Capacitor Array (IPC)

BENEFITS OF USING CAPACITOR ARRAYS

KYOCERA AVX capacitor arrays offer designers the opportunity to lower placement costs, increase assembly line output through lower component count per board and to reduce real estate requirements.

Reduced Costs

Placement costs are greatly reduced by effectively placing one device instead of four or two. This results in increased throughput and translates into savings on machine time. Inventory levels are lowered and further savings are made on solder materials, etc.

Space Saving

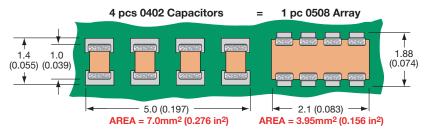
Space savings can be quite dramatic when compared to the use of discrete chip capacitors. As an example, the 0508 4-element array offers a space reduction of >40% vs. 4 x 0402 discrete capacitors and of >70% vs. 4 x 0603 discrete capacitors. (This calculation is dependent on the spacing of the discrete components.)

Increased Throughput

Assuming that there are 220 passive components placed in a mobile

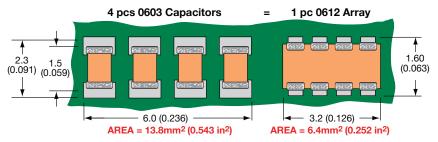
A reduction in the passive count to 200 (by replacing discrete components with arrays) results in an increase in throughput of approximately 9%.

A reduction of 40 placements increases throughput by 18%.


For high volume users of cap arrays using the very latest placement equipment capable of placing 10 components per second, the increase in throughput can be very significant and can have the overall effect of reducing the number of placement machines required to mount components:

If 120 million 2-element arrays or 40 million 4-element arrays were placed in a year, the requirement for placement equipment would be reduced by one machine.

During a 20Hr operational day a machine places 720K components. Over a working year of 167 days the machine can place approximately 120 million. If 2-element arrays are mounted instead of discrete components, then the number of placements is reduced by a factor of two and in the scenario where 120 million 2-element arrays are placed there is a saving of one pick and place machine.


Smaller volume users can also benefit from replacing discrete components with arrays. The total number of placements is reduced thus creating spare capacity on placement machines. This in turn generates the opportunity to increase overall production output without further investment in new equipment.

W2A (0508) Capacitor Arrays

The 0508 4-element capacitor array gives a PCB space saving of over 40% vs four 0402 discretes and over 70% vs four 0603 discrete capacitors.

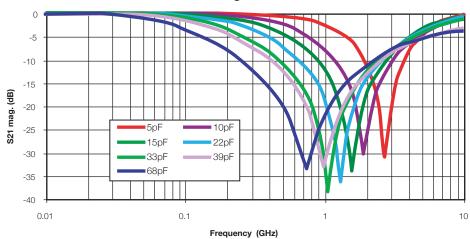
W3A (0612) Capacitor Arrays

The 0612 4-element capacitor array gives a PCB space saving of over 50% vs four 0603 discretes and over 70% vs four 0805 discrete capacitors.

☑ KU□CER∃ | The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

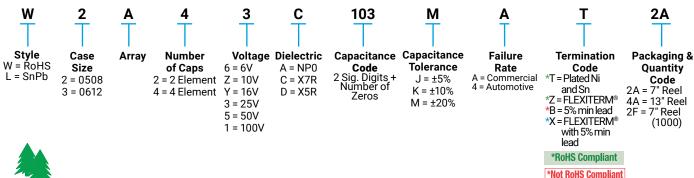
Capacitor Array (IPC)

0508 - 2 Element


GENERAL DESCRIPTION

KYOCERA AVX is the market leader in the development and manufacture of capacitor arrays. The array family of products also includes the 0612 4-element device as well as 0508 2-element and 4-element series, all of which have received widespread acceptance in the marketplace.

KYOCERA AVX capacitor arrays are available in X5R, X7R and NP0 (C0G) ceramic dielectrics to cover a broad range of capacitance values. Voltage ratings from 6.3 Volts up to 100 Volts are offered. KYOCERA AVX also now offers a range of automotive capacitor arrays qualified to AEC-Q200 (see separate table).


Key markets for capacitor arrays are Mobile and Cordless Phones, Digital Set Top Boxes, Computer Motherboards and Peripherals as well as Automotive applications, RF Modems, Networking Products, etc.

AVX Capacitor Array - W2A41A***K S21 Magnitude

HOW TO ORDER

COMPLIANT

RoHS

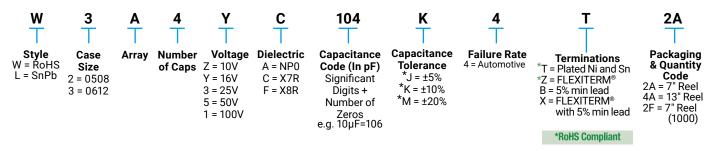
NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

SIZ	ĽE	W	2 = 050	08	W	3 = 061	2	
# Elen	nents		4		4			
Solde		Re	flow/Wa	ave	Re	flow/Wa	ve	
Packa	qinq	Paper/Embossed			Pape	er/Embos	sed	
Length	mm	1.30 ± 0.15			1.60 ± 0.150			
	(in.)	(0.	051 ± 0.0 2.10 ± 0.1	06) 5		063 ± 0.00		
Width	(in.)		0.0 ± 0.1			.20 ± 0.20 126 ± 0.00		
Max.	mm		0.94			1.35		
Thickness WVI	(in.)	16	(0.037)	50	16	(0.053)	50	
		10	23	30	10	23	30	
	Cap 1.0 (pF) 1.2							
1R5	1.5							
1R8	1.8							
2R2	2.2							
2R7	2.7							
3R3	3.3							
3R9	3.9							
4R7	4.7							
5R6	5.6							
6R8	6.8							
8R2 100	8.2 10							
120	10							
150	15							
180	18							
220	22							
270	27							
330	33							
390	39							
470	47							
560	56							
680	68 82							
820 101	100							
121	120							
151	150							
181	180							
221	220							
271	270							
331	330							
391	390							
471	470							
561	560							
681 821	680 820							
102	1000							
122	1200							
152	1500							
182	1800							
222	2200							
272	2700							
332	3300							
392	3900							
472 562	4700 5600							
682	6800							
822	8200							
	0200		1					

= Supported Values

	SIZE		_	N2 =	050	8			V	V2 =	050	8				V3 =	061	2	
#	Elements				2						555	-					4	_	
- 11	Soldering	_			v/Wav	Δ					/Wav				_	Reflow			
	Packaging				aper						mboss					per/E			
	mm				± 0.15	5					± 0.15					1.60 ±			
Length	n (in.)		(± 0.00				(0		± 0.00					0.063 :			
Width	mm				± 0.15						± 0.15						± 0.20		
wiath	(in.)		(0.083	± 0.00	16)			(0	.083 :	± 0.00	6)			(0).126 :	± 0.00	8)	
Max.	mm			0.	.94					0.	94					1.	35		
Thickr					037))37))53)		
	WVDC	6	10	16	25	50	100	6	10	16	25	50	100	6	10	16	25	50	100
	Cap (pF) 100																		
121	120																		
151	150																		
181	180																		
221	220																		
271	270		<u> </u>	-	-	-													
331 391	330 390		_	_	_	<u> </u>	_												
471	390 470	_	\vdash	—	-	\vdash	\vdash												
561	560	-		<u> </u>	1	<u> </u>	 												
681	680			 		\vdash	\vdash												
751	750																		
821	820																		
102	1000																		
122	1200																		
152	1500																		
182	1800																		
222	2000																		
272	2700																		
332	3300																		
392	3900																		
472	4700																		
562	5600																		
682	6800																		
822	8200																		
	Cap (µF) 0.010																		
153	0.015																		
183	0.018																		
223	0.022																		
273 333	0.027 0.033																		
393	0.039																		
473	0.039																		
563	0.056																		
683	0.068																		\vdash
823	0.082																		\vdash
104	0.100																		\Box
154	0.150																		\Box
224	0.220																		\Box
274	0.270																		
334	0.330																		
394	0.390																		
474	0.470																		
564	0.560																		
684	0.680																		
824	0.820																		
105	1.000																		

Automotive Capacitor Array (IPC)



As the market leader in the development and manufacture of capacitor arrays KYOCERA AVX is pleased to offer a range of AEC-Q200 qualified arrays to compliment our product offering to the Automotive industry. Both the KYOCERA AVX 0612 and 0508 4-element capacitor array styles are qualified to the AEC-Q200 automotive specifications.

AEC-Q200 is the Automotive Industry qualification standard and a detailed qualification package is available on request. All KYOCERA AVX automotive capacitor array production facilities are certified to ISO/TS 16949:2002.

HOW TO ORDER

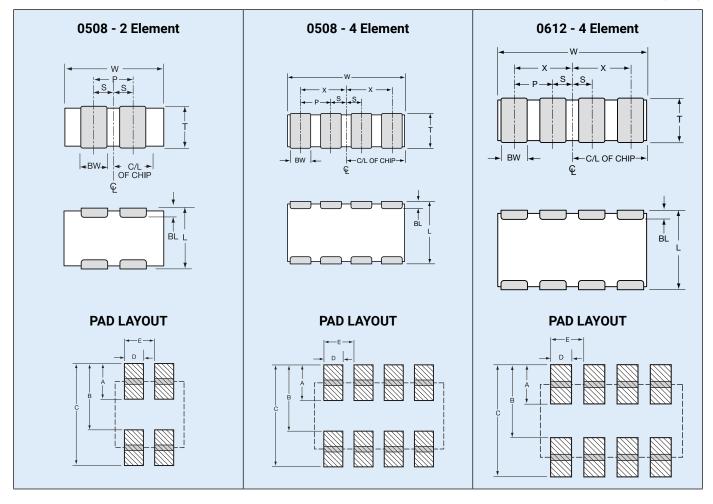
^{*}Contact factory for availability by part number for K = ±10% and J = ±5% tolerance.

,	SIZE		W	3 = 06	12
No. o	f Elemei	nts	Re	flow/Wa	ive
1	WVDC		16	25	50
1R0	Cap	1.0			
1R2	(pF)	1.2			
1R5		1.5			
1R8		1.8			
2R2		2.2			
2R7 3R3		2.7			
3R3 3R9		3.3			
4R7		4.7			
5R6		5.6			
6R8		6.8			
8R2		8.2			
100		10			
120		12			
150		15			
180		18			
220		22			
270		27			
330		33			
390		39			
470		47			
560		56			
680		68			
820		82			
101		100			
121		120			
151 181		150 180			
221		220			
271		270			
331		330			
391		390			
471		470			
561		560			
681		680			
821		820			
102		1000			
122		1200			
152		1500			
182		1800			
222		2200			
272		2700		-	
332		3300			
392 472		3900 4700			
562		5600		-	
682		6800			
822		8200			
022		0200			ldot

	SIZE		W2 =	0508	}		W2 =	0508			W	3 = 06	12	
No.	of Elements			2				4				4		
	WVDC	16	25	50	100	16	25	50	100	10	16	25	50	100
101	Cap 100													
121	(pF) 120													
151	150													
181	180													
221	220													
271	270													
331	330		1											
391	390		1											
471	470													
561	560													
681	680													
821	820													
102	1000													
122	1200													
152	1500													
182	1800													
222	2200													
272	2700													
332	3300													
392	3900													
472	4700													
562	5600													
682	6800													
822	8200													
103	Cap 0 010													
123	(μF) 0.012													
153	0.015													
153	0.018													
223	0.022													
273	0.027													
333	0.033													
393	0.039													
473	0.047													
563	0.056													
683	0.068													
823 104	0.082				 			 	<u> </u>				<u> </u>	<u> </u>
104	0.10													

X7R

*Not RoHS Compliant



= NPO/COG

PART & PAD LAYOUT DIMENSIONS

millimeters (inches)

PART DIMENSIONS

0508 - 2 Element

L	W	T	BW	BL	P	S
1.30 ± 0.15	2.10 ± 0.15	0.94 MAX	0.43 ± 0.10	0.33 ± 0.08	1.00 REF	0.50 ± 0.10
(0.051 ± 0.006)	(0.083 ± 0.006)	(0.037 MAX)	(0.017 ± 0.004)	(0.013 ± 0.003)	(0.039 REF)	(0.020 ± 0.004)

0508 - 4 Element

L	W	T	BW	BL	Р	X	S
1.30 ± 0.15	2.10 ± 0.15	0.94 MAX	0.25 ± 0.06	0.20 ± 0.08	0.50 REF	0.75 ± 0.10	0.25 ± 0.10
(0.051 ± 0.006)	(0.083 ± 0.006)	(0.037 MAX)	(0.010 ± 0.003)	(0.008 ± 0.003)	(0.020 REF)	(0.030 ± 0.004)	(0.010 ± 0.004)

0612 - 4 Element

	L	W	Т	BW	BL	Р	X	S
1.6	50 ± 0.20	3.20 ± 0.20	1.35 MAX	0.41 ± 0.10		0.76 REF	1.14 ± 0.10	0.38 ± 0.10
(0.06	63 ± 0.008)	(0.126 ± 0.008)	(0.053 MAX)	(0.016 ± 0.004)	(0.007 + 0.010) -0.003	(0.030 REF)	(0.045 ± 0.004)	(0.015 ± 0.004)

PAD LAYOUT DIMENSIONS

0508 - 2 Element

Α	В	С	D	E
0.68	1.32	2.00	0.46	1.00
(0.027)	(0.052)	(0.079)	(0.018)	(0.039)

0508 - 4 Element

Α	В	С	D	E
0.56	1.32	1.88	0.30	0.50
(0.022)	(0.052)	(0.074)	(0.012)	(0.020)

0612 - 4 Element

Α	В	С	D	E
0.89	1.65	2.54	0.46	0.76
(0.035)	(0.065)	(0.100)	(0.018)	(0.030)

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

KYOCERA AVX:

```
W2A2YC102MAT2A W2A2YC103MAT2A W2A41A330KAT2A W2A43A470KAT2A W2A45A101KAT2A
W2A45C103KAT2A W2A45C471MAT2A W2A4YC103KAT2A W2A4YC103MAT2A W2A4YC104MAT2A
W2A4YD103KAT2A W2A4ZC103MAT2A W2A4ZC104MAT2A W2A4ZD104KAT2A W2A4ZD104MAT2A
W3A41A220KAT2A W3A41A221KAT2A W3A41A331KAT2A W3A41C103KAT2A W3A41C103MAT2A
W3A41C222KAT2A W3A41C471K4T2A W3A41C472KAT2A W3A43A221KAT2A W3A43C102MAT2A
W3A43C332KAT2F W3A45A101JAT2F W3A45A101KAT2A W3A45A330KAT2A W3A45A470KAT2A
W3A45C103KAT2A W3A45C103MAT2A W3A45C222KAT2A W3A45C333MAT2F W3A45C471MAT2A
W3A4YC102MAT2A W3A4YC103MAT2A W3A4YC104KAT2A W3A4YC104MAT2A W3A45A471KAT2A
W3A45C472MAT2A W3A45C102MAT2A W3A45C473MAT2A W3A43C332MAT2F W3A4YC104MAT1A
W3A45A151KAT2A W2A43C103M4T2A W3A43C472KAT2A W2A4YC222KAT2A W3A43A181KAT2A
W3A45A100KAT2A W3A41A151KAT2A W3A45A220KAT2A W2A4YA181KAT2A W3A45C331KAT2A
W2A2YA101KAT2A W2A2ZC103MAT2A W2A2ZC473MAT2A W2A21A101KAT2A W2A23A101KAT2A
W2A23C103MAT2A W2A25A101KAT2A W2A25C103MAT2A W2A4YA100KAT2A W2A4YA101JAT2A
W2A4YA101KAT2A W2A4YA120KAT2A W2A4YA150KAT2A W2A4YA180KAT2A W2A4YA201KAT2F
W2A4YA220KAT2A W2A4YA221KAT2A W2A4YA270KAT2A W2A4YA330KAT2A W2A4YA330KAT4A
W2A4YA680KAT2A W2A4YC102MAT2A W2A4YC103MAT2F W2A4YC103M4T2A W2A4YC152KAT2A
W2A4YC183KAT2F W2A4YC222MAT2F W2A4YC331KAT2A W2A4YC332KAT2A W2A4YC471KAT2A
W2A4YC471KAT2F W2A4YC471MAT2A W2A4YC472MAT2A W2A4YC681KAT2A W2A4YC682KAT2A
W2A4YD104MAT2A W2A4ZA270KAT2A W2A4ZA470KAT2A W2A4ZC183KAT2F W2A4ZC332KAT2A
W2A4ZC471KAT2A W2A4ZC682KAT2A W2A41A100KAT2A W2A41A120KAT2A W2A41A150KAT2A
```