

Function Diagram

Your advantages

- Reliable temperature monitoring of motors
- Rapid fault location

Features

- According to EN 60947-5-1, EN 60947-8
- Monitioring of
- overtemperature
- broken wire detection in sensor circuit
- short circuit detection in sensor circuit
- 1 input for 1 to 6 PTC-resistors
- De-energized on trip
- LED-indicator for
- auxiliary supply
- state of contact
- Output with 2 changeover contacts
- As option with manual reset, internal reset button and external remote reset X1/X2
- Wire connection: also $2 \times 1.5 \mathrm{~mm}^{2}$ stranded ferruled, or $2 \times 2.5 \mathrm{~mm}^{2}$ solid DIN 46 228-1/-2/-3/-4
- As option with pluggable terminal blocks for easy exchange of devices
- with screw terminals
- or with cage clamp terminals
- Width 22.5 mm

Approvals and Markings

$C \in$ ©

${ }^{1)}$ Approval not for all variants; on request

Applications

- To protect against thermal overload of motors caused by high switching frequency, havy duty starting, phase failure on one phase, bad cooling, high ambient temperature
- Temperature monitoring of bearings, transmissions, oil and cooling liquids.

Function

If one of the sensors in the measuring circuit reaches the response temperature (or broken wire is detected), the device indicates failure. This failure is stored in the device with manual reset, even if the temperature goes back to normal. The unit can be reset by pressing the Test/Reset button, by bridging $\mathrm{X} 1 / \mathrm{X} 2$ for a short moment or by disconnecting the auxiliary supply for a short time.
Test/Reset button:
Besides the reset function this button provides in normal operation a test facility. The unit indicates fault as long as the button is activated (see also under "Variants").

Indicators	
green LED:	on, when auxiliary supply connected on, when overtemperature or broken red LED:
	wire, short circuit is detected

Technical Data

Input Circuit

Response value:	$3.2 \ldots 3.8 \mathrm{k} \Omega$
Release value:	$1.5 \ldots 1.8 \mathrm{k} \Omega$
Broken wire detection:	$>3.8 \mathrm{k} \Omega$
Short circuit on measuring circuit:	$<20 \Omega$
Loading of measuring	
circuit:	$<5 \mathrm{~mW}$ (bei $\mathrm{R}=1.5 \mathrm{k} \Omega$)
Measuring voltage:	$\leq 2 \mathrm{~V}$ (bei $\mathrm{R}=1.5 \mathrm{k} \Omega$)

Auxiliary Circuit

Auxiliary voltage $\mathrm{U}_{\mathbf{H}}$:	AC/DC 24 V AC 110, 230, 400 V	$50 / 60 \mathrm{~Hz}$
Voltage range:	AC $0.8 \ldots 1.1 U_{H}$	
at 10% residual ripple:	DC $0.9 \ldots 1.25 \mathrm{U}_{\mathrm{H}}$	
at 48% residual ripple:	DC $0.8 \ldots 1.1 \mathrm{U}_{\mathrm{H}}$	
Nominal consumption:	AC: 1.5 VA	
	DC: 0.85 W	
Nominal frequency:	$50 / 60 \mathrm{~Hz}$	
Frequency range:	$45 . . .65 \mathrm{~Hz}$	
Max. bridging time on		
failure of aux. supply:	20 ms	
Operate delay:	$<40 \mathrm{~ms}$	
Release delay:	< 100 ms	
External Remote Reset		
Function:	External remote res contact (voltage free)	1/X2 with NO
Remark:	This input is not gal from measuring input	ic separated 1/P2

Output

Contacts:
Thermal current $I_{\text {th }}$:
Switching capacity
to AC 15
NO contacts:
NC contacts:
to DC 13:
Electrical life
at $4 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V}, \cos \varphi=0.6$:
Short-circuit strength
NC contact:
max. fuse rating:
NO contact:
max. fuse rating:
2 changeover contacts
5 A

$2 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}$	IEC/EN 60 947-5-1
$1 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}$	IEC/EN 60 947-5-1
$1 \mathrm{~A} / \mathrm{DC} 24 \mathrm{~V}$	IEC/EN 60 947-5-1
1.5×10^{6} switching cycles	
	IEC/EN 60 947-5-1
$6 \mathrm{AgG} / \mathrm{gL}$	
10 A gG / gL $\geq 30 \times 10^{6}$ switching cycles	

Technical Data

General Data

Operating mode:
Temperature range:
Operation:
Storage:
Altitude:
Clearance and creepage distances
rated impulse voltage /
pollution degree:
EMC
Interference suppressions:
Degree of protection
Housing:
Terminals:
Housing:

Vibration resistance:

Climate resistance: Terminal designation:
Wire connection
Screw terminals (integrated):

Insulation of wires or sleeve length:

4 kV / 2
IEC/EN 60 664-1
IEC/EN 60947-8
Limit value class B
EN 55011

IP 40
EC/EN 60529
IP 20
IEC/EN 60529
Thermoplastic with V0-behaviour according to UL subject 94
Amplitude 0.2 mm ,
frequency 10 ... 55 Hz , IEC/EN 60 068-2-6 20/060/04

IEC/EN 60 068-1
EN 50005
DIN 46 228-1/-2/-3/-4
$1 \times 4 \mathrm{~mm}^{2}$ solid or
$1 \times 2.5 \mathrm{~mm}^{2}$ stranded ferruled or
$2 \times 1.5 \mathrm{~mm}^{2}$ stranded ferruled or
$2 \times 2.5 \mathrm{~mm}^{2}$ solid

8 mm
Plug in with screw terminals
max. cross section for connection:

Insulation of wires
or sleeve length:
Plug in with cage clamp terminals max. cross section for connection:
min. cross section
for connection:
Insulation of wires
or sleeve length:
Wire fixing:

Fixing torque:
Mounting:
Weight:

Continous operation
$-20 \ldots+60^{\circ} \mathrm{C}$
$-20 \ldots+60^{\circ} \mathrm{C}$
<2.000 m
$1 \times 2.5 \mathrm{~mm}^{2}$ solid or
$1 \times 2.5 \mathrm{~mm}^{2}$ stranded ferruled
8 mm
$1 \times 4 \mathrm{~mm}^{2}$ solid or
$1 \times 2.5 \mathrm{~mm}^{2}$ stranded ferruled
$0.5 \mathrm{~mm}^{2}$
$12 \pm 0.5 \mathrm{~mm}$
Plus-minus terminal screws M 3.5 box terminals with wire protection or cage clamp terminals
max. 0.8 Nm
DIN rail
IEC/EN 60715
160 g

Dimensions
Width x height x depth
MK 9163N:
22.5 x $90 \times 102 \mathrm{~mm}$

MK 9163N PC:
MK 9163N PS:
$22.5 \times 111 \times 102 \mathrm{~mm}$
$22.5 \times 104 \times 102 \mathrm{~mm}$

CCC-Data		
Thermal current $\mathrm{I}_{\mathrm{th}}:$	4 A	
Switching capacity to AC 15: $1,5 \mathrm{~A} / \mathrm{AC} \mathrm{230} \mathrm{V}$ IEC/EN 60 947-5-1 to DC $13:$ $1 \mathrm{~A} / \mathrm{DC} 24 \mathrm{~V}$ IEC/EN 60 947-5-1		

Technical data that is not stated in the CCC-Data, can be found

Standard Type

MK9163N.12/100 AC230 V 50/60 Hz
Article number: 0054097

- with Test/Reset button
- Output:

2 changeover contacts

- Nominal voltage U_{N} :

AC 230 V

- Width:
22.5 mm

Variants

MK 9163N. 12 /

0 free
0 without short circuit detection
0 without RESET
1 with RESET and test function via built in button and X1/X2
2 with RESET and test function via built in button, at X1/X2 RESET function only
Available variants
MK 9163N. 12
MK 9163N.12/100
MK 9163N.12/200

Ordering example for variants

Options with Pluggable Terminal Blocks

Screw terminal (PS/plugin screw)

Cage clamp terminal
(PC/plugin cage clamp)

Notes

Removing the terminal blocks with cage clamp terminals

1. The unit has to be disconnected.
2. Insert a screwdriver in the side recess of the front plate.
3. Turn the screwdriver to the right and left.
4. Please note that the terminal blocks have to be mounted on the belonging plug in terminations.

Additional Remarks

Installation

The DC 24 V version has no galvianic separation between auxiliary supply (A1, A2) and the sensor circuit ($\mathrm{P}_{1}, \mathrm{P}_{2}$). These units are only allowed to be connected to transformers according to DIN EN 61558 or to battery supply.

Wiring

The sensor and control wires have to be installed separately from the motor wires. When strong inductive or capacitve influence is expected from parallel installed high courrent wires, screened wire should be used.

Wire length

The max. wire length of the sensor circuit is:

Diameter $\left(\mathrm{mm}^{2}\right):$	4	2.5	1.5	0.5
max. wire length $(\mathrm{m}):$	2×550	2×250	2×150	2×50

Application Example

