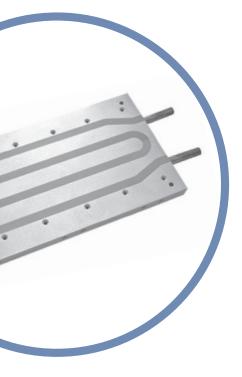

LIQUID COOLING

Liquid Cold Plates For High-Performance	
Components & Systems	116–117
Exposed Tube Liquid Cold Plates	118-119
Full Buried Tube Liquid Cold Plates	120-122

There are many ways to accomplish liquid cooling, but the most common method is to have a plate with a flow path that moves liquid under the devices. After the heat is absorbed into the liquid, it is taken out of the plate and into the larger system. While water or water/glycol are the most common fluids used in liquid cooling, gasoline, oil, and refrigerant are other fluids that can be utilized.


There are lots of ways to construct a cold plate and the methods can be driven by the level of performance needed, the materials needed or the environmental requirements.

One construction method is to use a series of cross drilled holes in a plate. The holes intersect in the plate to determine the flow pattern and unneeded patterns are plugged. This construction method can be cost effective, but the pattern is limited to straight lines.

Another method is to embed a tube in a plate by machining a groove in the plate. The tube can either be placed toward the top surface of the plate to provide better cooling to devices mounted on that surface, or it can be embedded further into the plate so that it cools devices mounted on both sides of the plate. This option provides greater flexibility, but the thermal performance is limited because of the surface area of the tube perimeter.

To get more performance, extended surface area in contact with the fluid is required and this leads to machined cold plates. The cold plate is constructed of a plate that has been machined to form some flow passages and then a cover is assembled to capture the flow. The extended surface area can be machined in place or installed by use of a piece of folded fin. The cover can *be flat or be another machined plate. The method of assembly of the two parts can be done by* gasket/screw, glue/screw, brazing, or welding and is dependent on the required performance and the requirements of the environment.

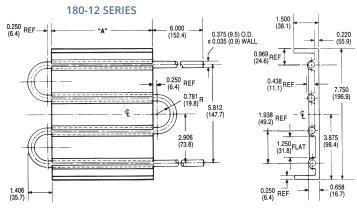
WAKEFIELDTHERMAL

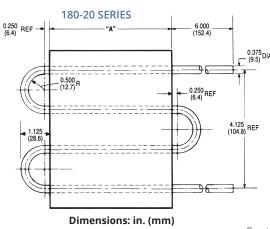
Liquid cooling is a natural evolution beyond air cooling where either due to thermal requirements or footprint requirements, the desired performance can no longer be

LIQUID COLD PLATES FOR **HIGH-PERFORMANCE COMPONENTS & SYSTEMS**

LIQUID COLD PLATES FOR RECTIFIERS 180-10 & 180-11 SERIES AND POWER DIODES

General Purpose

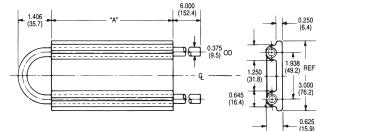

LIQUID COLD PLATES FOR RECTIFIERS, DIODES, AND POWER MODULES General Purpose


	Cold Plate Body Nominal Dimensions						
Standard P/N	Length "A" in. (mm)	Width in. (mm)	Thickness in. (mm)	Mounting Surfaces	Overall Length in. (mm)	Overall Thermal Resistance (Plate to Inlet Water)	Weight lbs. (grams)
180-12-6C	6.000 (152.4)	7.750 (196.9)	0.658 (16.7)	Single	13.406 (340.5)	0.038°C/W @ 1.0 GPM	2.270 (1029.67)
180-12-12C	12.000 (304.8)	7.750 (196.9)	0.658 (16.7)	Single	19.406 (429.9)	0.018°C/W @ 1.0 GPM	4.300 (1950.48)
180-12-24C	24.000 (609.6)	7.750 (196.9)	0.658 (16.7)	Single	31.406 (797.7)	0.009°C/W @ 1.0 GPM	8.600 (3900.96)
180-20-6C	6.000 (152.4)	5.500 (139.7)	0.690 (17.5)	Double	13.125 (333.4)	0.038°C/W @ 1.0 GPM	1.090 (494.42)

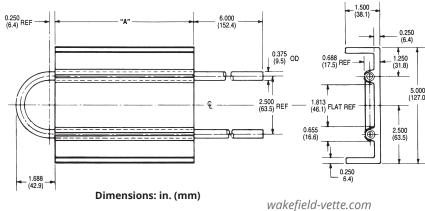
LOCAL THERMAL RESISTANCE PER DEVICE PLATE TO INLET WATER (°C/WATT)

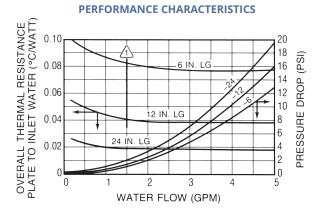
€ to € Device	Flow - GPM					
Spacing Inches	1⁄2	1	2	3	4	
1.0 (25.4)	0.76	0.67	0.62	0.59	0.57	
2.0 (50.8)	0.58	0.49	0.43	0.40	0.39	
3.0 (76.2)	0.42	0.34	0.30	0.28	0.27	

MECHANICAL DIMENSIONS


	Cold Plate Body Nominal Dimensions						
Standard P/N	Length "A" in. (mm)	Width in. (mm)	Thickness in. (mm)	Channel Width in. (mm)	Overall Length in. (mm)	Overall Thermal Resistance (Plate to Inlet Water)	Weight lbs. (grams)
180-10-6C	6.000 (152.4)	3.000 (76.2)	0.625 (15.9)	1.250 (31.8)	13.406 (340.5)	0.084°C/W @ 1.5 GPM	0.850 (385.56)
180-10-12C	12.000 (304.8)	3.000 (76.2)	0.625 (15.9)	1.250 (31.8)	19.406 (429.9)	0.041°C/W @ 1.5 GPM	1.700 (771.12)
180-10-24C	24.000 (609.6)	3.000 (76.2)	0.625 (15.9)	1.250 (31.8)	31.406 (797.7)	0.020°C/W @ 1.5 GPM	2.900 (1315.4)
180-11-6C	6.000 (152.4)	5.000 (127.2)	0.688 (17.5)	1.813 (46.1)	13.688 (347.7)	0.084°C/W @ 1.5 GPM	1.500 (680.40)
180-11-12C	12.000 (304.8)	5.000 (127.2)	0.688 (17.5)	1.813 (46.1)	19.688 (500.1)	0.041°C/W @ 1.5 GPM	2.867 (1300.47)
180-11-24C	24.000 (609.6)	5.000 (127.2)	0.688 (17.5)	1.813 (46.1)	31.688 (804.9)	0.020°C/W @ 1.5 GPM	5.730 (2599.13)
Material: Aluminum, no finish. Tubing: Copper (stainless steel tubing available on special order).							

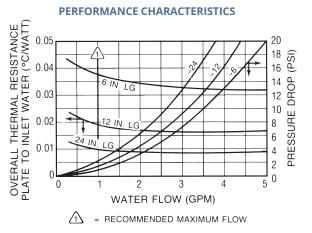
LOCAL THERMAL RESISTANCE PER DEVICE PLATE TO INLET WATER (°C/WATT)

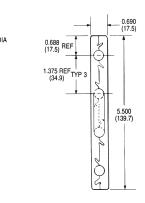

€ to € Device		Flo	w - GPI	M	
Spacing Inches	1⁄2	1	2	3	4
1.0 (25.4) 2.0 (50.8) 3.0 (76.2)	0.59 0.40 0.29	0.52 0.36 0.26	0.48 0.33 0.24	0.47 0.32 0.23	0.46 0.31 0.22


MECHANICAL DIMENSIONS

180-10 SERIES

180-11 SERIES



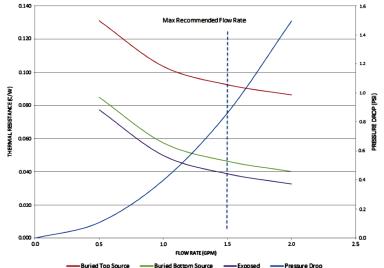

Standard P/N	Length "A" in. (mm)
180-10-6C	6.000 in. (152.4)
180-10-12C	12.000 in. (304.8)
180-10-24C	24.000 in. (609.6)
180-11-6C	6.000 in. (152.4)
180-11-12C	12.000 in. (304.8)
180-11-24C	24.000 in. (609.6)

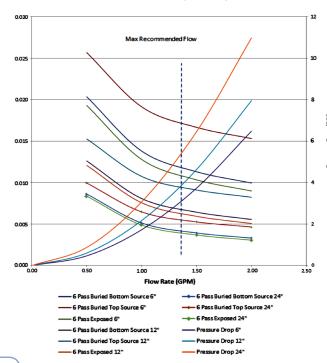
180-12 & 180-20 SERIES

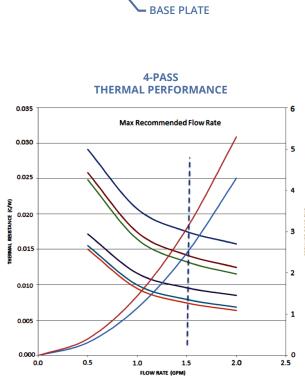
Standard P/N	Length "A" in. (mm)
180-12-6C 180-12-12C 180-12-24C	6.000 in. (152.4) 12.000 in. (304.8) 24.000 in. (609.6)
180-12-24C 180-20-6C	6.000 in. (152.4)

EXPOSED TUBE LIQUID COLD PLATES

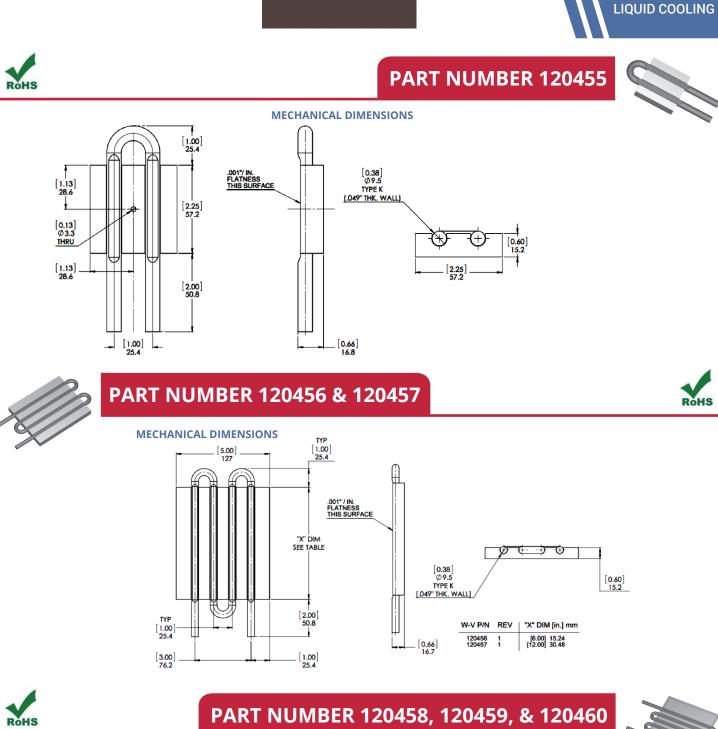
Wakefield-Vette's exposed tube liquid cold plates ensure minimum thermal resistance between the power device and the cold plate by placing the coolant tube in direct contact with the power device's base. Direct contact reduces the number of thermal interfaces between device and fluid thus increasing performance for the application.

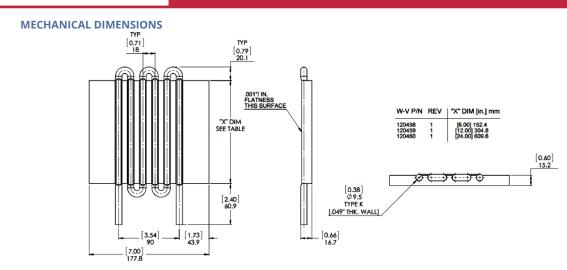

Part Number	Description	"X" Dimension Inches	Passes	Figure
120455	Exposed Tube 2- Pass Cold plate	N/A	2	1
120456	Exposed Tube 4- Pass Cold plate	6.00	4	2
120457	Exposed Tube 4- Pass Cold plate	12.00	4	2
120458	Exposed Tube 6- Pass Cold plate	6.00	6	3
120459 120460	Exposed Tube 6- Pass Cold plate Exposed Tube 6- Pass Cold plate	12.00 24.00	6 6	3 3


EPOXY


COPPER TUBE

6-PASS THERMAL PERFORMANCE

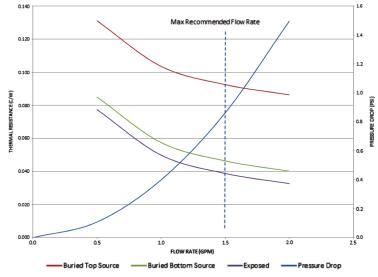




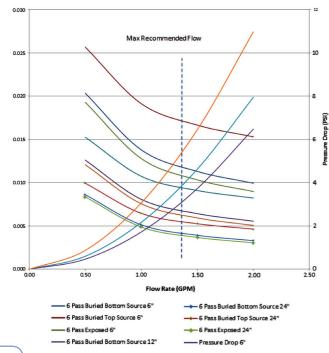
-Buried Top Source 6"	-Buried Bottom Source 1
Buried Bottom Source 6"	Exposed 12"
Exposed 6"	Pressure Drop 6"
Buried Top Source 12"	Pressure Drop 12"

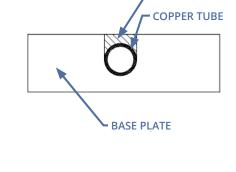
Contact Wakefield-Vette for more information or visit www.wakefield-vette.com

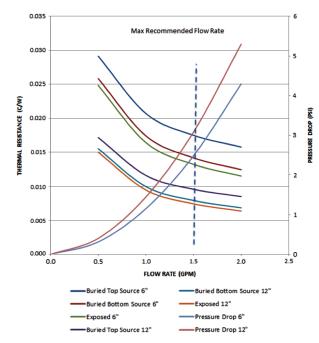
FULL BURIED TUBE LIQUID COLD PLATES

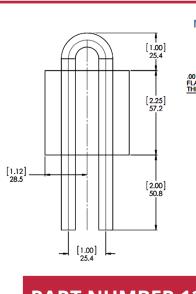

Wakefield-Vette's fully buried tube liquid cold plates have the ability to cool both sides of the cold plate because of it's positioning within the base plate. Another key feature of the fully buried tube is that it is not exposed to the outside environment. Some engineers prefer the epoxy layer above the tube to protect the tube from leakage.

Part Number	Description	"X" Dimension Inches	Passes	Figure
120959	Fully Buried Tube 2- Pass Cold plate	N/A	2	1
120960	Fully Buried Tube 4- Pass Cold plate	6.00	4	2
120961	Fully Buried Tube 4- Pass Cold plate	12.00	4	2
120962	Fully Buried Tube 6- Pass Cold plate	6.00	6	3
120963	Fully Buried Tube 6- Pass Cold plate	12.00	6	4
120964	Fully Buried Tube 6- Pass Cold plate	24.00	6	5



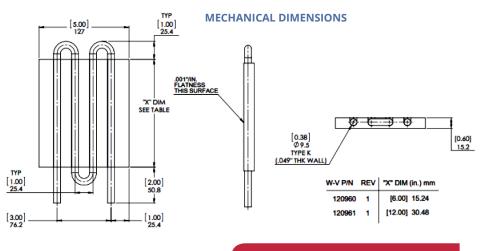

- EPOXY

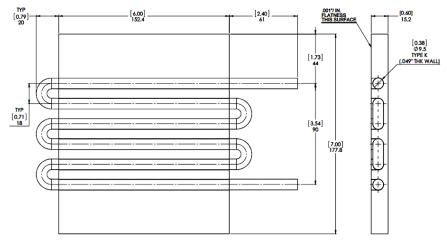




4-PASS THERMAL PERFORMANCE

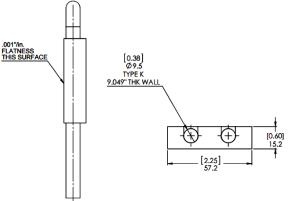
Custom Full Buried Tube Liquid Cold Plates Available


Contact Wakefield-Vette for more information or visit www.wakefield-vette.com



ROHS

RoHS

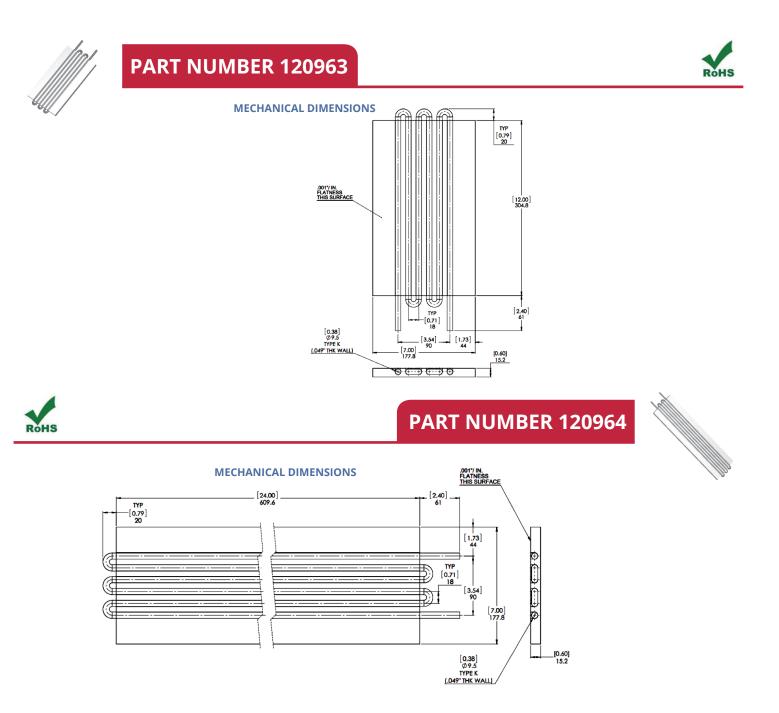


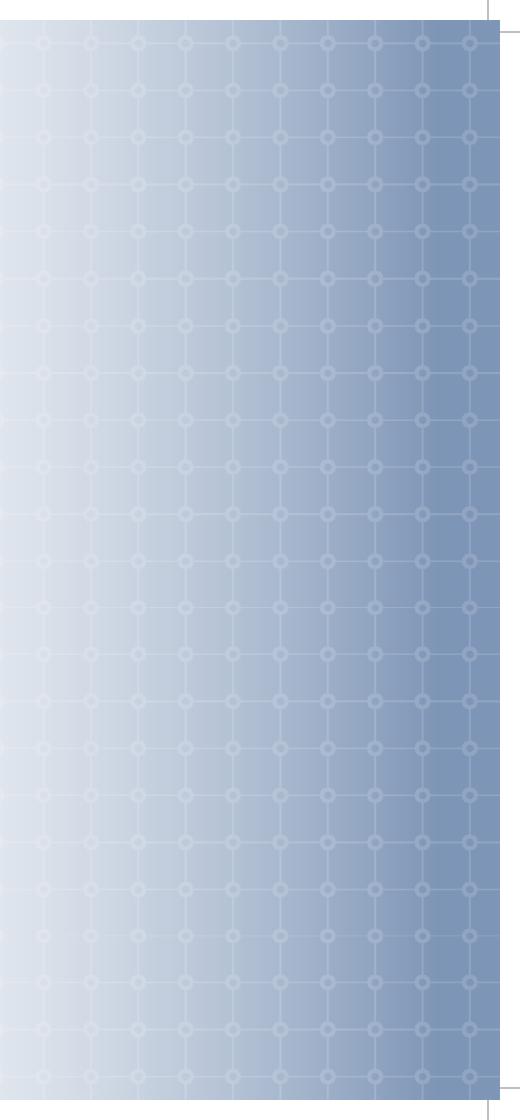
PART NUMBER 120959

MECHANICAL DIMENSIONS

PART NUMBER 120960 & 120961

PART NUMBER 12062


MECHANICAL DIMENSIONS


LIQUID COOLING

RoHS

FULL BURIED TUBE LIQUID COLD PLATES

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Wakefield-Vette:

<u>180-10-12C</u> <u>180-11-12C</u> <u>180-20-6C</u> <u>180-11-6C</u> <u>180-12-12C</u> <u>180-12-12S</u> <u>180-12-6C</u> <u>180-11-24C</u> <u>180-10-6C</u> 120961 120964 120962 120963 120959 120960 120459 120460 120458 120457 120455 120456