

AX-178

INSTRUCTION

WWW.AXIOMET.EU

Contents

Chapter 1. Safety Information
Meter Safety Standards 4
Warning 4
Limited Guarantee and the Liability Range
Chapter 2. Introduction to the Meter
Characteristics
Explanation on Front Panel
Understanding Display Screen
Function Descriptions 10
Chapter 3. Operation Methods 11
ACV/dBm Measurement 11
DCV/DCV + ACV Measurement
DC mV/AC mV/DC mV+AC mV Measurement
Logic Frequency/Duty Ratio Measurement 14
Diode Measurement 15
Resistance/continuity Measurement
Capacitance Measurement 17
DC μ A/AC μ A/DC μ A+AC μ A Measurement
DC mA/AC mA/DC mA+AC mA Measurement
DC Ampere/AC Ampere/DC Ampere+AC Ampere Measurement
Linear Frequency Measurement 21
Reletive Value Measurement
Maxumum Value/Minimum Value/Maximum Value-Minimum Value Measurement
Backlight Control
Data Hold
Automatic Shutdown and Continiuous Operaton Mode Selection
Connected to RS-232C Interface of Computer

Chapter 4. Technological Specifications	. 23
General Features	. 23
Range and Accuracy	. 24
Chapter 5. Maintenence	. 28
Replecement of Batteries	. 28
Replacement of Fuse	. 28
Neter Calibration	. 29
Others	. 29

Chapter 1

Meter Safety Standards

This style of digital multimeter is designed and manufactured according to the safety requirements set out by the IEC1010-1 standards for electronic test instruments and the hand-hold digital multimeters. Its design and manufacture is strictly based on the provisions in the 1000V CAT III of IEC1010-1 and the Stipulation of 2-Pollution Grade.

The meter conforms to the European Union's following requirements: 89/336/EEC (EMC Electromagnetic Compatibility), 73/23/EEC (LVD Low Voltage Protection) and 93/68/EEC (CE Mark).

A warning

• Before use of the meter firstly check up if there is any crack on the outer shell or if it lacks any plastic part, and check up whether the testing line is damaged or has any exposed metal. The meter can be used only if no any insulating problem be found.

• Carefully read the operating methods and safety prompts in this manual. Using it not based on the methods specified in this manual may cause the meter damaged.

• Non-normal meter must not be used. It should be sent for repairing.

• The meter must not be used in an environment with combustible gases, steam or dust pollution.

• It should be careful to work when measuring voltage higher than 30Vac(effective value)or 50Vdc for such voltage having the risk of shock. Avoid the body directly touching ground or any metal substance in which there may be ground potential during measuring. The body should be kept insulated from ground with dry insulating shoes, insulating pads or insulating clothes.

• When performing measurement with a test probe your fingers should be put behind a fingerprotector.

• Must not try to measure a voltage higher than 1000VAC or 1000VDC, the meter may be damaged and the operator's safety may be threatened if the limit for voltage measurement be exceeded.

• When the symbol for electric insufficiency appearing on the display screen it is necessary to replace the batteries for avoiding the possible shock or injure resulted in by erroneous reading.

• In case of replacing batteries, it is necessary firstly to pull out the testing line. AA batteries should be used and they should be put into the meter with the proper polarity.

• Must not make any voltage measurement when the testing line being inserting into the current hole.

• Keep batteries out of reach of children.

• If a battery leaks, remove all batteries, taking care to keep the leaked fluid fromtouching your skin or clothes. If fluid from the battery comes into contact with skin or clothes, flush skin with water immediately. Before inserting new batteries, thoroughly clean the battery compartment with a damp paper towel, or follow the battery manufacturer's recommendations for cleanup.

• Dispose of batteries in accordance with local and national disposal regulations, including those

governing the recovery and recycling of waste electrical and electronic equipment (WEEE).

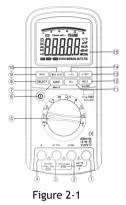
- Do not heat, open, puncture, mutilate, or dispose of batteries in fire.
- Repair and calibration of the meter must be carried out by experienced professionals,

unprofessionals should not repair and calibrate the meter by themselves.

Limited Guarantee and the Liability Scope

This company will undertake repairs freely for any quality problem of the meter which if should be found within 18 months from the date at which it was bought, but which not including replacement of fuse and batteries as well as any damage caused by negligence, wrong use, pollution, change of circuit and non-normal use.

For maintenance beyond the 18-month guarantee period, the company will charge a certain repair fee and materials cost.


Chapter 2

Characteristics

- 50000 counts measurement
- ACV and DCV measurements reach up to 1000V
- DC measurement accuracy reaches up to 0.03%
- \bullet 0.01 Ω resistance resolution and 1µ V voltage resolution
- Linear frequency measurement, logic frequency/duty ratio measurement.
- Capacitance measurement from 0.01nf to 5000µ F.
- AC/DC true RMS measurement.
- DBm measurement
- Maximum value/minimum value measurement, Relative measurement.
- 50-segment analog bar display
- Automatic shutdown/continuous working mode selection
- Back light control
- PC-LINK RS-232C infrared interface
- Display, record and graphics software of computer
- Overload protection
- Sound alarm for wrong current measurement
- Secondary plasticizing meter shell, with insulating performance reaching 1000V CAT III

Explanation on Front Panel

The front panel is shown as in Figure 2-1, explanation being as follows

(1) V_Ω Hz end

It is the input end for all measurement functions except for current measurement, connected with a red meter probe.

(2) COM end

It is the negative input end for all measurements, connected with a black meter probe

(3) µA/mA end

It is the positive end for measurement of μA or mA current, connected with a red meter probe.

(4) A end

It is the positive input end for measurement of 0.5A-10A current, connected with a red meter probe.

(5) Rotary switch

Used for selecting measurement functions such as voltage, current, resistance and Capacitance.

(6) POWER switch

Used for putting on or off the operating power for the meter.

(7) RANGE key

For various kinds of measurements it is used manually to select range. Under the automatic range state (AUTO displaying), it will enter manual range state(MANUAL displaying) with a press on RANGE, after that the range will be changed with a press on RANGE while the small digits on the left lower corner indicating the actual range. When the RANGE key being released after pressing for two seconds the meter will return back to the automatic state. When performing logic frequency measurement and diode measurement pressing RANGE will be void. During dBm measurement, pressing RANGE key will alter the virtual resistance value for calculating dBm.

(8) SELECT key

When setting the rotary switch to a measurement function, the meter will enter its first measurement mode, while pressing the SELECT key it is possible to select the second or the third measurement mode. However, there is only one for the diode and Capacitance measurements.

(9) WAKE key

After the meter being automatically shutdown, by pressing the WAKE key it can be woken up to resume the measurement. In case of pressing POWER switch(for putting on the unit) and WAKE key simultaneously, the meter will in a continuously working state without the automatic shutdown function.

(10) MAX/MIN key

Press MAX/MIN key to enter the record state for the maximum and minimum value and simultaneously display the maximum value. By pressing this key again it will be possible to display the minimum value and the maximum value-minimum value. When releasing the key after pressing it for two seconds, the maximum and minimum record state will be exited. Pressing this key will be void during frequency[®]diode measurement.

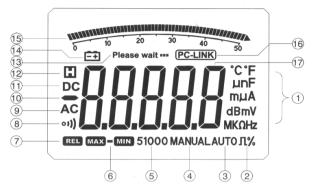
(11) REL ∆ key

By pressing RELA to enter the relative measurement state, the meter will remember the value measured at the time when pressing the key(it is called the initial value), and after that the value displayed in the meter will be equivalent to the present value - the initial value. By pressing the key again the relative measurement state will be exited. Pressing the key will be void during the frequency and diode measurements.

(12) HOLD key

Used to maintain the measurement data unchanging, by pressing the key again it will resume the measurement. When releasing the key after pressing it for two seconds, the meter will enter the PC-LINK state connecting with the RS-232C interface of computer while sending measurement information to computer. When releasing the HOLD key after pressing it for two seconds again, it will stop to send data to the RS-232C interface.

(13) LIGHT key


By pressing this key for a time, the backlight of the LCD screen will be opened and after five seconds the meter will automatically turn off the backlight. It is also possible to turn off the backlight by pressing the LIGHT key before the five seconds.

(14) ~ Hz key

During the voltage or current measurements, by pressing PHz key the meter will enter the linear frequency measurement state. At this time what being measured is the frequency of voltage or current. By pressing this key again it will exit the linear frequency measurement state.

(15) LCD screen

Used for displaying the measuring results and various symbols.

LCD screen is shown as in Figure 2-2, with its every symbol's meaning shown as in the Table 1:

Symbol	Opis
°C °F	Indicating the measurement unit being $^\circ\text{C}$ or $^\circ\text{of}$ temperature
μnF	Indicating the measurement unit being μ F or nF of Capacitance
mμA	Indicating the measurement unit $\boldsymbol{\mu}$ A, mA or A of current
dBmV	Indicating the measurement unit being dBm of Power or Mv and V of voltage
MKΩHz	Indicating the measurement unit being $M\Omega,K\Omega,$ and Ω of resistance or MHz, KHz and Hz of frequency
Л%	Indicating the measurement unit being the duty ratio of logic impulse
AUTO	Indicating the measurement being automatic range
MANUAL	Indicating measurement being manual range
51000	Indicator of range indicating the full range value of his range In manual range such as 5, 50, 500 and 1000, 5000, etc.
MAX-MIN	Indicating the display value being the maximum value(MAX),

	the minimum value (MIN) or the maximum value the minimum value (MAX-MIN)
REL	Indicating the measurement being relative measurement Chile the displayed value being relative value.
•)))	Indicating it is now performing the continuity measurement.
AC	Indicating it is now In the AC measurement state, while DC and AC displaying simultaneously, indicating it is DC+AC measurement
-	Indicating the measurement value being negative
DC	Indicating it is now In the DC measurement state, Chile DC and AC displaying simultaneously, indicating it is DC + SC measurement.
	Indicating it is now In the data holding state
Please Wait	When measuring 50μ F~ 5000μ F capacitor under automatic range for ensuring the accuracy of measurement, it is necessary to perform the measurement after fully discharging capacitor while prompting the operator to wait.
- +	Indication to low voltage of the batteries, showing the energy of batteries will be exhausted soon.
10 20 30 40 50	Analog bar, indicating the measurement value with a graphic mode
PC-LINK	Indicating the meter being In the state for sending data to the RS-232C interface of computer
8.8.8.8.8	The display zone for the meter's measurement value, showing all the measurement values

Function Description

Along with the conventional measurement functions this meter also possesses some special functions which being described as follows:

• True effective value (TRUE RMS) measurement: all the measurement values of this meter on the AC voltage and AC current are true effective values, which distinguishing this meter from the lowgrade meters which only can measure the AC average value.

• dBm measurement: dBm measurement is a value calculated and displayed under the current AC voltage, with a virtual resistance R obtained through RANGE key and according to the following formula: $10 \log_{10}(1000V^2/R)$ It is the AC power expressed in the logarithmic form.

• DC+AC measurement: when measuring voltage or current having both the AC and the DC components, in case of selecting the DC+AC measurement mode, this meter will perform measurements on both DC and AC components respectively and then calculate and display the results according to the following formula: $\sqrt{DC^2 + AC^2}$ DC+AC measurements reflect the general effective values generated jointly by both the DC and AC components.

• Automatic and manual ranges: When turning on the meter's power switch the meter defaults the automatic range state(AUTO displaying), and simultaneously it will automatically select the proper range according to the measured electric parameters. If OL being displayed under automatic range, it indicates the measured value exceeding the meter's maximum range. Pressing the RANGE key under the automatic range the meter will enter the manual range(MANUAL displaying), then pressing the RANGE key again it will be possible to select the required range. The indicator for range will display the maximum value of this range. If OL displaying under the manual range, it indicates the measured value exceeding the selected range. Press the RANGE key under the manual range for two seconds and then release it, the meter will go back to the automatic range state.

• Linear frequency measurement: Pressing the ~ Hz key when the meter performing measurements on AC voltage or current as well as on mixture signal of AC and DC, it will be capable to measure the frequency of the AC component. However it has a certain requirements on the amplitude of the AC component.

• Logic impulse duty ratio measurement: logic impulse duty ratio refers to: (high level width/impulse cycle)×100%

• **Diode measurement**: during diode measurement the meter is indicating to the forward voltage drop of the diode

• **Relative measurement**: during relative measurement the meter remembers internally the instantaneously measured value(called initial value)when pressing the REL Δ key, and the later displaying value being: present value - initial value

The relative measurement value reflects the changes of the measured value. It also can be used to take off the errors brought about by lead resistance or distributed capacitance during measuring

low resistance and low capacitance. Due to subtraction calculation, negative value may appear during measuring AC current, resistance and capacitance.

• Maximum/minimum value measurement: by pressing MAX/MIN keys the meter can enter the maximum/minimum value record state, and it will continuously update the maximum/minimum values based on the new measurement results. Pressing the MAX/MIN key can display the maximum value, the minimum value and the maximum value-the minimum value in cycles. After exiting the MAX/MIN measurement state the recorded maximum value/minimum values will disappear.

• Automatic shutdown and the continuous operating mode: after the meter being turned on, in case of stopping to pressing any key or stopping to turning the rotary switch for more than fifteen minutes, the meter will automatically shutdown. As the meter will still consume a little energy after its automatic shutdown, so it is better to turn off the POWER switch if the meter remains idle for a long time. If you want the meter to operate continuously without automatically turning off, it can be done only just by pressing down the WAKE key at the same time when turning on the POWER switch.

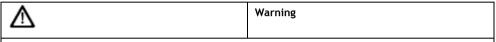
• Low voltage detection: when the meter detecting the total voltage of the batteries lower than 6.8V, the symbol on the LCD screen will be lighted to prompt the batteries should be replaced.

• Analog indication bar: analog indication bar is used for graphic measurement value and it always synchronizes with the size of the present measured value. During the maximum value/minimum value measurement and the relative value measurement it sill synchronizes with the size of the present measured value, and not indicating the maximum value/minimum value or the relative value.

• PC-LINK (RS-232C interface): press the HOLD key for two seconds and then release it, the meter will open the infrared interface for sending the measured data and status to the RS-232C interface of computer. Equipped with record and graphic software (options)the meter can display, record and describe the measured electric quantity on computer. As the data transmission between the meter and computer is depending on light coupling, so measurement of high voltage will not affect the safety of computer.

Chapter 3.Operation Methods

ACV/dBm Measurement


The measurement is shown as in Figure 3-1, with voltage range being of AC $0.5V \sim 1000V$ and the measurement methods being as follows: dBm

- 1. Turn on the power switch and set the rotary switch to the position of $\widetilde{\mathbf{v}}$
- 2. Insert the red and black testing lines into V Ω Hz end and COM end respectively.
- 3. Select the ACV or dBm measurement mode with the SELECT key.
- 4. Connect the meter to the two ends of the measured voltage with the red and black probes

5. Read the meter's data from the display screen. When OL displaying on the meter, it indicates the measured voltage exceeding the meter's range and it is necessary to remove both the red and black probes from the measured circuit immediately.

6. By pressing the RANGE key it is possible to select range manually. Indicator of range displays range. While displaying OL during manual range measurement, it is necessary to select a larger range. When OL displaying under the maximum range, it indicates the voltage exceeding 1000V, so it is necessary to remove both the red and black probes from the measured circuit immediately. 7. To perform dBm measurement, press the RANGE key to select the resistance value needed for calculating dBm, there are 4, 8, 16, 32, 50, 75, 93, 110, 125, 135, 150, 200, 250, 300, 500, 600, 800, 900, 1000 and 1200 ohms being possible to be selected respectively.

Notes: in case of probe hanging in the air, the voltage inducted by the testing line may cause unstable readings on the displayscreen, but thet will not affect the accuracy of measurement

Not try to measure a voltage higher than 1000 volt

Figure 3-1

ACV/dBm Measurement

DCV/DCV+ACV Measurement

The measurement is shown in Figure 3-2, the range of voltage is of AC or DC $0.5V \sim 1000V$ and the methods are as follows:

- 1. Turn on the power switch and set the rotary-table switch to the position \overline{V}
- 2. Insert the red testing line into the V Ω Hz end and the black testing line into the COM end.
- 3. Press SELECT key to select DCV or DCV + ACV measurement mode.
- 4. When performing DCV measurement, connect the red probe to the positive polarity of the measured voltage and the black probe to the negative polarity of the measured voltage.While performing DCV + ACV measurement, it will be done by connecting the red probe and the

black probe into the two ends of the measured voltage.

5. Read the measured value from the display screen. If OL displaying on the meter, it indicates the measured voltage exceeding the range of the meter and it is necessary to remove the both red and black probes from the measured circuit immediately.

6. When performing DCV measurement, by pressing the RANGE key it is possible to select range manually. The indicator of range indicates the range value. If OL displaying during manual range measurement, it is necessary to select a larger range. If OL displaying under the maximum range, it indicates the voltage exceeding 1000V and it is necessary to remove the both red and black probes from the measured circuit immediately. When performing DCV + ACV measurement automatic range will be held and it is null to press the RANGE key.

Notes: in case of probe hanging in the air, the voltage inducted by the testing line may cause unstable readings on the display screen, but that will not affect the accuracy of measurement. When performing DCV+ACV measurement it will be reletively slow to refresh the measured data as it needs time to switch AC and DC measurements and to calculate RMS.

Warning

Not try to measure a voltage higher then 1000 volt

Figure 3-2

DCV/DCV+ACV Measurement

DC mV/AC mV/DC mV+AC mV Measurement

The testing chart is shown in the Figure 3-3. The voltage measurement range is of $1\mu V \sim 500 mV$ and the measurement methods are as follows:

1. Turn on the power switch and set the rotary switch to the position $m V^{\circ}$

- 2. Insert the red testing line into the $V\Omega Hz$ end and the black testing line into the COM end.
- 3. Press the SELECT key to select DCmV or AcmV or DCmV + AcmV measurement modes.
- 4. When performing DCmV measurement, connect the red probe to the positive polarity of the

measured voltage and the black probe to its negative polarity. While performing ACmV or DCmV+ ACmV measurement, it will be done by connecting the red probe and the black probe into the two ends of the measured voltage.

5. Read the measured value from the display screen. If OL displaying on the meter, it indicates the measured voltage exceeding the range of the meter and it is necessary to remove both the red and black probes from the measured circuit immediately.

6. When performing DCmV or ACmV measurement, by pressing the RANGE key it is possible to select range manually. The indicator of range indicates the range value. If OL displaying during manual range measurement, it is necessary to select a larger range. If OL displaying under the maximum range, it is necessary to remove both the red and black probes from the measured circuit immediately. When performing DCmV + ACmV measurement automatic range will be held and it is void to press the RANGE key.

Notes: In case of probe hanging in the air, the voltage inducted by the testing line may cause unstable readings on the display screen, but tht will not affect the accuracy of measurement. When performing DCmV+AcmV measurement it will be relatively slow to refresh the measured data as it needs time to switch AC and DC measurement and to calculate RMS.

\triangle	Warning		
Not try to measure a voltage higher than 1000 volt			

bitage nigner than

Figure 3-3

DC mV/AC mV DC mV+AC mV Measurement

Logic Frequency/Duty Ratio Measurement

The testing chart is shown in the Figure 3-4. The frequency range is of 5Hz-2MHz (Vp 2.5-5V), while

the duty ratio measurement range being of $5\% \sim 95\%$. And the measurement methods are as follows:

- 1. Turn on the power switch and set the rotary switch to the position $H_7^{\%}$
- 2. Insert the red testing line into the V Ω Hz end and the black testing line into the COM end.

- 3. Press the SELECT key to select the logic frequency(Hz) or duty ratio(%) modes.
- 4. Connect the red testing line to high logic level, the black one to low logic level.

5. Read the measured value from the display screen. If the frequency of the measured signal is lower or higher than the meter's measurement range, the reading will be displayed as zero. If the amplitude of signal is too low or the low level is larger than 1 volt, the reading will also displayed as zero.

6. This measurement is of automatic range, it is null to press the RANGE key.

Figure 3-4

Logic Frequency, Diuty ratio Measurement

Diode Measurement

The measurement chart is shown in figure 3-5. The measurement range of diode is of $0 \sim 2.5V$. The measurement methods are as follows:

Turn on the power switch and set the rotary switch to the position

1. Insert the red testing line into the V Ω Hz end and the black testing line into the COM end.

2. Connect the red probe to the positive polarity of the diode and the black probe to its negative polarity, while the display screen will display the forward voltage drop.

3. Connect the black probe to the positive polarity of the diode and the red probe to its negative polarity, if OL displaying on the display screen, it indicates the backward resistance of the diode being normal, while OL not displaying, it indicates that the diode is backward leaking.

Notes: In case of performing diode test on circuit board, it is necessary firstly to turn off the power of the circuit board and then perform the measurement. As there may be other parallel circuits, so the displayed value of test is not surely the results listed in items 3 and 4.

Figure 3-5

Diode Measurement

Resistance/continuity Test

The test chart is seen in Figure 3-6. the measurement range of resistance is of $0.01\Omega \sim 50M\Omega$ and the measurement methods are as follows:

Turn on the power switch and set the rotary switch to the position Ω on)

1. Insert the red and black testing lines into the V Ω H input end and the COM input end respectively.

2. Press the SELECT key to select resistance (Ω) or the continuity (**o**)) modes.

3. For the resistance measurement, connect the red and black probes to the two ends of resistor and read the resistance value from the display screen. If OL displaying, it indicates the resistor is larger than 50M Ω . As for the continuity measurement, connect the red and black probes to the two measured points respectively. In case of the resistance between the two points being less than about 50 Ω =60 Ω , the buzzer will sound while the display screen displaying the value of resistance. If OL displaying, it indicates the resistance between the two points is larger than 500 Ω .

4. When the resistance measurement mode being implemented, it is possible to select range by pressing the RANGE key. The indicator of range indicates the value of range. If OL displaying during manual range measurement, it is necessary to select a larger range. Under the continuity measurement mode it is null to press the RANGE key.

Notes: In case of performing resistance or continuity test oc circuit board, it is necessary firstly to turn off the power of the circuit board and then perform the measurement. As there may be other parallel circuits, so the displayed value of test is not surely the actual value of the resistor.

Figuer 3-6

Resistance Continuity Measurement

Capacitance Measurement

The measurement chart is seen in figure 3-7. The measurement range of capacitance is of

 $10 PF{\sim}5000 \mu F$ and the measurement methods are as follows:

1. Turn on the power switch and set the rotary switch to the position

2. Insert the red and black testing lines into the V Ω Hz input end and the COM input end respectively.

3. If exists voltage in the capacitor, connect the two ends of the capacitor for a short time to discharge.

4. Connect the red and black probes to the two ends of the capacitor, if the measured capacitor is heteropolar, it is necessary to connect the red probe to the positive polarity of the capacitor and the black probe to its negative polarity.

5. Read the capacitance from the display screen. If capacitance value >5300 μ F, the meter will display OL, while capacitance value <10PF, it will display zero.

6. It is possible to select range manually by pressing the RANGE key. The indicator of range indicates the value of range. If OL displaying during manual range measurement, it is necessary to select a larger range. If it has been the largest range, which means capacitance value >5300 μ F.

Notes: When performing measurement on 500μ F- 5000μ F capacitor, in order to ensure measurement accuracy the meter takes a reletive long time to discharge capacitor, so it is slow in refreshing the measured value. In addition, not to perform Capacitance measurement on a circuit board on which there are parallel devices, for that may leads to very large error.

Figure3-7

Capacitance Measurement

DC μ A/AC μ A/DC μ A+AC μ A Measurement

The measurement is seen in Figure 3-8, the measurement range of current is of AC or DC

 $0.01 \mu A{\sim}5000 \mu A$, and the measurement methods are as follows:

1. Turn on the power switch and set the rotary switch to the position

2. Insert the red testing line into the mA/ μ A input end and the black testing line into the COM input end.

3. Press the SELECT key to select the DcµA, AcµA or the DcµA + AcµA measurement modes.

4. Turn off the power of the measured circuit, connect the red and black probes to the measured circuit in serial way and then turn on the power of the measured circuit.

5. Read the measured value from the display screen. If it displays as positive during the DC measurement, it means the current is flowing into the meter from the red testing line, while it displaying as negative, it means the current is flowing into the meter from the black testing line. If it displays as OL, it means current exceeding range.

6. During measurement of DC μ A or Ac μ A, it is possible to select range manually by pressing the RANGE key. Under the DC μ A + Ac μ A measurement mode, automatic range is held and it is null to press the RANGE key.

Notes: Under the DC μ A+AC μ A measurement mode, it is relatively slow to refresh the measured data as it is needs time to switch AC and DC measurements and to calculate RMS.

Figure 3-8

DC μ A, AC μ A, DC μ A+AC μ A Measurement

DC mA/AC mA/DC mA+AC mA Measurement

The measurement is seen in the Figure 3-9. The measurement range of current is of AC or DC 1 μ A~500mA and the measurement methods are as follows:

Turn on the power switch and set the rotary switch to the position \mathbf{P}_{MA}

1. Insert the red testing line into the mA/ μA input end and the black testing line into the COM input end.

2. Press the SELECT key to select the DC mA, AC mA or the DC mA + AC mA measurement modes.

3. Turn off the power of the measured circuit, connect the red and black probes to the measured circuit in a serial way and then turn on the power of the measured circuit again.

4. Read the measured value from the display screen. If it displays as positive during DC measurement, it means the current is flowing into the meter from the red testing line, while it displays as negative, it means the current is flowing into the meter from the black testing line. If it displays OL, indicating current exceeding range.

5. When performing DC mA or AC mA measurement, it is possible to select range manually by pressing the RANGE key. Under the DC mA + AC mA measurement mode the automatic range is held and it is null to press the RANGE key.

Notes: Under the DC mA+AC mA measurement mode, it is relatively slow to refresh the measured data as it needs time to switch AC and DC measurements and to calculate RMS.

Figure 3-9

DC mA, AC mA, DC mA+AC mA

DC Ampere/AC Ampere/DC Ampere+AC Ampere Measurement

The measurement is seen in Figure 3-10, the measurement range of current is of AC or DC

0.1mA \sim 10A and the measurement methods are as follows:

1. Turn on the power switch and set the rotary switch to the position

2. Insert the red testing line into the A input end and the black testing line into the COM input end.

3. Press the SELECT key to select the DC A, AC A or DC A + AC A measurement modes.

4. Turn off the power of the measured circuit, connect the red and black probes to the measured circuit in a serial way and then turn on the power of the measured circuit again.

5. Read the measured value from the display screen. During the DC measurement, if it displays as positive, it means the current is flowing into the meter from the red testing line, while it displays as negative, it means the current is flowing into the meter from the black testing line. If it displays OL, it indicates current exceeding range.

6. When performing DC A or AC A measurement, it is possible to select range manually by pressing the Range key. Under the DC A + AC A measurement mode, automatic range is held and it is null to press the RANGE key.

Notes:Under the DC A+AC A measurement mode, it is relatively slow to refresh the measured data as it is needs time to switch AC and DC measurements and calculate RMS.

Figure 3-10

DC Ampere, AC Ampere, DC Ampere+AC Ampere

Linear Frequency measurement

The measurement is seen in the Figures 3-1, 3-2, 3-3,3-8 and 3-9. The measurement range is of $5Hz \sim 200$ KHz and the measurement methods are as follows:

1. When performing voltage or current measurement, in case of measured value being AC or including AC elements, it is possible to measure and display the alternating frequency by pressing the \sim Hz key. However it has a certain requirements for the amplitude of alternating signal and the meter has varied requirements for signal amplitude when it is in different ranges, for information of which please refer to Table 3–1.

2. If the position of rotary switch is in ACV or DCV, after pressing \sim Hz key the indicator of range will indicates the meter's present voltage range. In addition, it is possible to change the range by pressing the RANGE key to meet the different voltages.

3. Press ~Hz key again to exit linear frequency

Table 3-1

Range	Sensibility(sine wale)
500mV	100mV
5V	0.5V
50V	4V
500V	40V
1000V	400V
5000µА	1mA
500mA	100mA

Notes: During ampere measurement, due to the very small resistor, and the very weak frequency signal produced, so only when current reaching as large as over 5A can the frequency be measured.

Relative Value Measurement

Except for frequency, duty ratio and diode measurements, all other measurements can employ relative measurement. Press RELA key to enter relative measurement and the meter will record the initial value when pressing the key. And the later displayed value is:

Displayed value = present measurement value - Initial value

Press REL Δ again to exit relative measurement. Changes of measurement value may be found in relative measurement which also can be used for the small resistance and the small capacitance measurements, for example, when performing resistance measurement, connect the red testing line and the black testing line in short, press the REL Δ key to record the values of resistance (resistance of both the red and black lines), and after that performing resistance measurement again the lead resistance will have been taken off from the displayed value. When performing capacitance measurement, open the red and black testing line, press REL Δ key to record the distributed capacitance, and after that performing capacitance measurement again, the distributed capacitance will have been taken off from the displayed value. During relative measurement, analog bar is always indicating the present measurement value but not the relative value. When measurement over, OL will display instead of showing the relative value. Notes: When going to relative value measurement under DC+AC mode, press REL Δ immediately after the digits refresh.

Maximum Value/Minimum Value/Maximum Value-Minimum Value measurement

Except for frequency and diode measurements, by pressing the MAX/MIN key the meter will enter the maximum value and minimum value record state and display the maximum value. The meter measures the present value and continuously judges if it is necessary to update the maximum or minimum value. Pressing the MAX/MIN key again it is possible to select displaying the minimum value, the maximum value — minimum value or the maximum value. When the meter being in the maximum and the minimum value record state, the analog bar is always indicating the present measurement value but not the MAX/MIN value. Under the maximum and minimum value record state, press the MAX/MIN key for two seconds and then release it, the meter will exit the MAX/MIN record state. When measurement over, OL will display instead of showing the MAX/MIN value. Backlight Control

Pressing the LIGHT key, the LCD display screen's backlight will be lighted and after 30 seconds it will automatically go out. If press the LIGHT key again when the backlight is lighting, the backlight can be turned off in advance. Lighting the backlight will cause three-times higher energy consumption than the ordinary operation. So by less use of backlight, power can be saved.

Data Hold

By pressing the HOLD key it is possible to hold the measurement value and the state at the moment of pressing the HOLD key. While pressing the key again data measurement will be resumed.

Automatic Shutdown and Continuous Operation Mode Selection

After turning on power, the meter will in default enter the auto-shutdown timing state. Within 15 minutes after stopping to press any key or turn the rotary switch, the meter will automatically turn off. After auto-shutdown, by pressing the WAKE key or turning the rotary switch it is possible to wake the meter to resume operation. If you want the meter operates continuously without shutdown, it will be done by pressing the WAKE at the same time when turning on power. Notes: After auto shutdown there will still be a little electricity consumption in the meter, so it is recommended to turn off the power when the meter is to remain un-working for a long time.

Connected to Computer RS-232C Interface

Pressing the HOLD key for two seconds and then releasing it, the meter will begin to send the measured data and state to computer while the LCD display screen displaying **PC-LINK**. Then it will be able to record analyze draw and print all the measurement on computer as long as you insert one end of the RS-232C cable (options) into the front socket of the meter and another end into the computer RS-232C interface and run the record and graphics software (options). And press the HOLD key for two seconds and then release it again, the meter will stop to send data to computer, symbol **PC-LINK** on the LCD display screen will go out. When the meter sends data to computer it will cause the increase of the electricity consumption.

So **(PC-LINK)** should be turned off when no need to transmit data.

Chapter 4. Technological Specifications

General Features

• Voltage between the measurement end and ground is of 1000V AC/DC. 1000V CAT III, 2th pollution grade.

• 50000 counts, automatic/manual range, basic sampling rate 2.5 t/s and 51 segment analog bar.

• When rotary switch being in the positions of mV, logic frequency, diode, resistance and capacitance, the maximum overload protection voltage will be 250V(effective value), while in the positions of μ A/mA the protection current being 0.64A, and in the position of A, the protection current being 12.5A.

• Over range indication OL.

• When the total voltage of batteries being lower than 6.8V, the symbol for battery display will be lighted.

- Fuse being 0.63A/500V(µA/mA end) and 12.5A/500V (A end).
- Six 7# AA batteries X 1.5V.
- Infrared coupling RS-232C interface.

- Operating temperature: 0°~30° (relative humidity 0~80%)
- $31^{\circ} \sim 51^{\circ}$ (relative humidity 0~50%)
- Storage temperature: -20°~60° (relative humidity <= 80%)
- Altitude: operation less than 2000m,

Storage less than 10000m

- Volume : 200mm X 100mm X 40mm
- Weight : 560g

Range and Accuracy

The below-listed accuracies under different ranges refer to those which are guaranteed by the meter within one-year calibration, with normal use under the operating temperature of $18^{\circ}-28^{\circ}$ and relative humidity less than 80%. The presentation for accuracy is: \pm (**% reading digits + number of lower digits).

AC Voltage/DC Voltage + AC Voltage

Range F	Resolution	Accuracy			
		40Hz-1kHz	1kHz-10kHz	10kHz-20kHz	
50mV	0.001mV	±(0.5%+40)	±(1%+40)	±(2,5%+40)	
500mV	0.01mV	±(0.5%+40)	±(1%+40)	±(2,5%+40)	
5V	0.1mV	±(0.5%+40)	±(1%+40)	±(2,5%+40)	
50V	1mV	±(0.5%+40)	±(1%+40)	±(2,5%+40)	
500V	10mV	±(0.5%+40)	±(1%+40)	unspecified	
1000V	0.1V	±(0.5%+40)	unspecified	unspecified	

Notes: above accuracies can be guaranteed within 10%-100% of the full range.

• DC Voltage

Range	Resolution	Accuracy
50mV	0.001mV	±(0.03%+10)
500mV	0.01mV	±(0.03%+6)
5V	0.1mV	±(0.03%+6)
50V	1mV	±(0.03%+6)
500V	10mV	±(0.03%+6)
1000V	0.1V	±(0.03%+6)

Notes: above accuracies can be guaranteed within the full range

• AC Current/DC Current+AC Current

Range	Resolution	Accuracy			Voltage Drop
		40Hz-1kHz	1kHz-10kHz	10kHz-20kHz	
500µA	0.01 µA	±(0.75%+20)	±(1%+20)	±(2%+20)	102µV/µA
5000 µA	0.1µA	±(0.75%+10)	±(1%+10)	±(2%+10)	
50mA	1 μΑ	±(0.75%+20)	±(1%+20)	±(2%+20)	1.5mV/mA
500mA	10 µA	±(0.75%+10)	±(1%+10)	±(2%+10)	
5A	0.1mA	±(0.75%+20)	±(1.5%+20)	±(2%+20)	30mV/A
10A	1mA	±(1%+10)	±(1.5%+10)	unpecified	

Notes: above accuracies can be guaranteed within 10%-100% of the full range

• DC Current

Range	Resoluton	Accuracy	Voltage Drop
500µA	0.01µA	±(0.15%+15)	102
5000µA	0.1µA	±(0.15%+10)	102μV/μA
50mA	1μΑ	±(0.15%+10)	
500mA	10µA	±(0.15%+10)	1.5mV/mA
5A	0.1mA	±(0.5%+10)	
10A	1mA	±(0.5%+10)	30mV/A

Notes: above accuracies can be guaranteed within the full range

Resistance

Range	Resolution	Accuracy
500Ω	0.01 Ω	±(0.1%+10)
5k Ω	0.1 Ω	±(0.1%+5)
50k Ω	1 Ω	±(0.1%+5)
500k Ω	10 Ω	±(0.1%+5)
5Μ Ω	100 Ω	±(0.1%+10)
50Μ Ω	1k Ω	±(0.5%+10)

Notes: above accuracies can be guaranteed within the full range

• Capacitance

Range	Resolution	Accuracy	
50nF	0.01nF	±(1%+5)	
500nF	0.1nF	±(1%+5)	
5µF	1nF	±(1%+5)	
50 µF	10nF	±(1%+5)	
500 μF	0.1 µF	±(2%+5)	
5000 μF	1 μF	±(2%+5)	

Notes: above accuracies for film capacitor or better can be guaranteed within the full range.

• Diode

Range	Resolution	Accuracy
2.5V	0.1mV	±(1%+5)

Notes: the test current is about 0.7mA

• Logic Frequency

Frequency Range	Sensitivity	Accuracy
5Hz-2MHz	Vp 2~5V (square wave)	±(0.006%+4)

• Linear Frequency

Frequency Range	Voltage/Current Range	Sensitivity	Accuracy
	500mV	100mV	
	5V	0.5V	
5Hz ~ 200kHz	50V	4V	
(sine-wave)	500V	40V	±(0.006%+4)
	1000V	400V	
	5000μΑ	1mA	
	500mA	100mA	

Notes: Low voltage or low frequency would lower the accuracy.

Duty Ratio

Frequency Range	Duty Ratio Range	Resolution	Accuracy
5Hz~500kHz	5% ~ 95%	0.01%	±(2%+5)

Chapter 5. Maintenance

Replacement of Batteries

If symbol eppears on the LCD screen during measurement, it indicates the total voltage of batteries being lower than 6.8V. For ensuring measurement accuracy, it is necessary to replace the batteries. Before the replacement, must take off the red and black testing lines from the measured circuit and turn off the power of the meter. Loose the fixing screws of the cover by a standard screwdriver, then remove the cover to take out all the old batteries, replacing them with the 7# batteries. Take care to put in the batteries as the polarity specified on the shell of the meter. Put the cover as its origin. The meter must not be used until the cover of batteries being put properly and locked in.

Replacement of Fuse

It must take off the red and black testing lines from the measured circuit and turn off the power of the meter before replacement of fuse. It should only use fuse of the same model and the same electric specifications. Two fuses must not be put wrong in positions during their replacement. And the meter must not be used until the cover of fuses being put properly and locked in. Notes: generally, fuses will not be blown under the normal use of the meter. In case of blowing it is necessary first to find out the reasons for the blowing and then take an account on the use of the meter. Generally, blowing may attribute to:

- Perform voltage measurement when the rotary switch being in the position of current.
- Current exceeds range.

Meter Calibration

There is no any component which can be used for calibration in the meter, calibration of the meter is implemented depending on the built-in software in the meter. Professionals and accuracy-evenhigher standard signal sources are required for calibration of the meter. Users possessing such conditions may contact us for calibration methods when there is a need on calibration meter, while those who having not such conditions can contact us for calibration matters.

Others

- In case of any default being found this meter must not be used continuously.
- When the meter needs repair, please send it to experienced professionals or the appointed maintenance department for repairing.

• It should use soft cloth but not organic solvents which have corrosive and dissolving effect on the shell of meter to clean the meter, and it should guard against water dropping into the meter.

##