onsemi

High Speed Low Power CAN, CAN FD Transceiver

NCV7344

Description

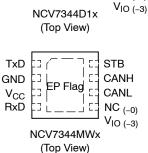
The NCV7344 CAN transceiver is the interface between a controller area network (CAN) protocol controller and the physical bus. The transceiver provides differential transmit capability to the bus and differential receive capability to the CAN controller.

The NCV7344 is an addition to the CAN high–speed transceiver family complementing NCV734x CAN stand–alone transceivers and previous generations such as AMIS42665, AMIS3066x, etc.

The NCV7344 guarantees additional timing parameters to ensure robust communication at data rates beyond 1 Mbps to cope with CAN flexible data rate requirements (CAN FD). These features make the NCV7344 an excellent choice for all types of HS–CAN networks, in nodes that require a low–power mode with wake–up capability via the CAN bus.

Features


- Compatible with ISO 11898–2:2016
- Specification for Loop Delay Symmetry up to 5 Mbps
- V_{IO} pin on NCV7344–3 Version Allowing Direct Interfacing with 3 V to 5 V Microcontrollers
- Very Low Current Standby Mode with Wake-up via the Bus
- Low Electromagnetic Emission (EME) and High Electromagnetic Immunity
- Very Low EME without Common-mode (CM) Choke
- No Disturbance of the Bus Lines with an Un-powered Node
- Transmit Data (TxD) Dominant Timeout Function
- Under All Supply Conditions the Chip Behaves Predictably
- Very High ESD Robustness of Bus Pins, >8 kV System ESD Pulses
- Thermal Protection
- Bus Pins Short Circuit Proof to Supply Voltage and Ground
- Bus Pins Protected Against Transients in an Automotive Environment
- These are Pb-free Devices


Quality

- Wettable Flank Package for Enhanced Optical Inspection
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable

Typical Applications

- Automotive
- Industrial Networks

ORDERING INFORMATION

See detailed ordering and shipping information on page 11 of this data sheet.

BLOCK DIAGRAM

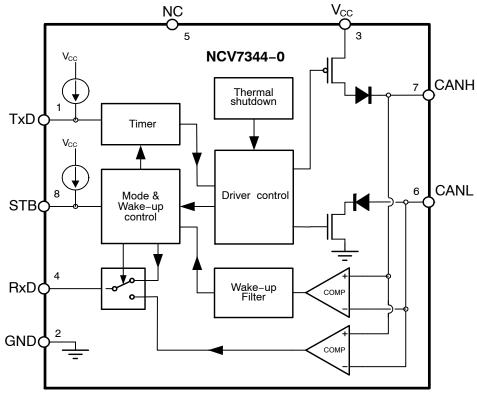


Figure 1. NCV7344-0 Block Diagram

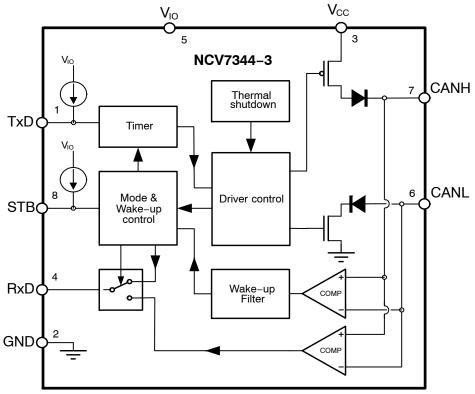
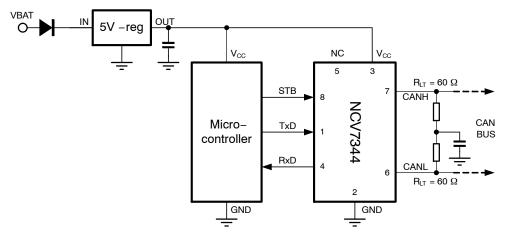
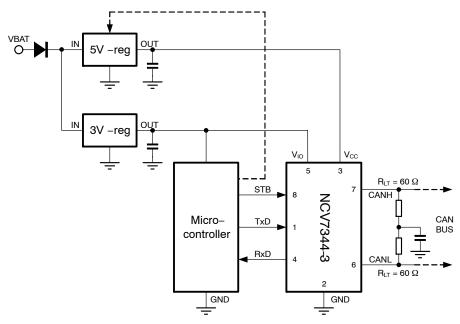




Figure 2. NCV7344–3 Block Diagram

TYPICAL APPLICATION

Table 1.	PIN	FUNCTION	DESCRIPTION
----------	-----	----------	-------------

Pin	Name	Description
1	TxD	Transmit data input; low input → dominant driver; internal pull-up current
2	GND	Ground
3	V _{CC}	Supply voltage
4	RxD	Receive data output; dominant transmitter → low output
5	NC	Not connected. On NCV7344–0 only
5	V _{IO}	Digital Input / Output pins and other functions supply voltage. On NCV7344-3 only
6	CANL	Low-level CAN bus line (low in dominant mode)
7	CANH	High-level CAN bus line (high in dominant mode)
8	STB	Standby mode control input; internal pull-up current
	EP	Exposed Pad. Recommended to connect to GND or left floating in application (DFN8 package only).

FUNCTIONAL DESCRIPTION

Operating Modes

NCV7344 provides two modes of operation as illustrated in Table 2. These modes are selectable through pin STB.

Table 2. OPERATING MODES

Pin STB	Mode	Pin RxD			
Low	Normal	Low when bus dominant	High when bus recessive		
High	Standby	Follows the bus when wake-up detected	High when no wake-up request detected		

Normal Mode

In the normal mode, the transceiver is able to communicate via the bus lines. The signals are transmitted and received to the CAN controller via the pins TxD and RxD. The slopes on the bus lines outputs are optimized to give low EME.

Standby Mode

In standby mode both the transmitter and receiver are disabled and a very low-power differential receiver monitors the bus lines for CAN bus activity. The bus lines are biased to ground and supply current is reduced to a minimum, typically 10 μ A. When a wake-up request is detected by the low-power differential receiver, the signal is first filtered and then verified as a valid wake signal after a time period of t_{wake_filt}, the RxD pin is driven low by the transceiver (following the bus) to inform the controller of the wake-up request.

Wake-up

When a valid wake–up pattern (phase in order dominant – recessive – dominant) is detected during the standby mode the RxD pin follows the bus. Minimum length of each phase is t_{wake} filt – see Figure 5.

Pattern must be received within t_{wake_to} to be recognized as valid wake-up otherwise internal logic is reset.

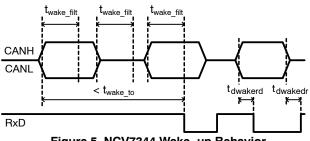


Figure 5. NCV7344 Wake-up Behavior

Overtemperature Detection

A thermal protection circuit protects the IC from damage by switching off the transmitter if the junction temperature exceeds a value of approximately 180°C. Because the transmitter dissipates most of the power, the power dissipation and temperature of the IC is reduced. All other IC functions continue to operate. The transmitter off–state resets when the temperature decreases below the shutdown threshold and pin TxD goes high. The thermal protection circuit is particularly needed when a bus line short circuits.

TxD Dominant Timeout Function

A TxD dominant timeout timer circuit prevents the bus lines being driven to a permanent dominant state (blocking all network communication) if pin TxD is forced permanently low by a hardware and/or software application failure. The timer is triggered by a negative edge on pin TxD. If the duration of the low–level on pin TxD exceeds the internal timer value $t_{dom(TxD)}$, the transmitter is disabled, driving the bus into a recessive state. The timer is reset by a positive edge on pin TxD.

This TxD dominant timeout time $t_{dom(TxD)}$ defines the minimum possible bit rate to 17 kbps.

Fail Safe Features

A current–limiting circuit protects the transmitter output stage from damage caused by accidental short circuit to either positive or negative supply voltage, although power dissipation increases during this fault condition.

Standby undervoltage on VCC pin prevents the chip sending data on the bus when there is not enough VCC supply voltage by entering standby mode. Undervoltage detection on VIO pin (NCV7344–3 version only) also causes transition to standby mode. Switch–off undervoltage detection level on supply pin(s) forces transceiver to disengage from the bus until the supply is recovered. After supply is recovered TxD pin must be first released to high to allow sending dominant bits again. Recovery time from undervoltage detection is equal to td(stb–nm) time.

The pins CANH and CANL are protected from automotive electrical transients (according to ISO 7637; see Figure 7). Pins TxD and STB are pulled high internally should the input become disconnected. Pins TxD, STB and RxD will be floating, preventing reverse supply should the VCC supply be removed.

VIO Supply Pin

The V_{IO} pin (available only on NCV7344–3 version) should be connected to microcontroller supply pin. By using V_{IO} supply pin shared with microcontroller the I/O levels between microcontroller and transceiver are properly adjusted. See Figure 4. Pin V_{IO} also provides the internal supply voltage for low–power differential receiver of the transceiver. This allows detection of wake–up request even when there is no supply voltage on pin V_{CC} .

ELECTRICAL CHARACTERISTICS

Definitions

All voltages are referenced to GND (pin 2). Positive currents flow into the IC. Sinking current means the current

is flowing into the pin; sourcing current means the current is flowing out of the pin.

ABSOLUTE MAXIMUM RATINGS

Table 3. ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Min	Max	Unit
V _{SUP}	Supply voltage V _{CC} , V _{IO}		-0.3	+6	V
V _{CANH}	DC voltage at pin CANH	$0 < V_{CC} < 5.25 V$; no time limit	-42	+42	V
V _{CANL}	DC voltage at pin CANL	$0 < V_{CC} < 5.25 V$; no time limit	-42	+42	V
V _{CANH-CANL}	DC voltage between CANH and CANL		-42	+42	V
V _{I/O}	DC voltage at pin TxD, RxD, STB		-0.3	+6	V
V _{esdHBM}	Electrostatic discharge voltage at all pins, Component HBM	(Note 1)	-8	+8	kV
V _{esdCDM}	Electrostatic discharge voltage at all pins, Component CDM	(Note 2)	-750	+750	V
V _{esdIEC}	Electrostatic discharge voltage at pins CANH and CANL, System HBM (Note 4)	(Note 3)	-8	+8	kV
V _{schaff}	Voltage transients, pins CANH, CANL. According	test pulses 1	-100		V
	to ISO7637–3, Class C (Note 4)	test pulses 2a		+75	V
		test pulses 3a	-150		V
		test pulses 3b		+100	V
Latch-up	Static latch-up at all pins	(Note 5)		150	mA
T _{stg}	Storage temperature		-55	+150	°C
TJ	Maximum junction temperature		-40	+170	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Standardized human body model electrostatic discharge (ÉSD) pulses in accordance to EIA–JESD22. Equivalent to discharging a 100 pF capacitor through a 1.5 kΩ resistor.

2. Standardized charged device model ESD pulses when tested according to AEC-Q100-011

System human body model electrostatic discharge (ESD) pulses in accordance to IEC 61000-4-2. Equivalent to discharging a 150 pF capacitor through a 330 Ω resistor referenced to GND.

4. Results were verified by external test house.

5. Static latch-up immunity: Static latch-up protection level when tested according to EIA/JESD78.

Table 4. THERMAL CHARACTERISTICS

Parameter	Symbol	Value	Unit
Thermal characteristics, SOIC-8 (Note 6) Thermal Resistance Junction-to-Air, Free air, 1S0P PCB (Note 7) Thermal Resistance Junction-to-Air, Free air, 2S2P PCB (Note 8)	${\sf R}_{ heta {\sf J} {\sf A}} {\sf R}_{ heta {\sf J} {\sf A}}$	131 81	°C/W °C/W
Thermal characteristics, DFN8 (Note 6) Thermal Resistance Junction-to-Air, Free air, 1S0P PCB (Note 7) Thermal Resistance Junction-to-Air, Free air, 2S2P PCB (Note 8)	${\sf R}_{ heta {\sf J}{\sf A}} \ {\sf R}_{ heta {\sf J}{\sf A}}$	125 58	°C/W °C/W

6. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe Operating parameters.

7. Values based on test board according to EIA/JEDEC Standard JESD51-3, signal layer with 10% trace coverage.

8. Values based on test board according to EIA/JEDEC Standard JESD51-7, signal layers with 10% trace coverage.

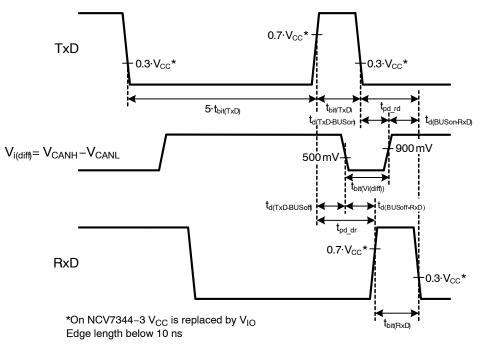
ELECTRICAL CHARACTERISTICS

Table 5. ELECTRICAL CHARACTERISTICS V_{CC} = 4.75 V to 5.25 V; V_{IO} = 2.8 to 5.25 V; T_J = -40 to +150°C; R_{LT} = 60 Ω , C_{LT} = 100 pF, C₁ not used, C_{RxD} = 15 pF unless specified otherwise.

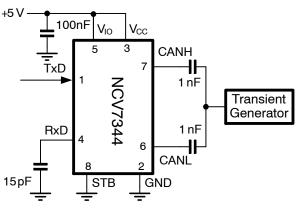
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
SUPPLY (Pin V	cc)	-		-	-	-
V _{CC}	Power supply voltage	(Note 9)	4.75	5	5.25	V
I _{CC}	Supply current	Dominant; V _{TxD} = Low	20	45	70	mA
		Recessive; V _{TxD} = High	1.9	5	10	mA
I _{CCS}	Supply current in standby mode	T _J ≤ 100°C, (Note 10)	-	10	15	μA
V _{UVD(VCC)(stby)}	Standby undervoltage detection V_{CC} pin		3.5	4	4.3	V
V _{UVD(VCC)(swoff)}	Switch-off undervoltage detection V_{CC} pin		2.0	2.3	2.6	V
V _{IO} SUPPLY VO	LTAGE (Pin V _{IO}) Only for NCV7344–3 version					
V _{IO}	Supply voltage on pin V _{IO}		2.8	-	5.5	V
I _{IOS}	Supply current on pin V_{IO} in standby mode	$T_J \le 100^{\circ}C$, (Note 10)	-	-	11	μA
I _{CCS}	Supply current on pin V_{CC} in standby mode	$T_J \le 100^{\circ}C$, (Note 10)	-	0	4.0	μA
I _{IONM}	Supply current on pin V _{IO} during normal	Dominant; V _{TxD} = Low	0.45	0.65	0.9	mA
	mode	Recessive; V _{TxD} = High	0.32	0.43	0.58	
V _{UVDVIO}	Undervoltage detection voltage on V _{IO} pin		2.0	2.3	2.6	V
TRANSMITTER	DATA INPUT (Pin TxD)			-		
V _{IH}	High-level input voltage	Output recessive	2.0	-	-	V
V _{IL}	Low-level input voltage	Output dominant	-	_	0.8	V
I _{IH}	High-level input current	$V_{TxD} = V_{CC}/V_{IO}$	-5	0	+5	μA
۱ _{IL}	Low-level input current	V _{TxD} = 0 V	-300	-150	-75	μA
Ci	Input capacitance	(Note 10)	-	5	10	pF
TRANSMITTER	MODE SELECT (Pin STB)					
V _{IH}	High-level input voltage	Standby mode	2.0	-	-	V
V _{IL}	Low-level input voltage	Normal mode	-	-	0.8	V
I _{IH}	High-level input current	$V_{STB} = V_{CC}/V_{IO}$	-1	0	+1	μA
IIL	Low-level input current	V _{STB} = 0 V	-15	_	-1	μA
Ci	Input capacitance	(Note 10)	-	5	10	pF
RECEIVER DAT	A OUTPUT (Pin RxD)				•	•
I _{OH}	High-level output current	Normal mode $V_{RxD} = V_{CC}/V_{IO} - 0.4 V$	-8	-3	-1	mA
I _{OL}	Low-level output current	V _{RxD} = 0.4 V	1	6	12	mA
BUS LINES (Pir	ns CANH and CANL)					
I _{o(rec)}	Recessive output current at pins CANH and CANL	–27 V < V _{CANH} , V _{CANL} < +32 V; Normal mode	-5	-	+5	m/
I _{LI}	Input leakage current	0 Ω < R(V _{CC} to GND) < 1 M Ω V _{CANL} = V _{CANH} = 5 V	-5	0	+5	μΑ
V _{o(rec)(CANH)}	Recessive output voltage at pin CANH	Normal mode, V _{TxD} = High; R _{LT} and C _{LT} not used	2.0	2.5	3.0	V
V _{o(rec)(CANL)}	Recessive output voltage at pin CANL	Normal mode, V _{TxD} = High; R _{LT} and C _{LT} not used	2.0	2.5	3.0	V
V _{o(off)(CANH)}	Recessive output voltage at pin CANH	Standby mode; R _{LT} and C _{LT} not used	-0.1	0	0.1	V

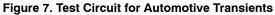
Table 5. ELECTRICAL CHARACTERISTICS $V_{CC} = 4.75$ V to 5.25 V; $V_{IO} = 2.8$ to 5.25 V; $T_{J} = -40$ to $+150^{\circ}$ C; $R_{LT} = 60 \Omega$,	
C_{LT} = 100 pF, C_1 not used, C_{RxD} = 15 pF unless specified otherwise.	

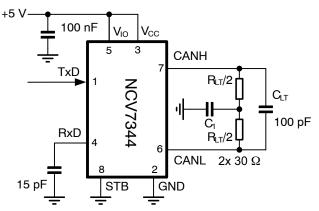
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
BUS LINES (Pin	is CANH and CANL)					
V _{o(off)(CANL)}	Recessive output voltage at pin CANL	Standby mode; R_{LT} and C_{LT} not used	-0.1	0	0.1	V
$V_{o(off)(diff)}$	Differential bus output voltage (V _{CANH} – V _{CANL})	Standby mode; R_{LT} and C_{LT} not used	-0.2	0	0.2	V
V _{o(dom)} (CANH)	Dominant output voltage at pin CANH	$\begin{array}{l} V_{TxD} = 0 \text{ V}; t < t_{dom(TxD);} \\ 50 \Omega < \text{R}_{LT} < 65 \Omega \end{array}$	2.75	3.5	4.5	V
V _{o(dom)(CANL)}	Dominant output voltage at pin CANL	$\begin{array}{l} V_{TxD} = 0 \text{ V}; t < t_{dom(TxD);} \\ 50 \Omega < \text{R}_{LT} < 65 \Omega \end{array}$	0.5	1.5	2.25	V
V _{o(dom)(diff)}	Differential bus output voltage (V _{CANH} – V _{CANL})	V_{TxD} = 0 V; dominant; 45 Ω < R _{LT} < 65 Ω	1.5	2.25	3.0	V
V _{o(dom)(diff)_arb}	Differential bus output voltage during arbitration (V _{CANH} – V _{CANL})	$R_{LT} = 2.24 \text{ k}\Omega$ (Note 10)	1.5	-	5.0	V
V _{o(rec)(diff)}	Differential bus output voltage (V _{CANH} – V _{CANL})	V_{TxD} = High; recessive; no load	-50	0	+50	mV
V _{o(dom)(sym)}	Dominant output voltage driver symmetry (V _{CANH} + V _{CANL})	$R_{LT} = 60 \ \Omega; C_1 = 4.7 \ nF;$ TxD = square wave up to 1 MHz	0.9	1.0	1.1	V _{CC}
I _{o(sc)(CANH)}	Short circuit output current at pin CANH	–3 V < V _{CANH} < +18 V	-100	-70	1.5	mA
I _{o(sc)(CANL)}	Short circuit output current at pin CANL	–3 V < V _{CANL} < +36 V	-1.5	70	100	mA
$V_{i(\text{rec})(\text{diff})_\text{NM}}$	Differential input voltage range recessive state	Normal or Silent mode; −12 V ≤ V _{CANH} , V _{CANL} ≤ +12 V; no load	-3.0	-	0.5	V
V _{i(rec)(diff)_LP}		Standby or Sleep mode; $-12 V \le V_{CANH}$, $V_{CANL} \le +12 V$; no load	-3.0		0.4	V
V _{i(dom)(diff)_NM}	Differential input voltage range dominant state	Normal or Silent mode; $-12 V \le V_{CANH}$, $V_{CANL} \le +12 V$; no load	0.9	-	8.0	V
$V_{i(\text{dom})(\text{diff})_\text{LP}}$		Standby or Sleep mode; $-12 V \le V_{CANH}$, $V_{CANL} \le +12 V$; no load	1.05		8.0	V
$V_{i(\text{diff})(\text{th})_\text{NORM}}$	Differential receiver threshold voltage in normal mode	$\begin{array}{l} -12~V \leq V_{CANL} \leq +12~V; \\ -12~V \leq V_{CANH} \leq +12~V \end{array}$	0.5	-	0.9	V
V _{i(diff)(th)_NORM_H}	Differential receiver threshold voltage in normal mode, extended range	–30 V < V _{CANL} < +35 V; –30 V < V _{CANH} < +35 V	0.4	-	1.0	V
$V_{i(\text{diff})(\text{th})_\text{STDBY}}$	Differential receiver threshold voltage in standby mode	$\begin{array}{c} -12~V \leq V_{CANL} \leq +12~V; \\ -12~V \leq V_{CANH} \leq +12~V \end{array}$	0.4	-	1.05	V
R _{i(cm)(CANH)}	Common-mode input resistance at pin CANH	$\begin{array}{c} -2 \ V \leq V_{CANH} \leq +7 \ V; \\ -2 \ V \leq V_{CANL} \leq +7 \ V \end{array}$	15	26	37	kΩ
R _{i(cm)(CANL)}	Common-mode input resistance at pin CANL	$\begin{array}{c} -2 \ V \leq V_{CANH} \leq +7 \ V; \\ -2 \ V \leq V_{CANL} \leq +7 \ V \end{array}$	15	26	37	kΩ
R _{i(cm)(m)}	Matching between pin CANH and pin CANL common mode input resistance	V _{CANH} = V _{CANL} = +5 V	-1	0	+1	%
R _{i(diff)}	Differential input resistance	$\begin{array}{c} -2 \ V \leq V_{CANH} \leq +7 \ V; \\ -2 \ V \leq V_{CANL} \leq +7 \ V \end{array}$	25	50	75	kΩ
C _{i(CANH)}	Input capacitance at pin CANH	V _{TxD} = High; (Note 10)	-	7.5	20	pF
C _{i(CANL)}	Input capacitance at pin CANL	V _{TxD} = High; (Note 10)	-	7.5	20	pF
C _{i(diff)}	Differential input capacitance	V _{TxD} = High; (Note 10)	-	3.75	10	pF


Table 5. ELECTRICAL CHARACTERISTICS $V_{CC} = 4.75$ V to 5.25 V; $V_{IO} = 2.8$ to 5.25 V; $T_J = -40$ to $+150^{\circ}C$; $R_{LT} = 60 \Omega$,	
C_{LT} = 100 pF, C_1 not used, C_{RxD} = 15 pF unless specified otherwise.	

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
TIMING CHARA	CTERISTICS (see Figures 6 and 8)					
t _{d(TxD-BUSon)}	Delay TxD to bus active		-	75	-	ns
t _{d(TxD-BUSoff)}	Delay TxD to bus inactive		-	85	-	ns
t _{d(BUSon-RxD)}	Delay bus active to RxD		-	24	-	ns
t _{d(BUSoff-RxD)}	Delay bus inactive to RxD		-	32	-	ns
t _{pd_dr}	Propagation delay TxD to RxD dominant to recessive transition		50	100	210	ns
t _{pd_rd}	Propagation delay TxD to RxD recessive to dominant transition		50	120	210	ns
t _{d(stb-nm)}	Delay standby mode to normal mode		5	11	20	μs
t _{wake_filt}	Filter time for wake-up via bus	NCV7344 version	0.5	-	5	μs
		NCV7344A version	0.15	-	1.8	μs
t _{dwakerd}	Delay to flag wake event (recessive to dominant transitions)	Valid bus wake-up event	0.5	2.6	6	μs
t _{dwakedr}	Delay to flag wake event (dominant to recessive transitions)	Valid bus wake-up event	0.5	2.6	6	μs
t _{wake_to}	Bus time for wake-up timeout	Standby mode	1	-	10	ms
t _{dom(TxD)}	TxD dominant time for timeout	V _{TxD} = Low; Normal mode	1	-	10	ms
t _{Bit(RxD)}	Bit time on RxD pin	t _{Bit(TxD)} = 500 ns	400	-	550	ns
		t _{Bit(TxD)} = 200 ns	120	-	220	ns
t _{Bit(Vi(diff))}	Bit time on bus (CANH – CANL pin)	t _{Bit(TxD)} = 500 ns	435	-	530	ns
		t _{Bit(TxD)} = 200 ns	155	-	210	ns
Δt_{Rec}	Receiver timing symmetry	t _{Bit(TxD)} = 500 ns	-65	-	+40	ns
	$\Delta t_{Rec} = t_{Bit(RxD)} - t_{Bit(Vi(diff))}$	t _{Bit(TxD)} = 200 ns	-45	-	+15	ns
THERMAL SHU	TDOWN					


Shutdown junction temperature Junction temperature rising $T_{J(sd)}$ 160 180 200 °C In the range between VUVD(VCC)(stby) and 4.75 V and from 5.25 V to 6 V the chip is fully functional; some parameters may be outside of the specification.


10. Values based on design and characterization, not tested in production


MEASUREMENT SETUPS AND DEFINITIONS

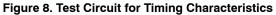
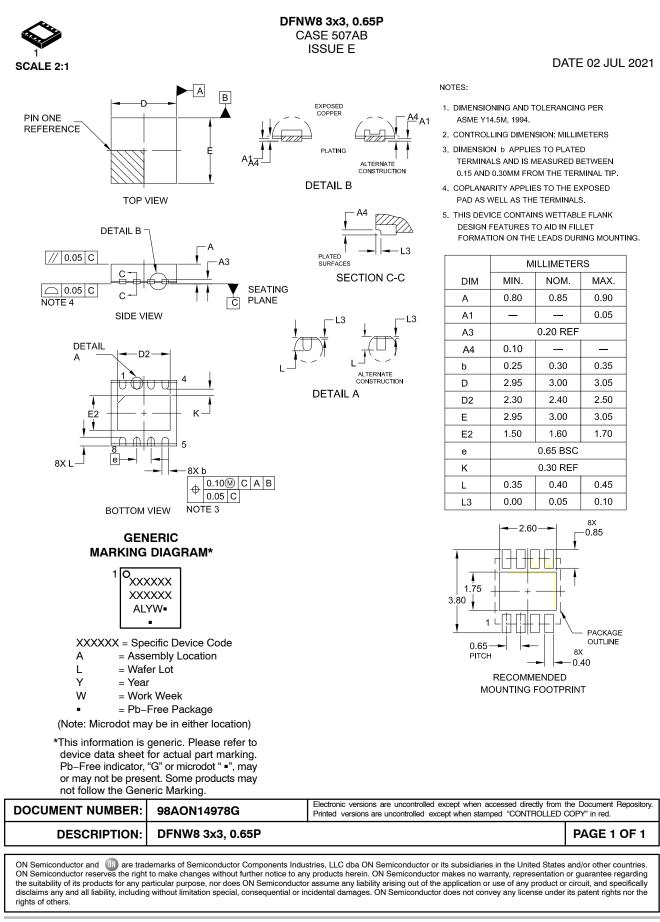


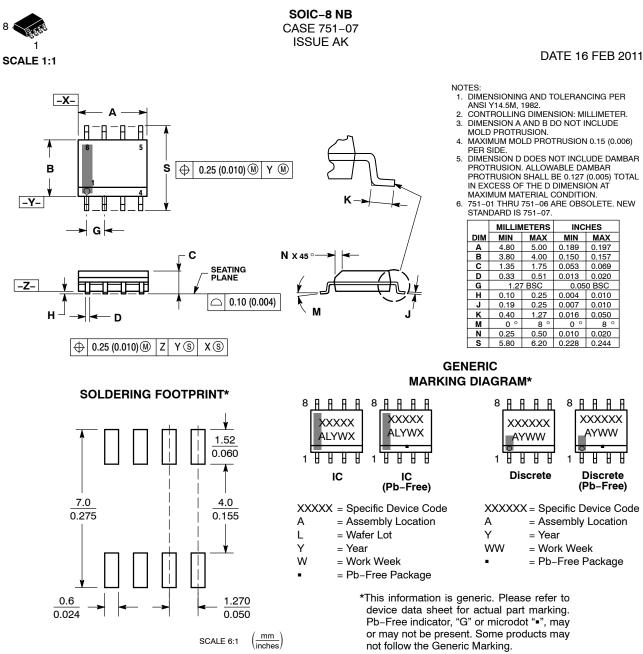
Table 6. ISO 11898-2:2016 Parameter Cross-Reference Table

ISO 11898-2:2016 Specification			
Parameter	Notation	Symbol	
Dominant output characteristics			
Single ended voltage on CAN_H	V _{CAN_H}	V _{o(dom)(CANH)}	
Single ended voltage on CAN_L	V _{CAN_L}	V _{o(dom)(CANL)}	
Differential voltage on normal bus load	V _{Diff}	V _{o(dom)(diff)}	
Differential voltage on effective resistance during arbitration	V _{Diff}	V _{o(dom)(diff)_arb}	
Differential voltage on extended bus load range (optional)	V _{Diff}	V _{o(dom)(diff)}	
Driver symmetry			
Driver symmetry	V _{SYM}	V _{o(dom)(sym)}	
Driver output current			
Absolute current on CAN_H	I _{CAN_H}	I _{0(SC)(CANH)}	
Absolute current on CAN_L	I _{CAN_L}	I _{o(SC)(CANL)}	
Receiver output characteristics, bus biasing active	•		
Single ended output voltage on CAN_H	V _{CAN_H}	V _{o(rec)(CANH)}	
Single ended output voltage on CAN_L	V _{CAN_L}	V _{o(rec)(CANL)}	
Differential output voltage	V _{Diff}	V _{o(rec)(diff)}	
Receiver output characteristics, bus biasing inactive			
Single ended output voltage on CAN_H	V _{CAN_H}	V _{o(off)(CANH)}	
Single ended output voltage on CAN_L	V _{CAN_L}	V _{o(off)(CANL)}	
Differential output voltage	V _{Diff}	V _{o(off)(diff)}	
Optional transmit dominant timeout			
Transmit dominant timeout, long	t _{dom}	t _{dom(TxD)}	
Transmit dominant timeout, short	t _{dom}	NA	
Static receiver input characteristics, bus biasing active			
Recessive state differential input voltage range	V _{Diff}	V _{i(rec)(diff)_NM}	
Dominant state differential input voltage range	V _{Diff}	V _{i(dom)(diff)_NM}	
Static receiver input characteristics, bus biasing inactive			
Recessive state differential input voltage range	V _{Diff}	V _{i(rec)(diff)_LP}	
Dominant state differential input voltage range	V _{Diff}	V _{i(dom)(diff)_LP}	
Receiver input resistance			
Differential internal resistance	R _{Diff}	R _{i(diff)}	
Single ended internal resistance	R _{CAN_H} R _{CAN_L}	R _{i(cm)(CANH)} R _{i(cm)(CANL)}	
Receiver input resistance matching	•		
Matching a of internal resistance	m _R	R _{i(cm)(m)}	
Implementation loop delay requirement			
Loop delay	t _{Loop}	t _{pd_rd} t _{pd_dr}	
Optional implementation data signal timing requirements for use with bit rates	above 1 Mbit/s and up to 2	_	
Transmitted recessive bit width @ 2 Mbit/s	t _{Bit(Bus)}	t _{Bit(Vi(diff))}	
Received recessive bit width @ 2 Mbit/s	t _{Bit(RXD)}	t _{Bit(RxD)}	

Table 6. ISO 11898-2:2016 Parameter Cross-Re	ference Table
--	---------------


Parameter	Notation	Symbol
Receiver timing symmetry @ 2 Mbit/s	$\Delta t_{\sf Rec}$	Δ_{tRec}
Optional implementation data signal timing requirements for use with bit rates abov	e 2 Mbit/s and up to 5 I	Mbit/s
Transmitted recessive bit width @ 5 Mbit/s	t _{Bit(Bus)}	t _{Bit(Vi(diff))}
Transmitted recessive bit width @ 5 Mbit/s	t _{Bit(RXD)}	t _{Bit(RxD)}
Received recessive bit width @ 5 Mbit/s	Δt_{Rec}	Δt_{Rec}
Maximum ratings of V _{CAN_H} , V _{CAN_L} and V _{Diff}		
Maximum rating V _{Diff}	V _{Diff}	V _{CANH-CANL}
General maximum rating V_{CAN_H} and V_{CAN_L}	V _{CAN_H} V _{CAN_L}	V _{CANH} V _{CANL}
Optional: Extended maximum rating V_{CAN_H} and V_{CAN_L}	V _{CAN_H} V _{CAN_L}	NA
Maximum leakage currents on CAN_H and CAN_L, unpowered		
Leakage current on CAN_H, CAN_L	I _{CAN_H} I _{CAN_L}	Ι _{LI}
Bus biasing control timings		
CAN activity filter time, long	t _{Filter}	t _{wake_filt}
CAN activity filter time, short	t _{Filter}	t _{wake_filt}
Wake-up timeout, short	t _{Wake}	NA
Wake-up timeout, long	t _{Wake}	t _{wake_to}
Timeout for bus inactivity (Required for selective wake-up implementation only)	t _{Silence}	NA
Bus Bias reaction time (Required for selective wake-up implementation only)	t _{Bias}	NA

DEVICE ORDERING INFORMATION (High Speed Low Power CAN, CANFD Transceiver)


Part Number	Long FT	Short FT	Vio	NC	Temperature Range	Package	Shipping [†]	
NCV7344D10R2G	Х			Х	-			
NCV7344D13R2G	Х		Х			SOIC 150 8 GREEN (Matte		
NCV7344AD10R2G		Х		Х		Sn, JEDEC MS-012) (Pb-Free)		
NCV7344AD13R2G		Х	Х				3000 / Tape &	
NCV7344MW0R2G	Х			Х	–40°C to +150°C	DFN 8	Reel	
NCV7344MW3R2G	Х		Х					
NCV7344AMW0R2G		Х		Х	Wettable Flank (Pb-Free)			
NCV7344AMW3R2G		Х	Х					

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

onsemí

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOIC-8 NB		PAGE 1 OF 2		
onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.					

SOIC-8 NB CASE 751-07 **ISSUE AK**

ŝ

ę

ŝ

S

STYLE 1: PIN 1. EMITTER COLLECTOR 2. COLLECTOR З. 4. EMITTER EMITTER 5. BASE 6. 7 BASE EMITTER 8. STYLE 5: PIN 1. DRAIN 2. DRAIN 3. DRAIN DRAIN 4. GATE 5. 6. GATE SOURCE 7. 8. SOURCE STYLE 9: PIN 1. EMITTER, COMMON COLLECTOR, DIE #1 COLLECTOR, DIE #2 2. З. EMITTER, COMMON 4. 5. EMITTER, COMMON 6 BASE, DIE #2 BASE, DIE #1 7. 8. EMITTER, COMMON STYLE 13: PIN 1. N.C. 2. SOURCE 3 GATE 4. 5. DRAIN 6. DRAIN DRAIN 7. DRAIN 8. STYLE 17: PIN 1. VCC 2. V2OUT V10UT З. TXE 4. 5. RXE 6. VFF 7. GND 8. ACC STYLE 21: PIN 1. CATHODE 1 2. CATHODE 2 3 CATHODE 3 CATHODE 4 4. 5. CATHODE 5 6. COMMON ANODE COMMON ANODE 7. 8. CATHODE 6 STYLE 25: PIN 1. VIN 2 N/C З. REXT 4. GND 5. IOUT 6. IOUT IOUT 7. 8. IOUT STYLE 29: BASE, DIE #1 PIN 1. 2 EMITTER, #1 BASE, #2 З. EMITTER, #2 4. 5 COLLECTOR, #2 COLLECTOR, #2

STYLE 2: PIN 1. COLLECTOR, DIE, #1 2. COLLECTOR, #1 COLLECTOR, #2 3. 4 COLLECTOR, #2 BASE, #2 5. EMITTER, #2 6. 7 BASE #1 EMITTER, #1 8. STYLE 6: PIN 1. SOURCE 2. DRAIN 3. DRAIN SOURCE 4. SOURCE 5. 6. GATE GATE 7. 8. SOURCE STYLE 10: GROUND PIN 1. BIAS 1 OUTPUT 2. З. GROUND 4. 5. GROUND 6. BIAS 2 INPUT 7. 8. GROUND STYLE 14: PIN 1. N-SOURCE 2. N-GATE P-SOURCE 3 P-GATE 4. P-DRAIN 5. 6. P-DRAIN N-DRAIN 7. N-DRAIN 8. STYLE 18: PIN 1. ANODE 2. ANODE SOURCE 3. GATE 4. 5. DRAIN 6 DRAIN CATHODE 7. CATHODE 8. STYLE 22: PIN 1. I/O LINE 1 2. COMMON CATHODE/VCC COMMON CATHODE/VCC 3 I/O LINE 3 4. 5. COMMON ANODE/GND 6. I/O LINE 4 7. I/O LINE 5 COMMON ANODE/GND 8. STYLE 26: PIN 1. GND 2 dv/dt ENABLE З. 4. ILIMIT 5. SOURCE SOURCE 6. SOURCE 7. 8. VCC STYLE 30: PIN 1. DRAIN 1 2. DRAIN 1 GATE 2 З. SOURCE 2 4. SOURCE 1/DRAIN 2 SOURCE 1/DRAIN 2 5. 6.

2. 3. 4. 5. 6. 7.	DRAIN, DIE #1 DRAIN, #1 DRAIN, #2 DRAIN, #2 GATE, #2 GATE, #2 GATE, #1 SOURCE, #1
2. 3 4. (5. 6. (7.)	NPUT EXTERNAL BYPASS THIRD STAGE SOURCE GROUND DRAIN GATE 3 SECOND STAGE Vd FIRST STAGE Vd
2. (3. 5 4. (5. 1 6. 1 7. 1	Source 1 Gate 1 Source 2 Gate 2 Drain 2 Drain 2 Drain 1 Drain 1
2. / 3. / 4. / 5. () 6. () 7. ()	NODE 1 NODE 1 NODE 1 NODE 1 CATHODE, COMMON CATHODE, COMMON CATHODE, COMMON CATHODE, COMMON
2. 3. 4. 5. 6. 7. 8.	SOURCE 1 GATE 1 SOURCE 2 GATE 2 DRAIN 2 MIRROR 2 DRAIN 1 MIRROR 1
2. 3. 4. 5. 6. 7.	: LINE 1 IN COMMON ANODE/GND COMMON ANODE/GND LINE 2 IN LINE 2 OUT COMMON ANODE/GND COMMON ANODE/GND LINE 1 OUT
STYLE 2 PIN 1. 2. 3. 4. 5. 6. 7. 8.	27: ILIMIT OVLO UVLO INPUT+ SOURCE SOURCE SOURCE DRAIN

DATE 16 FEB 2011

STYLE 4: PIN 1. 2. ANODE ANODE ANODE З. 4. ANODE ANODE 5. 6. ANODE 7 ANODE COMMON CATHODE 8. STYLE 8: PIN 1. COLLECTOR, DIE #1 2. BASE, #1 BASE #2 3. COLLECTOR, #2 4. COLLECTOR, #2 5. 6. EMITTER, #2 EMITTER, #1 7. 8. COLLECTOR, #1 STYLE 12: PIN 1. SOURCE SOURCE 2. 3. GATE 4. 5. DRAIN 6. DRAIN DRAIN 7. 8. DRAIN STYLE 16: PIN 1. EMITTER, DIE #1 2. BASE, DIE #1 EMITTER, DIE #2 3 BASE, DIE #2 4. 5. COLLECTOR, DIE #2 6. COLLECTOR, DIE #2 COLLECTOR, DIE #1 7. COLLECTOR, DIE #1 8. STYLE 20: PIN 1. SOURCE (N) GATE (N) SOURCE (P) 2. 3. 4. GATE (P) 5. DRAIN 6. DRAIN DRAIN 7. 8. DRAIN STYLE 24: PIN 1. BASE EMITTER 2. 3 COLLECTOR/ANODE COLLECTOR/ANODE 4. 5. CATHODE 6. CATHODE COLLECTOR/ANODE 7. 8. COLLECTOR/ANODE STYLE 28: PIN 1. SW_TO_GND 2. DASIC OFF DASIC_SW_DET 3. 4. GND 5. 6. V MON VBULK 7. VBULK 8 VIN

DOCUMENT NUMBER:	98ASB42564B Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	SOIC-8 NB		PAGE 2 OF 2		
onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves					

SOURCE 1/DRAIN 2

7.

8 GATE 1

the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

6.

7.

8

COLLECTOR, #1

COLLECTOR, #1

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>