omROn

Lighted PushButton Switch

Cylindrical 8mm dia. Subminiature Series Featuring Short Mounting Depth

■ Round, square and rectangular LED pushbutton units.

■ Indicator types also available.
■ Requires only 18 mm mounting depth.
■ Efficiency in wiring improved by terminals arranged on the same level.
■ All LEDs, lamps, lenses and legends replaceable without tools.
■ Degree of protection conforms to IP40.

Ordering Information

Illuminated types

When placing your order, specify the individual component part numbers of the pushbutton unit, LED, lamp and switch unit, as listed in the ordering tables below.

- Pushbutton Unit

Lighted type, Built-in LED

	Rectangular	Square	Round
Red	A3DJ-500R	A3DA-500R	A3DT-500R
Yellow	A3DJ-500Y	A3DA-500Y	A3DT-500Y
Green	A3DJ-500GY	A3DA-500GY	A3DT-500GY
White	A3DJ-500W	A3DA-500W	A3DT-500W

Pushbutton Unit

Indicator
$\left.\begin{array}{|l|l|l|l|}\hline \text { Shape } & \text { Rectangular } & \text { Square } & \text { Round } \\ \text { Button } \\ \text { colour }\end{array}\right)$

■ Switch Unit

Degree of protection			IP40		
		Appearance	Rectangular	Square	Round
SPST-NO+ SPST-NC	Momentary	Solder	A3DJ-7111	A3DA-7111	A3DT-7111
		PCB	A3DJ-7112	A3DA-7112	A3DT-7112
	Alternate	Solder	A3DJ-7121	A3DA-7121	A3DT-7121
		PCB	A3DJ-7122	A3DA-7122	A3DT-7122
For Indication (without switch)		Solder	M2DJ-7001	M2DA-7001	M2DT-7001
		PCB	M2DJ-7002	M2DA-7002	M2DT-7002

Specifications

■ Contact Ratings

DC (Resistive load)	$0.1 \mathrm{~A}, 30 \mathrm{VDC}$

Note: The minimum permissible load is $1 \mathrm{~mA}, 5 \mathrm{VDC}$
■ Built-in LED Ratings

Item	LED colour	Red	Yellow	Green
Forward voltage $\mathbf{V}_{\mathbf{F}}$	Standard value*	1.7 V	2.2 V	1.7 V
	Max. value	2.0 V	2.5 V	2.0 V
Forward current $\mathbf{I}_{\mathbf{F}}$	Standard value*	20 mA	20 mA	20 mA
	Absolute max. value	50 mA	50 mA	50 mA
Permissible loss $\mathbf{P}_{\mathbf{D}}$	Absolute max. value	100 mW	125 mW	122 mW
Reverse voltage $\mathbf{V}_{\mathbf{R}}$	Absolute max. value	4 V	4 V	4 V

* Refer to V_{F} vs. I I_{F} characteristics in Hints on Correct Use. Because no resistor is incorporated in the LED, connect an appropriate external resistance within the above limit.

- Applicable load range

Note: The load range shown above is applicable only during
the standard conditions.
Characteristics

Operating frequency	Mechanical	Momentary-action type: 120 operations per minute max. Alternate-action type: 60 operations per minute max.
	Electrical	20 operations/minute max.
Insulation resistance		$100 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC)
Dielectric strength	$1,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 minute between terminals of same polarity $2,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 minute between terminals of different polarity and also between each terminal and ground	
Vibration	Malfunction	10 to $55 \mathrm{~Hz}, 1.5 \mathrm{~mm}$ double amplitude
Shock	Destruction	Approx. $500 \mathrm{~m} / \mathrm{s}^{2}(50 \mathrm{G})$
	Malfunction	Approx. $150 \mathrm{~m} / \mathrm{s}^{2}(15 \mathrm{G})$
Ambient temperature		Operating: $-10^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$
Humidity	Mechanical	Momentary-action type: $1,000,000$ operations min. Alternate-action type: 100,000 operations min.
Life expectancy	Electrical	100,000 operations min.
		Approx. 3 g
Weight		

Operating Characteristics

OF max.	250 g
RF min.	20 g
TT	$3.5 \pm 0.5 \mathrm{~mm}$
LTA min.	0.5 mm
PT max.	2.5 mm

Dimensions

Rectangular
A3DJ/M2DJ

Square
A3DA/M2DA

Round
A3DT/M2DT

Legend plate
A3DJ

Panel cutout

8 dia. ${ }_{-0}^{+0.2}$

A3DT

Terminals/Connections

Type Terminal	SPST-NO	Indicator
Solder Terminal	Lighted type Terminal hole (Bottom view)	Indicator LED terminal 0.3t Terminal hole (Bottom view)
PCB Terminal	Lighted type Mounting hole (Bottom view) (Bottom view)	Indicator LED terminal 0.3t (Bottom view) Mounting hole (Bottom view)

Accessories (Order Separately)

Name	Shape	Classification	Model	Remarks	
Socket		Wire-wrap terminal	A3D-4101	Cannot be used with insulation cover	
			PCB terminal	A3D-4102	
		Solder terminal	A3D-4103		
Tightening tool		-	A3D-3004	Useful for mounting switch units one after another. Do not over-tighten.	

Assembly/Disassembly

Mounting directions for switch and pushbutton unit

1. Insert the pushbutton unit in the switch unit so that the circular shaped claw outside the projection of the switch unit mates with the claw on the upper part of the switch unit.
2. The pressure applied during the insertion should be 2.5 kg max.
Note: If the LED terminal is bent, it may not align with the mating hole. Before insertion, check to see if any LED terminal is bent and, if so, straighten it. The inserting direction of the LED for the pushbutton unit is opposite to that for the indicator unit. Pay attention to the mounting direction of the legend plate.

Removing the pushbutton unit

While holding the recessed portions on both sides, firmly and steadily pull out the top of the pushbutton unit with your thumb and forefinger. Pulling out the cap with pliers or a similar tool will damage the cap.

Mounting the switch unit on panel

Nut mounting

- Insert the switch unit from the front of the panel and tighten the mounting nut inserted from the rear of the panel.
- Since a projection exists on the rear portion of the switch unit, if the mounting unit cannot be fitted into position, turn the nut slightly.
- The tightening torque of the mounting nut should be less than $5 \mathrm{~kg}-\mathrm{cm}$.
- Solder the terminals after mounting the nut. Otherwise, the terminals, when thickened by solder, may prevent the nut from being screwed down onto the switch unit.

Construction

Wiring

- Finish soldering within 5 seconds with a 30 watt soldering iron, or within 3 seconds at a solder temperature of $240^{\circ} \mathrm{C}$. To avoid deforming the softened plastic switch unit base, do not apply any force to the switch unit for about a minute after soldering.
- Use a non-corrosive, resin-based soldering flux.

Hints on Correct Use

LED

- Because no resistor is incorporated in the LED of the lighted pushbutton switch, connect an appropriate external resistor.
- Make sure that the resistance of the resistor is within the permissible range determined by the LED characteristics. The forward current of the LED must be 8 mA minimum.
- The resistance of the external resistor can be obtained by this equation:

$$
\begin{aligned}
& \mathrm{R}=\mathrm{E}-\mathrm{V}_{\mathrm{F}} / \mathrm{I}_{\mathrm{F}}(\Omega) \\
& \text { where, }
\end{aligned}
$$

E : operating voltage (V)

$$
\mathrm{V}_{\mathrm{F}} \text { : LED forward voltage (V) }
$$

$$
\mathrm{I}_{\mathrm{F}}: \text { LED forward current (mA) }
$$

Determine the resistance of the external resistor that satisfies the characteristics of the LED. However, the average LED forward current must be 8 mA or more.

- Example of resistance calculation

When using a red LED where $\mathrm{E}=24 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$ and $\mathrm{Ta}=25^{\circ} \mathrm{C}$, from the VFvs. IF characteristics on the right, forward voltage V_{F} is 1.7 V , when 20 mA of I_{F} flows through the LED. Substituting these values for the variables in the above equation,
$\mathrm{R}=24(\mathrm{~V})-1.7(\mathrm{~V})=1111(\Omega)$
$0.02(\mathrm{~A})$ (or 20 mA) (or $1.1 \mathrm{k} \Omega$)
Therefore, the estimated resistance is $1 \mathrm{k} \Omega, 1 \mathrm{~W}$.

