

Is Now Part of

ON Semiconductor ${ }^{\oplus}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore ($_$), the underscore ($_$) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

[^0]
Low-Voltage, 1 』 Dual SPST Analog Switch with Power-Off Isolation

Features

- Power-Off Isolation ($\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)
- 1Ω On Resistance (R_{ON}) for $4.5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$
- 0.25Ω Maximum $R_{\text {ON }}$ Flatness for $4.5 \mathrm{~V} \mathrm{~V}_{\mathrm{Cc}}$
- Space-Saving, US8 Surface Mount Package
- Broad V_{cc} Operating Range: 1.65 V to 5.50 V
- Fast Turn-On and Turn-Off Times
- Break-Before-Make Enable Circuitry

Applications

- Cellular Phone
- Portable Media Player
- PDA

Description

The FSA1259A is a high-performance, dual, Single-Pole / Single-Throw (SPST) analog switch. The device features ultra-low R_{ON} of 1Ω at $4.5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ and operates over the wide V_{CC} range of 1.65 V to 5.50 V .

The FS1259A allows for reduced input thresholds on the select pins.
The device is fabricated with sub-micron CMOS technology to achieve fast switching speeds and is designed for break-before-make operation.

Pin Assignments

Figure 2. Pin Assignments (Top View)

Pin Definitions

Pin \#	Name	
1	1 A	Description
2	1 B	Data Port
3	2 S	Control Input
4	GND	Ground
5	2 A	Data Port
6	2 B	Data Port
7	1 S	Control Input
8	$\mathrm{~V}_{\mathrm{Cc}}$	Supply Voltage

Truth Table

Control Input (S)	Function
LOW	Disconnected
HIGH	A Connected to B

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Min.	Max.	Unit
V_{CC}	Supply Voltage	-0.5	7.0	V
$\mathrm{~V}_{\text {SW }}$	Switch Voltage ${ }^{(1)}$	-0.5	$\mathrm{~V}_{\mathrm{CC}}+-0.5$	V
$\mathrm{~V}_{\text {IN }}$	Input Voltage $^{(1)}$	-0.5	6.5	V
I_{IK}	Input Diode Current		-50	mA
$\mathrm{I}_{\text {SW }}$	Switch Current (Continuous)		200	mA
$\mathrm{I}_{\text {SWPEAK }}$	Peak Switch Current (Pulsed at 1 ms Duration, <10\% Duty Cycle)		400	mA
	Power Dissipation at 85 ${ }^{\circ} \mathrm{C}$		3.0	$\mu \mathrm{~W}$
$\mathrm{~T}_{\text {STG }}$	Storage Temperature Range		+150	${ }^{\circ} \mathrm{C}$
T_{J}	Maximum Junction Temperature	-65	+150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature (Soldering, 10 seconds)		8000	V
ESD	Human Body Model (JEDEC: JESD22-A114)		2000	V
	Charged Device Model (JEDEC: JESD22-C101)		350	V

Note:

1. The input and output negative ratings may be exceeded if the input and output diode current ratings are observed.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Unit
V_{CC}	Supply Voltage	1.65	5.50	V
$\mathrm{~A}_{\mathrm{SEL}}$	Control Input Voltage ${ }^{(2)}$	0	$\mathrm{~V}_{\mathrm{CC}}$	V
V_{SW}	Switch Input Voltage	0	$\mathrm{~V}_{\mathrm{CC}}$	V
T_{A}	Operating Temperature	-40	+85	${ }^{\circ} \mathrm{C}$
θ_{JA}	Thermal Resistance, Still Air		215	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Note:

2. Control Input must be held HIGH or LOW; it must not float.

Electrical Characteristics

All typical values are at $25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	Conditions	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$		Unit
				Min.	Typ.	Max.	Min.	Max.	
V_{IH}	Input Voltage High	4.50 to 5.50					1.0		V
		3.00 to 3.60					1.0		
		2.30 to 2.70					0.95		
		1.65 to 1.95					0.95		
VIL	Input Voltage Low	4.50 to 5.50						0.75	V
		3.00 to 3.60						0.65	
		2.30 to 2.70						0.55	
		1.65 to 1.95						0.5	
I_{N}	Control Input Leakage	5.50	$\mathrm{V}_{1 \mathrm{~N}}=0$ or V_{cc}	-10		10	-50	50	nA
		3.60	$\mathrm{V}_{1 \mathrm{~N}}=0$ or V_{cc}	-2		2	-20	20	
		2.70	$\mathrm{V}_{1 \mathrm{~N}}=0$ or V_{cc}	-2		2	-20	20	
		1.95	$\mathrm{V}_{1 \mathrm{IN}}=0$ or V_{CC}	-2		2	-20	20	
$\mathrm{I}_{\mathrm{NO}(\text { (OFF) }}$	Off-Leakage Current	5.50	$\begin{aligned} & A=1 \mathrm{~V}, B=4.5 \mathrm{~V} \text { or } \\ & B=4.5 \mathrm{~V}, A=1 \mathrm{~V} \end{aligned}$	-10		10	-50	50	nA
		3.60	$\begin{aligned} & A=1 \mathrm{~V}, \mathrm{~B}=3.0 \mathrm{~V} \text { or } \\ & B=3.0 \mathrm{~V}, \mathrm{~A}=1 \mathrm{~V} \end{aligned}$	-5		5	-50	50	
		2.70	$\begin{aligned} & A=0.5 \mathrm{~V}, \mathrm{~B}=2.3 \mathrm{~V} \text { or } \\ & B=2.3, A=0.5 \mathrm{~V} \end{aligned}$	-5		5	-50	50	
		1.95	$\begin{aligned} & \mathrm{A}=0.3 \mathrm{~V}, \mathrm{~B}=1.65 \mathrm{~V} \text { or } \\ & \mathrm{B}=1.65, \mathrm{~A}=0.3 \mathrm{~V} \end{aligned}$	-5		5	-50	50	
$\mathrm{I}_{\mathrm{NO}(\mathrm{On})}$	On-Leakage Current of Port B	5.50	A=Floating; $\mathrm{B}=4.5 \mathrm{~V}, 1 \mathrm{~V}$	-5		5	-50	50	nA
		3.60	A=Floating; $\mathrm{B}=3.0 \mathrm{~V}, 1 \mathrm{~V}$	-2		2	-20	20	
		2.70	A=Floating; $\mathrm{B}=2.3 \mathrm{~V}, 0.5 \mathrm{~V}$	-2		2	-20	20	
		1.95	$A=$ Floating; $B=1.65 \mathrm{~V}, 0.3 \mathrm{~V}$	-2		2	-20	20	
$\mathrm{I}_{\mathrm{A}(\mathrm{ON})}$	On-Leakage Current of Port A	5.50	$\mathrm{A}=1 \mathrm{~V}, 4.5 \mathrm{~V}$; B=Floating	-5		5	-50	50	nA
		3.60	$\mathrm{A}=1 \mathrm{~V}, 3.0 \mathrm{~V}$; $\mathrm{B}=$ Floating	-2		2	-20	20	
		2.70	$\mathrm{A}=0.5 \mathrm{~V}, 2.3 ; \mathrm{B}=$ Floating	-2		2	-20	20	
		1.95	$\mathrm{A}=0.3 \mathrm{~V}, 1.65 \mathrm{~V}$; $\mathrm{B}=$ Floating	-2		2	-20	20	
loff	Power Off Leakage Current of Port A \& Port B	0	$\mathrm{A}=0$ to $5.5 \mathrm{~V} ; \mathrm{B}=0$ to 5.5 V	-1		1	-10	10	$\mu \mathrm{A}$

Electrical Characteristics (Continued)
All typical values are at $25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	Conditions		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40 \text { to } \\ +85^{\circ} \mathrm{C} \end{gathered}$		Unit
					Min.	Typ.	Max.	Min.	Max.	
$\mathrm{R}_{\text {PEAK }}$	Peak On Resistance	4.50	$\begin{aligned} & \text { lout }=-100 \mathrm{~m} \\ & 1 \mathrm{~B} \text { or } 2 \mathrm{~B}=0 \mathrm{t} \end{aligned}$	$V_{c c}$		0.8	1.0		1.2	Ω
		3.00	$\begin{array}{\|l} \hline \text { lout }=-100 \mathrm{~m} \\ 1 \mathrm{~B} \text { or } 2 \mathrm{~B}=0 \mathrm{t} \end{array}$	V_{cc}		1.0	1.5		1.8	
		2.30	$\begin{aligned} & \text { lout }=-8 \mathrm{~mA}, \\ & 1 \mathrm{~B} \text { or } 2 \mathrm{~B}=0 \end{aligned}$	$V_{c c}$		1.5	2.0		2.5	
		1.65	$\begin{aligned} & \mathrm{I}_{\text {out }=-2 \mathrm{~mA}} \text {, } \\ & 1 \mathrm{~B} \text { or } 2 \mathrm{~B}=0 \\ & \text { to } \mathrm{V}_{\mathrm{cc}} \\ & \hline \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25,85^{\circ} \mathrm{C}$		5.0	12.0		15.0	
				$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$		20.0				
Ron	Switch On Resistance ${ }^{(3)}$	4.50	$\begin{aligned} & \mathrm{I}_{\text {OUT }}=-100 \mathrm{~mA}, \\ & 1 \mathrm{~B} \text { or } 2 \mathrm{~B}=2.5 \mathrm{~V} \end{aligned}$			0.70	0.85		1.00	Ω
		3.00	$\begin{aligned} & l_{\text {out }}=-100 \mathrm{~mA}, \\ & 1 \mathrm{~B} \text { or } 2 \mathrm{~B}=2.0 \mathrm{~V} \end{aligned}$			0.9	1.3		1.6	
		2.30	$\begin{aligned} & \mathrm{I}_{\text {out }}=-8 \mathrm{~mA}, \\ & 1 \mathrm{~B} \text { or } 2 \mathrm{~B}=1.8 \mathrm{~V} \end{aligned}$			1.4	2.0		2.4	
		1.65	$\begin{aligned} & \text { lout }=-2 \mathrm{~mA}, \\ & 1 \mathrm{~B} \text { or } 2 \mathrm{~B}=1.5 \mathrm{~V} \end{aligned}$			2.0	2.5		3.5	
$\Delta \mathrm{Ron}_{\text {on }}$	On Resistance Matching Between Channels ${ }^{(4)}$	4.50	$\begin{aligned} & \text { lout }=-100 \mathrm{~mA} \\ & 1 \mathrm{~B} \text { or } 2 \mathrm{~B}=2.5 \mathrm{~V} \end{aligned}$			0.05	0.10		0.10	Ω
		3.00	$\begin{aligned} & \text { lout }=-100 \mathrm{~mA}, \\ & 1 \mathrm{~B} \text { or } 2 \mathrm{~B}=2.0 \mathrm{~V} \end{aligned}$			0.10	0.15		0.15	
		2.30	$\begin{aligned} & \mathrm{I}=-8 \mathrm{~mA}, \\ & 1 \mathrm{~B} \text { or } 2 \mathrm{~B}=1.8 \mathrm{~V} \end{aligned}$			0.15	0.20		0.20	
		1.65	$\begin{aligned} & \text { lout }=-2 \mathrm{~mA} \\ & 1 \mathrm{~B} \text { or } 2 \mathrm{~B}=1.5 \mathrm{~V} \end{aligned}$			0.15	0.40		0.40	
$\mathrm{R}_{\text {flat(on) }}$	On Resistance Flatness ${ }^{(5)}$	4.50	$\begin{aligned} & \text { lout }=-100 \mathrm{~mA}, 1 \mathrm{~B} \text { or } \\ & 2 \mathrm{~B}=1.0 \mathrm{~V}, 1.5 \mathrm{~V}, 2.5 \mathrm{~V} \end{aligned}$			0.10	0.25		0.25	Ω
		3.00	$\begin{aligned} & \text { lout }=-100 \mathrm{~mA}, \\ & 1 \mathrm{~B} \text { or } 2 \mathrm{~B}=0.8 \mathrm{~V}, 2.0 \mathrm{~V} \end{aligned}$			0.1	0.3		0.3	
		2.30	$\begin{aligned} & \text { lout }=-8 \mathrm{~mA}, \\ & 1 \mathrm{~B} \text { or } 2 \mathrm{~B}=0.8 \mathrm{~V}, 1.8 \mathrm{~V} \end{aligned}$			0.2	1.0		1.0	
		1.65	$\begin{aligned} & \text { lout }=-2 \mathrm{~mA}, \\ & 1 \mathrm{~B} \text { or } 2 \mathrm{~B}=0.6 \mathrm{~V}, 1.5 \mathrm{~V} \end{aligned}$			1.5				
$I_{\text {cc }}$	Quiescent Supply Current	5.50	$\mathrm{V}_{\mathbb{N}}=0$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{l}_{\text {out }}=0$			5	50		500	nA
		3.60	$\mathrm{V}_{1 \mathrm{~N}}=0$ or V_{CC}	lout $=0$		1	25		300	
		2.70	$\mathrm{V}_{\mathrm{IN}}=0$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{l}_{\text {OUT }}=0$			1	20		250	
		1.95	$\mathrm{V}_{\text {IN }}=0$ or $\mathrm{V}_{\text {cc }}, \mathrm{l}_{\text {lout }}=0$			1	15		150	
$\mathrm{I}_{\text {cti }}$	Increase in I_{cc} per Control Input	4.5 to 5.5	Asel=1.8 V			25			40	$\mu \mathrm{A}$

Notes:

3. On resistance is determined by the voltage drop between the A and B pins at the indicated current through the switch.
4. $\quad \Delta \mathrm{R}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ON}}$ maximum $-\mathrm{R}_{\mathrm{ON}}$ minimum; measured at identical V_{CC}, temperature, and voltage.
5. Flatness is defined as the difference between the maximum and minimum value of on resistance over the specified range of conditions.

AC Electrical Characteristics

All typical values are at $\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}, 2.5 \mathrm{~V}, 3.0 \mathrm{~V}, 5.0 \mathrm{~V}$ at $25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	Conditions	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40 \text { to } \\ +85^{\circ} \mathrm{C} \end{gathered}$		Unit	Figure
				Min.	Typ.	Max.	Min.	Max.		
ton	Turn-On Time	4.50 to 5.50	$\begin{aligned} & \text { 1B or } 2 \mathrm{~B}=\mathrm{V}_{\mathrm{cc}}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{aligned}$	1.0	4.0	7.5	1.0	9.0	ns	Figure 11
		3.00 to 3.60		1.5	6.0	9.5	1.0	10.0		
		2.30 to 2.70		2.0	8.0	10.0	1.0	12.0		
		1.65 to 1.95		3.0	14.0	18.0	1.0	20.0		
$\mathrm{t}_{\text {off }}$	Turn-Off Time	4.50 to 5.50	$\begin{aligned} & 1 \mathrm{~B} \text { or } 2 \mathrm{~B}=\mathrm{V}_{\mathrm{cc}}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{aligned}$	4.5	13.0	17.0	3.5	20.0	ns	Figure 11
		3.00 to 3.60		4.5	13.5	17.0	3.0	20.0		
		2.30 to 2.70		4.5	16.0	20.0	3.0	23.0		
		1.65 to 1.95		5.0	24.0	33.0	4.0	36.0		
Q	Charge Injection	4.50 to 5.50	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}, \\ & \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{GEN}}=0 \Omega \end{aligned}$		15				pC	Figure 13
		3.00 to 3.60			11					
		2.30 to 2.70			8					
		1.65 to 1.95			6					
OIRR	Off-Isolation	1.8 to 5.0	$\begin{aligned} & \mathrm{f}=1 \mathrm{MHz}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega \end{aligned}$		-60				dB	Figure 12
Xtalk	Crosstalk	1.8 to 5.0	$\begin{aligned} & \mathrm{f}=1 \mathrm{MHz}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega \end{aligned}$		-73				dB	Figure 12
BW	-3 db Bandwidth	4.50 to 5.50	$\mathrm{R}_{\mathrm{L}}=50 \Omega$		240				MHz	Figure 15
		3.00 to 3.60			240					
		2.30 to 2.70			240					
		1.65 to 1.95			240					
THD	Total Harmonic Distortion	1.8	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega, \\ & \mathrm{~V}_{\mathrm{N}}=0.5 \mathrm{~V}_{\mathrm{PP}}, \\ & \mathrm{f}=20 \mathrm{~Hz} \text { to } \\ & 20 \mathrm{kHz} \end{aligned}$. 003				\%	Figure 16
		5.0			. 001					Figure 16

Capacitance

Symbol	Parameter	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	Conditions	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			Unit
				Min.	Typ.	Max.	
$\mathrm{C}_{\text {IN }}$	Control Pin Input Capacitance	0	$\mathrm{f}=1 \mathrm{MHz}$ Figure 14		3		pF
$\mathrm{C}_{\text {off }}$	B Port Off Capacitance	1.65 to 5.50	$\mathrm{f}=1 \mathrm{MHz}$ Figure 14		21		pF
Con	A Port On Capacitance	1.65 to 5.50	$\mathrm{f}=1 \mathrm{MHz}$ Figure 14		47		pF

Typical Performance Characteristics

Figure 3. On Resistance ($\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}$)

Figure 5. On Resistance ($\mathbf{V}_{\mathrm{cc}}=\mathbf{2 . 3} \mathbf{V}$)

Figure 7. Frequency Response ($\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$)

Figure 9. Frequency Response ($\mathrm{V}_{\mathrm{Cc}}=5.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$)

Figure 4. On Resistance ($\mathrm{V}_{\mathrm{cc}}=3.0 \mathrm{~V}$)

Figure 6. On Resistance ($\mathrm{V}_{\mathrm{Cc}}=1.65 \mathrm{~V}$)

Figure 8. Frequency Response ($\mathrm{V}_{\mathrm{Cc}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$)

Figure 10. Total Harmonic Distortion

Test Diagrams

C_{L} includes fixture and stray capacitance.

Logic input waveforms inverted for switches that have the opposite logic sense.

Figure 11. Turn On / Off Timing

Figure 12. Off Isolation and Crosstalk

Figure 13. Charge Injection

Test Diagrams (Continued)

Figure 14. On / Off Capacitance Measurement Setup

Figure 15. Bandwidth

Figure 16. Harmonic Distortion

Physical Dimensions

Figure 17. 8-Lead US8, JEDEC MO-187, Variation CA, 3.0 mm Wide Package
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:
http:///www.fairchildsemi.com/packaging/. http://www.fairchildsemi.com/dwg/MA/MAB08A.pdf

For current packing container specifications, visit Fairchild Semiconductor's online packaging area: http://www.fairchildsemi.com/packing_dwg/PKG-MAB08A HANABK.pdf

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our extemal website, whw.fairchildsemi.com, under Sales Support.
Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Autharized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistanœe for parts bought from Unauthorized Sources. Fairchild is committed to corrbat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS
Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

