
		00111	Mute all ADCs		
		01000	Mute DAC0		
		01001	Mute DAC1		
		01010	Mute both DACs		
		01011	A/B bank switch		
		01100	Reserved		
		01101	Reserved		
		01110	Enable compression		
		01111	DSP bypass enable		
		10000	Push-button volume up		
		10001	Push-button volume down		

MP5 FUNCTION SETTING REGISTER

Address: 0x003D, Reset: 0x00, Name: MODE_MP5

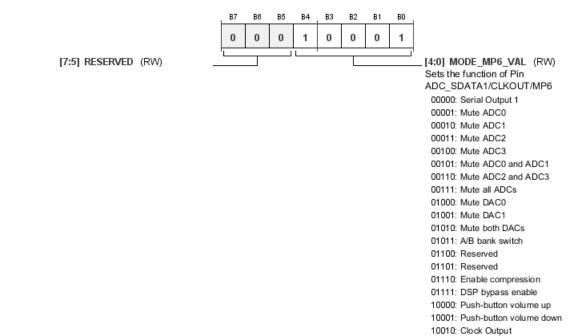
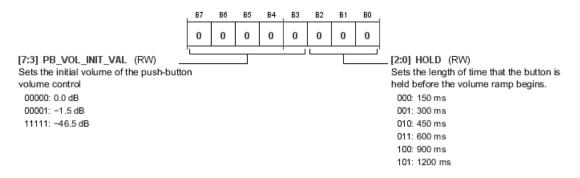


Table 89. Bit Descriptions for MODE_MP5

Bits	Bit Name	Settings	Description	Reset	Access
[4:0]	MODE_MP5_VAL		Sets the function of Pin DMIC2_3/MP5.	0x00	RW
		00000	Digital Microphone Input Channel 2/Digital Microphone Input Channel 3		
		00001	Mute ADC0		
		00010	Mute ADC1		
		00011	Mute ADC2		
		00100	Mute ADC3		
		00101	Mute ADC0 and ADC1		
		00110	Mute ADC2 and ADC3		
		00111	Mute all ADCs		
		01000	Mute DAC0		
		01001	Mute DAC1		
		01010	Mute both DACs		
		01011	A/B bank switch		
		01100	Reserved		
		01101	Reserved		
		01110	Enable compression		
		01111	DSP bypass enable		
		10000	Push-button volume up		
		10001	Push-button volume down		

MP6 FUNCTION SETTING REGISTER

Address: 0x003E, Reset: 0x11, Name: MODE_MP6


Table 90. Bit Descriptions for MODE_MP6

Bits	Bit Name	Settings	Description	Reset	Access
[4:0]	MODE_MP6_VAL		Sets the function of Pin ADC_SDATA1/CLKOUT/MP6.	0x11	RW
		00000	Serial Output 1		
		00001	Mute ADC0		
		00010	Mute ADC1		
		00011	Mute ADC2		
		00100	Mute ADC3		
		00101	Mute ADC0 and ADC1		
		00110	Mute ADC2 and ADC3		
		00111	Mute all ADCs		
		01000	Mute DAC0		
		01001	Mute DAC1		
		01010	Mute both DACs		
		01011	A/B bank switch		
		01100	Reserved		
		01101	Reserved		
		01110	Enable compression		
		01111	DSP bypass enable		
		10000	Push-button volume up		
		10001	Push-button volume down		
		10010	Clock output		

PUSH-BUTTON VOLUME SETTINGS REGISTER

Address: 0x003F, Reset: 0x00, Name: PB_VOL_SET

This register must be written before Bits $PB_VOL_CONV_VAL$ are set to something other than the default value. Otherwise, the push-button volume control is initialized to -96 dB.

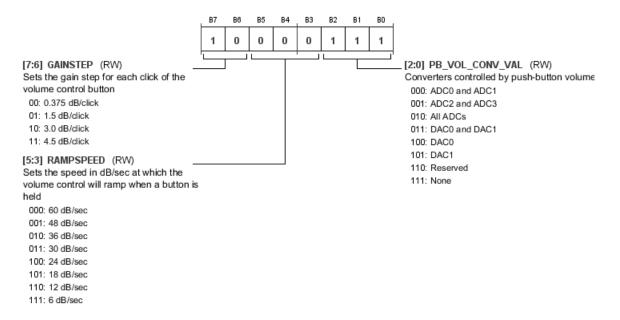


Table 91. Bit Descriptions for PB_VOL_SET

Bits	Bit Name	Settings	Description	Reset	Access
[7:3]	PB_VOL_INIT_VAL		Sets the initial volume of the push-button volume control. Each increment of this register attenuates the level by 1.5 dB, from 0 dB to -46.5 dB.	0x00	RW
		00000	0.0 dB		
		00001	–1.5 dB		
		11111	-46.5 dB		
[2:0]	HOLD		Sets the length of time that the button is held before the volume ramp begins.	0x0	RW
		000	150 ms		
		001	300 ms		
		010	450 ms		
		011	600 ms		
		100	900 ms		
		101	1200 ms		

PUSH-BUTTON VOLUME CONTROL ASSIGNMENT REGISTER

Address: 0x0040, Reset: 0x87, Name: PB_VOL_CONV

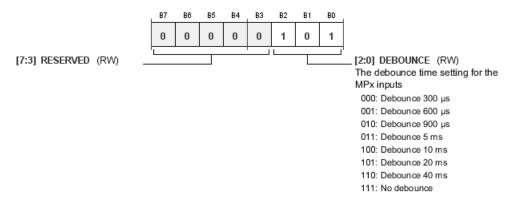


Table 92. Bit Descriptions for PB_VOL_CONV

Bits	Bit Name	Settings	Description	Reset	Access
[7:6]	GAINSTEP		Sets the gain step for each press of the volume control button.	0x2	RW
		00	0.375 dB/press		
		01	1.5 dB/press		
		10	3.0 dB/press		
		11	4.5 dB/press		
[5:3]	RAMPSPEED		Sets the speed in dB/sec at which the volume control ramps when a button is pressed.	0x0	RW
		000	60 dB/sec		
		001	48 dB/sec		
		010	36 dB/sec		
		011	30 dB/sec		
		100	24 dB/sec		
		101	18 dB/sec		
		110	12 dB/sec		
		111	6 dB/sec		
[2:0]	PB_VOL_CONV_VAL		Converters controlled by push-button volume. The push-button volume control is enabled when these bits are set to something other than the default setting (111). When set to 111, the push-button volume is disabled and the converter volumes are set by the ADCx_VOLUME and DACx_VOLUME registers.	0x7	RW
		000	ADC0 and ADC1		
		001	ADC2 and ADC3		
		010	All ADCs		
		011	DAC0 and DAC1		
		100	DACO		
		101	DAC1		
		110	Reserved		
		111	None (default)		

DEBOUNCE MODES REGISTER

Address: 0x0041, Reset: 0x05, Name: DEBOUNCE_MODE

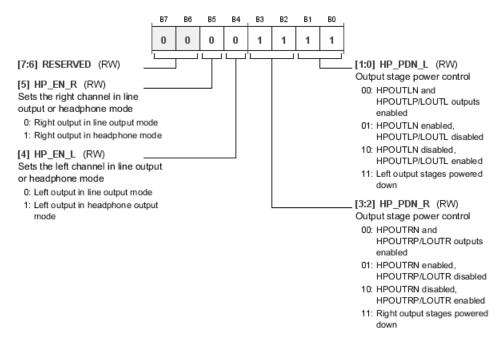
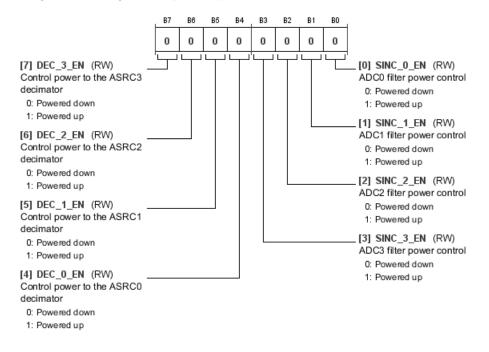


Table 93. Bit Descriptions for DEBOUNCE_MODE

Bits	Bit Name	Settings	Description	Reset	Access
[2:0]	DEBOUNCE		The debounce time setting for the MPx inputs.	0x5	RW
		000	Debounce 300 µs		
		001	Debounce 600 μs		
		010	Debounce 900 μs		
		011	Debounce 5 ms		
		100	Debounce 10 ms		
		101	Debounce 20 ms		
		110	Debounce 40 ms		
		111	No debounce		

HEADPHONE LINE OUTPUT SELECT REGISTER

Address: 0x0043, Reset: 0x0F, Name: OP_STAGE_CTRL


Table 94. Bit Descriptions for OP_STAGE_CTRL

Bits	Bit Name	Settings	Description	Reset	Access
5	HP_EN_R		Sets the right channel in line output or headphone mode.	0x0	RW
		0	Right output in line output mode		
		1	Right output in headphone mode		
4	HP_EN_L		Sets the left channel in line output or headphone mode.	0x0	RW
		0	Left output in line output mode		
		1	Left output in headphone output mode		
[3:2]	HP_PDN_R	00 01 10 11	Output stage power control. Powers down the right output stage, regardless of whether the device is in line output or headphone mode. After enabling the headphone output, wait at least 6 ms before unmuting the headphone output by setting HP_MUTE_R in the OP_STAGE_MUTES register to 00. HPOUTRN/LOUTRN and HPOUTRP/LOUTRP outputs enabled HPOUTRN/LOUTRN enabled, HPOUTRP/LOUTRP disabled HPOUTRN/LOUTRN disabled, HPOUTRP/LOUTRP enabled Right output stages powered down	0x3	RW
[1:0]	HP_PDN_L	00 01 10	Output stage power control. Powers down the left output stage, regardless of whether the device is in line output or headphone mode. After enabling the headphone output, wait at least 6 ms before unmuting the headphone output by setting HP_MUTE_L in the OP_STAGE_MUTES register to 00. HPOUTLN/LOUTLN and HPOUTLP/LOUTLP outputs enabled HPOUTLN/LOUTLN enabled, HPOUTLP/LOUTLP disabled HPOUTLN/LOUTLN disabled, HPOUTLP/LOUTLP enabled Left output stages powered down	0x3	RW

DECIMATOR POWER CONTROL REGISTER

Address: 0x0044, Reset: 0x00, Name: DECIM_PWR_MODES

These bits enable clocks to the digital filters and ASRC decimator filters of the ADCs. These bits must be enabled for all channels that will be used in the design. To use the ADCs, these SINC_x_EN bits must be enabled along with the appropriate ADC_x _EN bits in the ADC_CONTROL2 and ADC_CONTROL3 registers. If the digital microphone inputs are used, the SINC_x_EN bits can be set without setting ADC_x_EN.

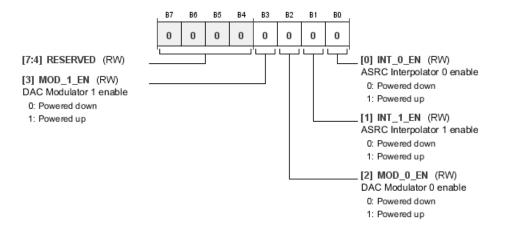


Table 95. Bit Descriptions for DECIM_	_PWR_MODES
---------------------------------------	------------

Bits	Bit Name	Settings	Description	Reset	Access
7	DEC_3_EN		Control power to the ASRC3 decimator.	0x0	RW
		0	Powered down		
		1	Powered up		
6	DEC_2_EN		Control power to the ASRC2 decimator.	0x0	RW
		0	Powered down		
		1	Powered up		
5	DEC_1_EN		Control power to the ASRC1 decimator.	0x0	RW
		0	Powered down		
		1	Powered up		
4	DEC_0_EN		Control power to the ASRC0 decimator.	0x0	RW
		0	Powered down		
		1	Powered up		
3	SINC_3_EN		ADC3 filter power control.	0x0	RW
		0	Powered down		
		1	Powered up		
2	SINC_2_EN		ADC2 filter power control.	0x0	RW
		0	Powered down		
		1	Powered up		
1	SINC_1_EN		ADC1 filter power control.	0x0	RW
		0	Powered down		
		1	Powered up		
0	SINC_0_EN		ADC0 filter power control.	0x0	RW
		0	Powered down		
		1	Powered up		

ASRC INTERPOLATOR AND DAC MODULATOR POWER CONTROL REGISTER

Address: 0x0045, Reset: 0x00, Name: INTERP_PWR_MODES

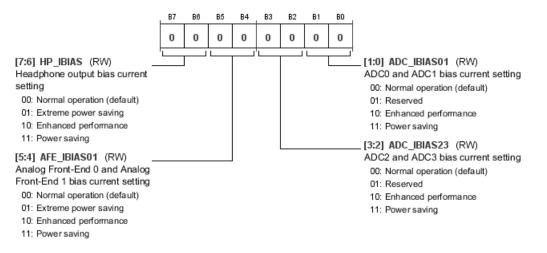
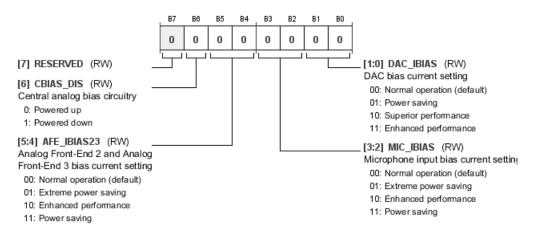


Table 96. Bit Descriptions for INTERP_PWR_MODES

Bits	Bit Name	Settings	Description	Reset	Access
3	MOD_1_EN		DAC Modulator 1 enable.	0x0	RW
		0	Powered down		
		1	Powered up		
2	MOD_0_EN		DAC Modulator 0 enable.	0x0	RW
		0	Powered down		
		1	Powered up		
1	INT_1_EN		ASRC Interpolator 1 enable.	0x0	RW
		0	Powered down		
		1	Powered up		
0	INT_0_EN		ASRC Interpolator 0 enable.	0x0	RW
		0	Powered down		
		1	Powered up		

ANALOG BIAS CONTROL 0 REGISTER

Address: 0x0046, Reset: 0x00, Name: BIAS_CONTROL0



Bits	Bit Name	Settings	Description	Reset	Access
[7:6]	HP_IBIAS		Headphone output bias current setting. Higher bias currents result in higher performance.	0x0	RW
		00	Normal operation (default)		
		01	Extreme power saving		
		10	Enhanced performance		
		11	Power saving		
[5:4]	AFE_IBIAS01		Analog Front-End 0 and Analog Front-End 1 bias current setting. Higher bias currents result in higher performance.	0x0	RW
		00	Normal operation (default)		
		01	Extreme power saving		
		10	Enhanced performance		
		11	Power saving		
[3:2]	ADC_IBIAS23		ADC2 and ADC3 bias current setting. Higher bias currents result in higher	0x0	RW
			performance.		
		00	Normal operation (default)		
		01	Reserved		
		10	Enhanced performance		
		11	Power saving		
[1:0]	ADC_IBIAS01		ADC0 and ADC1 bias current setting. Higher bias currents result in higher performance.	0x0	RW
		00	Normal operation (default)		
		01	Reserved		
		10	Enhanced performance		
		11	Power saving		

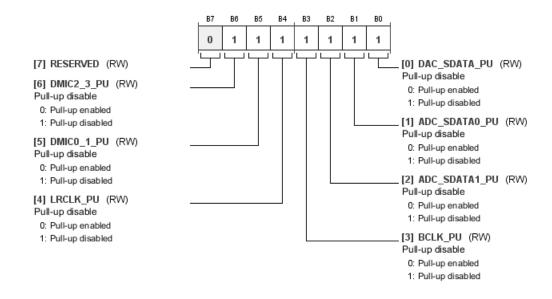
Table 97. Bit Descriptions for BIAS_CONTROL0

ANALOG BIAS CONTROL 1 REGISTER

Address: 0x0047, Reset: 0x00, Name: BIAS_CONTROL1

Table 98. Bit Descriptions	for BIAS	CONTROL1
----------------------------	----------	----------

Bits	Bit Name	Settings	Description	Reset	Access
6	6 CBIAS_DIS		Central analog bias circuitry. Higher bias currents result in higher performance.	0x0	RW
		0	Powered up		
		1	Powered down		


ADAU1772

Bits	Bit Name	Settings	Description	Reset	Access
[5:4]	AFE_IBIAS23		Analog Front-End 2 and Analog Front-End 3 bias current setting. Higher bias currents result in higher performance.	0x0	RW
		00	Normal operation (default)		
		01	Extreme power saving		
		10	Enhanced performance		
		11	Power saving		
[3:2]	MIC_IBIAS		Microphone input bias current setting. Higher bias currents result in higher performance.	0x0	RW
		00	Normal operation (default)		
		01	Extreme power saving		
		10	Enhanced performance		
		11	Power saving		
[1:0]	DAC_IBIAS		DAC bias current setting. Higher bias currents result in higher performance.	0x0	RW
		00	Normal operation (default)		
		01	Power saving		
		10	Superior performance		
		11	Enhanced performance		

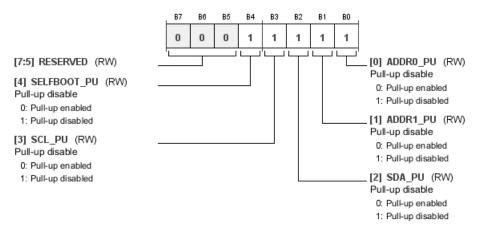
DIGITAL PIN PULL-UP CONTROL 0 REGISTER

Address: 0x0048, Reset: 0x7F, Name: PAD_CONTROL0

Controls the behavior of the pad. Possible to enable pull-up.

Table 99. Bit Descriptions for PAD_CONTROL0

Bits	Bit Name	Settings	Description	Reset	Access
6	DMIC2_3_PU		Pull-up disable.	0x1	RW
		0	Pull-up enabled		
		1	Pull-up disabled		
5	DMIC0_1_PU		Pull-up disable.	0x1	RW
		0	Pull-up enabled		
		1	Pull-up disabled		
4	LRCLK_PU		Pull-up disable.	0x1	RW
		0	Pull-up enabled		
		1	Pull-up disabled		

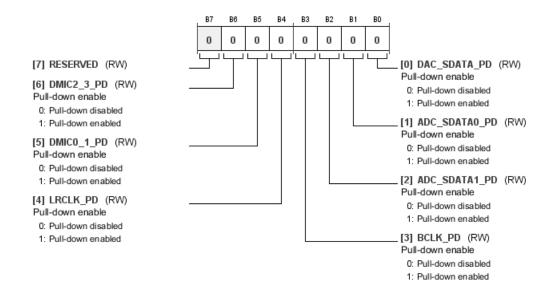

ADAU1772

Bits	Bit Name	Settings	Description	Reset	Access
3	BCLK_PU		Pull-up disable.	0x1	RW
		0	Pull-up enabled		
		1	Pull-up disabled		
2	ADC_SDATA1_PU		Pull-up disable.	0x1	RW
		0	Pull-up enabled		
		1	Pull-up disabled		
1	ADC_SDATA0_PU		Pull-up disable.	0x1	RW
		0	Pull-up enabled		
		1	Pull-up disabled		
0	DAC_SDATA_PU		Pull-up disable.	0x1	RW
		0	Pull-up enabled		
		1	Pull-up disabled		

DIGITAL PIN PULL-UP CONTROL 1 REGISTER

Address: 0x0049, Reset: 0x1F, Name: PAD_CONTROL1

Controls the behavior of the pad. Possible to enable pull-up.

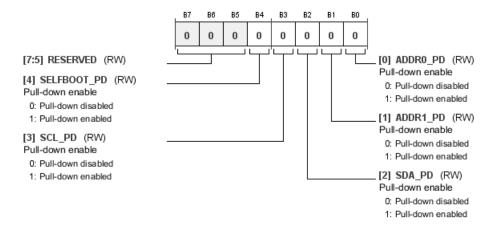

Table 100. Bit Descriptions for PAD_CONTROL1

Bits	Bit Name	Settings	Description	Reset	Access
4	SELFBOOT_PU		Pull-up disable.	0x1	RW
		0	Pull-up enabled		
		1	Pull-up disabled		
3	SCL_PU		Pull-up disable.	0x1	RW
		0	Pull-up enabled		
		1	Pull-up disabled		
2	SDA_PU		Pull-up disable.	0x1	RW
		0	Pull-up enabled		
		1	Pull-up disabled		
1	ADDR1_PU		Pull-up disable.	0x1	RW
		0	Pull-up enabled		
		1	Pull-up disabled		
0	ADDR0_PU		Pull-up disable.	0x1	RW
		0	Pull-up enabled		
		1	Pull-up disabled		

DIGITAL PIN PULL-DOWN CONTROL 0 REGISTER

Address: 0x004A, Reset: 0x00, Name: PAD_CONTROL2

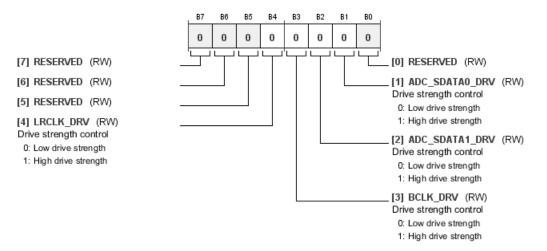
Controls the behavior of the pad. Possible to enable pull-down.


Table 101. Bit Descriptions for PAD_CONTROL2

Bits	Bit Name	Settings	Description	Reset	Access
6	DMIC2_3_PD		Pull-down enable.	0x0	RW
		0	Pull-down disabled		
		1	Pull-down enabled		
5	DMIC0_1_PD		Pull-down enable.	0x0	RW
		0	Pull-down disabled		
		1	Pull-down enabled		
4	LRCLK_PD		Pull-down enable.	0x0	RW
		0	Pull-down disabled		
		1	Pull-down enabled		
3	BCLK_PD		Pull-down enable.	0x0	RW
		0	Pull-down disabled		
		1	Pull-down enabled		
2	ADC_SDATA1_PD		Pull-down enable.	0x0	RW
		0	Pull-down disabled		
		1	Pull-down enabled		
1	ADC_SDATA0_PD		Pull-down enable.	0x0	RW
		0	Pull-down disabled		
		1	Pull-down enabled		
0	DAC_SDATA_PD		Pull-down enable.	0x0	RW
		0	Pull-down disabled		
		1	Pull-down enabled		

DIGITAL PIN PULL-DOWN CONTROL 1 REGISTER

Address: 0x004B, Reset: 0x00, Name: PAD_CONTROL3


Controls the behavior of the pad. Possible to enable pull-down.

Bits	Bit Name	Settings	Description	Reset	Access
4	SELFBOOT_PD		Pull-down enable.	0x0	RW
		0	Pull-down disabled		
		1	Pull-down enabled		
3	SCL_PD		Pull-down enable.	0x0	RW
		0	Pull-down disabled		
		1	Pull-down enabled		
2	SDA_PD		Pull-down enable.	0x0	RW
		0	Pull-down disabled		
		1	Pull-down enabled		
1	ADDR1_PD		Pull-down enable.	0x0	RW
		0	Pull-down disabled		
		1	Pull-down enabled		
0	ADDR0_PD		Pull-down enable.	0x0	RW
		0	Pull-down disabled		
		1	Pull-down enabled		

DIGITAL PIN DRIVE STRENGTH CONTROL 0 REGISTER

Address: 0x004C, Reset: 0x00, Name: PAD_CONTROL4

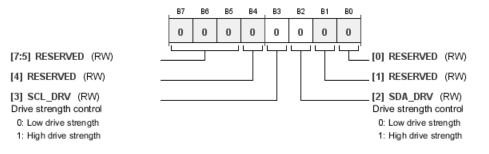
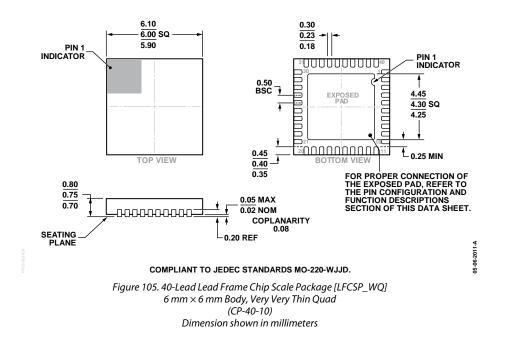


Table 103. Bit Descriptions for PAD_CONTROL4

Bits	Bit Name	Settings	Description	Reset	Access
4	LRCLK_DRV		Drive strength control.	0x0	RW
		0	Low drive strength		
		1	High drive strength		
3	BCLK_DRV		Drive strength control.	0x0	RW
		0	Low drive strength		
		1	High drive strength		
2	ADC_SDATA1_DRV		Drive strength control.	0x0	RW
		0	Low drive strength		
		1	High drive strength		
1	ADC_SDATA0_DRV		Drive strength control.	0x0	RW
		0	Low drive strength		
		1	High drive strength		


DIGITAL PIN DRIVE STRENGTH CONTROL 1 REGISTER

Address: 0x004D, Reset: 0x00, Name: PAD_CONTROL5

Bits	Bit Name	Settings	Description	Reset	Access
3	SCL_DRV		Drive strength control.	0x0	RW
		0	Low drive strength		
		1	High drive strength		
2	SDA_DRV		Drive strength control.	0x0	RW
		0	Low drive strength		
		1	High drive strength		

OUTLINE DIMENSIONS

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option
ADAU1772BCPZ	-40°C to +85°C	40-Lead Lead Frame Chip Scale Package [LFCSP_WQ]	CP-40-10
ADAU1772BCPZ-R7	-40°C to +85°C	40-Lead Lead Frame Chip Scale Package [LFCSP_WQ], 7"Tape and Reel	CP-40-10
ADAU1772BCPZ-RL	-40°C to +85°C	40-Lead Lead Frame Chip Scale Package [LFCSP_WQ], 13" Tape and Reel	CP-40-10
EVAL-ADAU1772Z		Evaluation Board	

 1 Z = RoHS Compliant Part.

NOTES

ADAU1772

NOTES

www.analog.com

©2012–2014 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D10804-0-3/14(C)

Rev. C | Page 116 of 116