MC14001B Series

B-Suffix Series CMOS Gates
 MC14001B, MC14011B, MC14023B, MC14025B, MC14071B, MC14073B, MC14081B, MC14082B

The B Series logic gates are constructed with P and N channel enhancement mode devices in a single monolithic structure (Complementary MOS). Their primary use is where low power dissipation and/or high noise immunity is desired.

Features

- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- All Outputs Buffered
- Capable of Driving Two Low-power TTL Loads or One Low-power Schottky TTL Load Over the Rated Temperature Range.
- Double Diode Protection on All Inputs Except: Triple Diode Protection on MC14011B and MC14081B
- Pin-for-Pin Replacements for Corresponding CD4000 Series B Suffix Devices
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are $\mathrm{Pb}-$ Free and are RoHS Compliant

MAXIMUM RATINGS (Voltages Referenced to V_{SS})

Symbol	Parameter	Value	Unit
$V_{\text {DD }}$	DC Supply Voltage Range	-0.5 to +18.0	V
$\mathrm{V}_{\text {in }}, \mathrm{V}_{\text {out }}$	Input or Output Voltage Range (DC or Transient)	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
$\mathrm{I}_{\text {in }}$, $\mathrm{I}_{\text {out }}$	Input or Output Current (DC or Transient) per Pin	± 10	mA
$P_{\text {D }}$	Power Dissipation, per Package (Note 1)	500	mW
$\mathrm{T}_{\text {A }}$	Ambient Temperature Range	-55 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
TL	Lead Temperature (8-Second Soldering)	260	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {ESD }}$	ESD Withstand Voltage Human Body Model Machine Model Charged Device Model	$\begin{gathered} >3000 \\ >300 \\ N / A \end{gathered}$	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Temperature Derating: "D/DW" Packages: $-7.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ From $65^{\circ} \mathrm{C}$ To $125^{\circ} \mathrm{C}$

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, $\mathrm{V}_{\text {in }}$ and $\mathrm{V}_{\text {out }}$ should be constrained to the range $\mathrm{V}_{\mathrm{SS}} \leq\left(\mathrm{V}_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right) \leq \mathrm{V}_{\mathrm{DD}}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either $\mathrm{V}_{S S}$ or V_{DD}). Unused outputs must be left open.

ON Semiconductor ${ }^{\circledR}$

http://onsemi.com

MARKING DIAGRAMS

140xxBG
- AWLYWW
时

SOIC-14
TSSOP-14
xx $\quad=$ Specific Device Code
A = Assembly Location
WL, L = Wafer Lot
YY, Y = Year
WW, W = Work Week
G or • = Pb-Free Package
(Note: Microdot may be in either location)
DEVICE INFORMATION

Device	Description
MC14001B	Quad 2-Input NOR Gate
MC14011B	Quad 2-Input NAND Gate
MC14023B	Triple 3-Input NAND Gate
MC14025B	Triple 3-Input NOR Gate
MC14071B	Quad 2-Input OR Gate
MC14073B	Triple 3-Input AND Gate
MC14081B	Quad 2-Input AND Gate
MC14082B	Dual 4-Input AND Gate

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet.

LOGIC DIAGRAMS

NAND
MC14011B Quad 2-Input NAND Gate

Triple 3-Input NAND Gate

AND
MC14081B Quad 2-Input AND Gate

MC14082B
Dual 4-Input AND Gate

$\mathrm{V}_{\mathrm{DD}}=\mathrm{PIN} 14$
$\mathrm{~V}_{\mathrm{SS}}=$ PIN 7
FOR ALL DEVICES

PIN ASSIGNMENTS

MC14001B		
IN $1_{\text {A }}$ ¢ 1^{\bullet}	14	V_{DD}
$\underline{N} 2_{\text {A }} \mathrm{C} 2$	13	IN $2_{\text {d }}$
OUT A $^{\text {a }}$	12	$\mathrm{IN} 1_{\mathrm{D}}$
OUTB O $^{\text {d }}$	11	OUTD
IN $1_{B} ¢ 5$	10	Jout ${ }_{\text {c }}$
$\underline{N} 2_{B} ¢ 6$	9	$\mathrm{IN}^{2} \mathrm{C}$
$\mathrm{V}_{\text {SS }} ¢ 7$	8	IN 1c

MC14071B
Quad 2-Input OR Gate

,
Quad 2-Input NAND Gate

	14	V_{DD}
IN $2_{\text {A }} \mathrm{C} 2$	13	IN 2D
OUTA $\mathrm{Cl}^{\text {a }}$	12	$\mathrm{IN} 1_{\mathrm{D}}$
$\mathrm{OUT}_{\mathrm{B}} \mathrm{C} 4$	11	OUTD
IN $1_{B} ¢ 5$	10	OUTC
IN $2_{\text {B }} 6$	9	IN 2c
$\mathrm{V}_{S S}[7$	8	$\mathrm{IN} 1_{C}$

MC14073B

Triple 3-Input AND Gate

NN_{1} ¢ 1^{\bullet}	14	$V_{D D}$
IN $2_{\text {A }} \mathrm{C}_{2}$	13	IN 3_{C}
IN $1_{\text {B }}$ [3	12	$\mathrm{IN}^{2} \mathrm{C}_{\mathrm{C}}$
IN $2_{\text {B }} \mathrm{C}_{4}$	11	$\bigcirc \mathrm{IN} 1_{\mathrm{c}}$
IN $3_{\text {B }} \square_{5}$	10	OUT $_{C}$
OUT B $^{\text {¢ }} 6$	9	OUTA
$\mathrm{V}_{\text {SS }}[7$	8	$\mathrm{IN} 3_{\text {A }}$

MC14023B
Triple 3-Input NAND Gate

$\underline{N} 1_{A} \uparrow 1^{\bullet}$	14
IN $2_{\text {A }}$ - 2	13
IN 1_{B} - 3	12
IN $2_{\text {B }}$	11
$13^{\text {B }}$ ¢ 5	10
OUT $_{\text {B }}$-6	9
$\mathrm{v}_{S S}[7$	8

MC14081B
Quad 2-Input AND Gate

IN $1_{\text {A }}$	14
IN $2_{\text {A }} \mathrm{Cl}^{2}$	13
OUTA ${ }_{\text {a }}$	12
$\mathrm{OUT}_{\mathrm{B}} \mathrm{C} 4$	11
IN $1_{B} \square_{5}$	10
IN 2 $_{\text {B }}$ - 6	9
$\mathrm{V}_{S S}[7$	8

MC14025B
Triple 3-Input NOR Gate

IN $1_{\text {A }} \bigcirc{ }^{\text {e }}$	14	$V_{D D}$
$\underline{N} 2_{\text {A }} \mathrm{C} 2$	13	IN 3C
IN 1_{B} - 3	12	IN 2c
IN $2_{\text {B }} \square_{4}$	11	$\mathrm{IN} 1_{\mathrm{c}}$
$\underline{1 N} 3_{B}$-5	10	$\mathrm{OUT}_{\mathrm{C}}$
$\mathrm{OUT}_{\mathrm{B}} \mathrm{C} 6$	9	$\mathrm{OUT}_{\mathrm{A}}$
$\mathrm{V}_{\text {SS }} ¢ 7$	8	$\mathrm{IN} 3_{\mathrm{A}}$

MC14082B
Dual 4-Input AND Gate

$\mathrm{OUT}_{\mathrm{A}} \square 1 \bullet$	14	V_{DD}
IN $1_{\text {A }}-2$	13	$\mathrm{OUT}_{\mathrm{B}}$
$\underline{1 N} 2_{\text {A }} 3$	12	$\bigcirc \mathrm{N} 4_{\text {B }}$
$\underline{1 N} 3_{\text {A }} ¢ 4$	11	$\mathrm{N} 3_{B}$
IN $4_{\text {A }} \mathrm{C} 5$	10	$\mathrm{IN} 2_{B}$
NC [6	9	IN 1_{B}
$\mathrm{V}_{S S} 7$	8	NC

NC = NO CONNECTION

ELECTRICAL CHARACTERISTICS (Voltages Referenced to V_{SS})

Characteristic	Symbol	VDDVdc	$-55^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$		Unit
			Min	Max	Min	Typ (Note 2)	Max	Min	Max	
Output Voltage "0" Level$V_{\text {in }}=V_{D D} \text { or } 0$	VOL	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	Vdc
	V_{OH}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	-	$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	-	Vdc
$\begin{array}{ll} \text { Input Voltage } & \text { " } 0 \text { " Level } \\ \left(\mathrm{V}_{\mathrm{O}}=4.5 \text { or } 0.5 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{O}}=9.0 \text { or } 1.0 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{O}}=13.5 \text { or } 1.5 \mathrm{Vdc}\right) & \\ & \\ & \\ \left(\mathrm{V}_{\mathrm{O}}=0.5 \text { or } 4.5 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{O}}=1.0 \text { or } 9.0 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{O}}=1.5 \text { or } 13.5 \mathrm{Vdc}\right) \end{array}$	$\mathrm{V}_{\text {IL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$		$\begin{aligned} & 2.25 \\ & 4.50 \\ & 6.75 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	Vdc
	V_{IH}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 3.5 \\ 7.0 \\ 11 \end{gathered}$	-	$\begin{aligned} & 3.5 \\ & 7.0 \\ & 11 \end{aligned}$	$\begin{aligned} & 2.75 \\ & 5.50 \\ & 8.25 \end{aligned}$	-	$\begin{gathered} 3.5 \\ 7.0 \\ 11 \end{gathered}$	-	Vdc
$\begin{array}{\|lll} \hline \text { Output Drive Current } & \\ \left(\mathrm{V}_{\mathrm{OH}}=2.5 \mathrm{Vdc}\right) & \text { Source } \\ \left(\mathrm{V}_{\mathrm{OH}}=4.6 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{OH}}=9.5 \mathrm{Vdc}\right) & \\ \left(\mathrm{V}_{\mathrm{OH}}=13.5 \mathrm{Vdc}\right) & \end{array}$	IOH	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} -3.0 \\ -0.64 \\ -1.6 \\ -4.2 \end{gathered}$	-	$\begin{gathered} -2.4 \\ -0.51 \\ -1.3 \\ -3.4 \end{gathered}$	$\begin{gathered} -4.2 \\ -0.88 \\ -2.25 \\ -8.8 \end{gathered}$	-	$\begin{gathered} -1.7 \\ -0.36 \\ -0.9 \\ -2.4 \end{gathered}$	-	mAdc
$\begin{aligned} & \left(\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{Vdc}\right) \\ & (\mathrm{V} \mathrm{OL}=0.5 \mathrm{Vdc}) \\ & \left(\mathrm{V}_{\mathrm{OL}}=1.5 \mathrm{Vdc}\right) \end{aligned}$	${ }^{\text {IOL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} \hline 0.64 \\ 1.6 \\ 4.2 \end{gathered}$	-	$\begin{gathered} \hline 0.51 \\ 1.3 \\ 3.4 \end{gathered}$	$\begin{gathered} 0.88 \\ 2.25 \\ 8.8 \end{gathered}$	-	$\begin{gathered} \hline 0.36 \\ 0.9 \\ 2.4 \end{gathered}$	-	mAdc
Input Current	$\mathrm{l}_{\text {in }}$	15	-	± 0.1	-	± 0.00001	± 0.1	-	± 1.0	$\mu \mathrm{Adc}$
Input Capacitance $\left(\mathrm{V}_{\mathrm{in}}=0\right)$	$\mathrm{C}_{\text {in }}$	-	-	-	-	5.0	7.5	-	-	pF
Quiescent Current (Per Package)	IDD	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{gathered} 0.25 \\ 0.5 \\ 1.0 \end{gathered}$	-	0.0005 0.0010 0.0015	$\begin{gathered} 0.25 \\ 0.5 \\ 1.0 \end{gathered}$	-	$\begin{aligned} & 7.5 \\ & 15 \\ & 30 \end{aligned}$	$\mu \mathrm{Adc}$
Total Supply Current (Notes 3, 4) (Dynamic plus Quiescent, Per Gate, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$)	${ }^{\text {T }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$			$\begin{aligned} & \mathrm{I}_{\mathrm{T}}=(0.3 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} / \mathrm{N} \\ & \mathrm{I}_{\mathrm{T}}=(0.6 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} / \mathrm{N} \\ & \mathrm{I}_{\mathrm{T}}=(0.9 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} / \mathrm{N} \end{aligned}$					$\mu \mathrm{Adc}$

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
2. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.
3. The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.
4. To calculate total supply current at loads other than 50 pF :

$$
\mathrm{I}_{T}\left(\mathrm{C}_{\mathrm{L}}\right)=\mathrm{I}_{\mathrm{T}}(50 \mathrm{pF})+\left(\mathrm{C}_{\mathrm{L}}-50\right) \mathrm{Vfk}
$$

where: I_{T} is in $\mu \mathrm{A}$ (per package), C_{L} in $\mathrm{pF}, \mathrm{V}=\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{S S}\right)$ in volts, f in kHz is input frequency, and $\mathrm{k}=0.001 \mathrm{x}$ the number of exercised gates per package.

MC14001B Series

B-SERIES GATE SWITCHING TIMES

SWITCHING CHARACTERISTICS (Note 5) ($\left.\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Characteristic	Symbol	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{DD}} \\ & \mathrm{Vdc} \end{aligned}$	Min	$\begin{gathered} \text { Typ } \\ \text { (Note 6) } \end{gathered}$	Max	Unit
Output Rise Time, All B-Series Gates $\begin{aligned} & \mathrm{t}_{\mathrm{TLH}}=(1.35 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+33 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{LLH}}=(0.60 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+20 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{TLH}}=(0.40 \mathrm{~ns} / \mathrm{PF}) \mathrm{C}_{\mathrm{L}}+20 \mathrm{~ns} \end{aligned}$	${ }_{\text {t }}^{\text {tLH }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$		$\begin{gathered} 100 \\ 50 \\ 40 \end{gathered}$	$\begin{gathered} 200 \\ 100 \\ 80 \end{gathered}$	ns
Output Fall Time, All B-Series Gates $\begin{aligned} & \mathrm{t}_{\mathrm{THL}}=(1.35 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+33 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{THL}}=(0.60 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+20 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{THL}}=(0.40 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+20 \mathrm{~ns} \end{aligned}$	${ }_{\text {t }}$ HL	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$		$\begin{gathered} 100 \\ 50 \\ 40 \end{gathered}$	$\begin{gathered} 200 \\ 100 \\ 80 \end{gathered}$	ns
Propagation Delay Time MC14001B, MC14011B only $t_{P L H}, t_{P H L}=(0.90 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+80 \mathrm{~ns}$ $t_{\text {PLH }}, t_{\text {PHL }}=(0.36 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+32 \mathrm{~ns}$ $t_{P L H}, t_{P H L}=(0.26 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+27 \mathrm{~ns}$ All Other 2, 3, and 4 Input Gates $t_{\text {PLH }}, t_{\text {PHL }}=(0.90 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+115 \mathrm{~ns}$ $t_{\text {PLH }}, \mathrm{t}_{\mathrm{PHL}}=(0.36 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+47 \mathrm{~ns}$ $t_{\text {PLH }}, t_{\text {PHL }}=(0.26 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+37 \mathrm{~ns}$ 8-Input Gates (MC14068B, MC14078B) $t_{P L H}, t_{P H L}=(0.90 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+155 \mathrm{~ns}$ $t_{\text {PLH }}, t_{\text {PHL }}=(0.36 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+62 \mathrm{~ns}$ $t_{\text {PLH }}, t_{\text {PHL }}=(0.26 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+47 \mathrm{~ns}$	$\mathrm{tpLH}^{\text {tphL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \\ & 5.0 \\ & 10 \\ & 15 \\ & \\ & 5.0 \\ & 10 \\ & 15 \end{aligned}$	- -	$\begin{gathered} 125 \\ 50 \\ 40 \\ \\ 160 \\ 65 \\ 50 \\ \\ 200 \\ 80 \\ 60 \end{gathered}$	$\begin{gathered} 250 \\ 100 \\ 80 \\ 300 \\ 130 \\ 100 \\ 350 \\ 150 \\ 110 \end{gathered}$	ns

5. The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.
6. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

Figure 1. Switching Time Test Circuit and Waveforms

MC14001B Series

CIRCUIT SCHEMATIC
 NOR, OR GATES

MC14001B, MC14071B One of Four Gates Shown

MC14025B
One of Three Gates Shown

CIRCUIT SCHEMATIC

NAND, AND GATES

MC14001B Series

TYPICAL B-SERIES GATE CHARACTERISTICS

Figure 2. $\mathrm{V}_{\mathrm{GS}}=5.0 \mathrm{Vdc}$

Figure 4. $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{Vdc}$

Figure 6. $\mathrm{V}_{\mathrm{GS}}=15 \mathrm{Vdc}$

P-CHANNEL DRAIN CURRENT (SOURCE)

Figure 3. $\mathrm{V}_{\mathrm{GS}}=-5.0 \mathrm{Vdc}$

Figure 5. $\mathrm{V}_{\mathrm{GS}}=-10 \mathrm{Vdc}$

Figure 7. $\mathrm{V}_{\mathrm{GS}}=-15 \mathrm{Vdc}$

These typical curves are not guarantees, but are design aids.
Caution: The maximum rating for output current is 10 mA per pin.

TYPICAL B-SERIES GATE CHARACTERISTICS (cont'd)

VOLTAGE TRANSFER CHARACTERISTICS

Figure 8. $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{Vdc}$

Figure 10. $\mathrm{V}_{\mathrm{DD}}=15 \mathrm{Vdc}$

Figure 9. $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{Vdc}$

DC NOISE MARGIN

The DC noise margin is defined as the input voltage range from an ideal " 1 " or " 0 " input level which does not produce output state change(s). The typical and guaranteed limit values of the input values V_{IL} and V_{IH} for the output(s) to be at a fixed voltage V_{O} are given in the Electrical Characteristics table. V_{IL} and V_{IH} are presented graphically in Figure 11.

Guaranteed minimum noise margins for both the " 1 " and " 0 " levels =

> 1.0 V with a 5.0 V supply
> 2.0 V with a 10.0 V supply
> 2.5 V with a 15.0 V supply

$\mathrm{V}_{S S}=0$ VOLTS DC
(a) Inverting Function

(b) Non-Inverting Function

Figure 11. DC Noise Immunity

ORDERING INFORMATION

Device	Package	Shipping ${ }^{\dagger}$
MC14001BDG	SOIC-14 (Pb-Free)	55 Units / Rail
NLV14001BDG*	SOIC-14 (Pb-Free)	2500 Units / Tape \& Reel
MC14001BDR2G	TSSOP-14 (Pb-Free)	2000 Units / Tape \& Reel
NLV14001BDR2G*	SOEIAJ-14 (Pb-Free)	MC14001BDTR2G
NLV14001BDTR2G*		
MC14001BFELG		

MC14011BDG	SOIC-14 (Pb-Free)	55 Units / Rail
NLV14011BDG*	SOIC-14 (Pb-Free)	2500 Units / Tape \& Reel
MC14011BDR2G	TSSOP-14 (Pb-Free)	
NLV14011BDR2G*	SOEIAJ-14 (Pb-Free)	50 Units / Rail
MC14011BDTR2G		2000 Units / Tape \& Reel
NLV14011BDTR2G*		
MC14011BFG		
MC14011BFELG		

MC14023BDG	SOIC-14 (Pb-Free)	55 Units / Rail
MC14023BDR2G	SOIC-14 (Pb-Free)	2500 Units / Tape \& Reel
NLV14023BDR2G*	SOEIAJ-14 (Pb-Free)	2000 Units / Tape \& Reel
MC14023BFELG		

MC14025BDG	SOIC-14 (Pb-Free)	55 Units / Rail
NLV14025BDG*	SOIC-14 (Pb-Free)	2500 Units / Tape \& Reel
MC14025BDR2G		
NLV14025BDR2G*		

MC14071BDG	SOIC-14 (Pb-Free)	55 Units / Rail
NLV14071BDG*	SOIC-14 (Pb-Free)	2500 Units / Tape \& Reel
MC14071BDR2G	TSSOP-14 (Pb-Free)	96 Units per Rail
NLV14071BDR2G*		
MC14071BDTG		
NLV14071BDTR2G*		

MC14073BDG	SOIC-14 (Pb-Free)	55 Units / Rail
MC14073BDR2G	SOIC-14 (Pb-Free)	2500 Units / Tape \& Reel

MC14001B Series

ORDERING INFORMATION (continued)

Device	Package	Shipping ${ }^{\dagger}$
MC14081BDG	SOIC-14 (Pb-Free)	55 Units / Rail
NLV14081BDG*	SOIC-14 (Pb-Free)	2500 Units / Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

SOIC-14 NB
CASE 751A-03
ISSUE L
SCALE 1:1

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b DOES NOT INCLUDE DAMBAR

PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF AT MAXIMUM MATERIAL CONDITION
4. DIMENSIONS D AND E DO NOT INCLUDE

MOLD PROTRUSIONS.
5. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.

SIDE.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
	1.35	1.75	0.054	0.068
A1	0.10	0.25	0.004	0.010
A3	0.19	0.25	0.008	0.010
b	0.35	0.49	0.014	0.019
D	8.55	8.75	0.337	0.344
E	3.80	4.00	0.150	0.157
e	1.27	BSC	0.050	BSC
H	5.80	6.20	0.228	0.244
h	0.25	0.50	0.010	0.019
L	0.40	1.25	0.016	0.049
M	0°	7°	0°	7°

DIMENSIONS: MILLIMETERS
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

| DOCUMENT NUMBER: | 98ASB42565B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-14 NB | PAGE 1 OF 2 |

STYLE 1:
PIN 1. COMMON CATHODE
2. ANODE/CATHODE
3. ANODE/CATHODE
4. NO CONNECTION
5. ANODE/CATHODE
6. NO CONNECTION
7. ANODE/CATHODE
8. ANODE/CATHODE
9. ANODE/CATHODE
10. NO CONNECTION
11. ANODE/CATHODE
12. ANODE/CATHODE
13. NO CONNECTION
4. COMMON ANODE
STYLE $5:$

PIN 1. COMMON CATHODE
2. ANODE/CATHODE
3. ANODE/CATHOD
4. ANODE/CATHOD
4. ANODE/CATHODE
5. ANODE/CATHODE
6. NO CONNECTION
7. COMMON ANODE
8. COMMON CATHOD
9. ANODE/CATHODE
10. ANODE/CATHODE
11. ANODE/CATHODE
12. ANODE/CATHODE
13. NO CONNECTION
14. COMMON ANODE

STYLE 2 :
CANCELLED

STYLE 3:
PIN 1. NO CONNECTION 2. ANODE 3. ANODE
4. NO CONNECTION 5. ANODE
6. NO CONNECTION
7. ANODE
8. ANODE
9. ANODE
10. NO CONNECTION
11. ANODE
12. ANODE
13. NO CONNECTION
14. COMMON CATHODE

STYLE 6

PIN 1. CATHODE
2. CATHODE
3. CATHODE
4. CATHODE
5. CATHODE
5. CATHODE
6. CATHODE
7. CATHOD
8. ANODE
9. ANODE
10. ANODE
11. ANODE
12. ANODE
13. ANODE
14. ANODE

STYLE 7:
PIN 1. ANODE/CATHODE
2. COMMON ANODE
3. COMMON CATHODE
4. ANODE/CATHODE
5. ANODE/CATHODE
6. ANODE/CATHODE
7. ANODE/CATHODE
8. ANODE/CATHODE
9. ANODE/CATHODE
10. ANODE/CATHODE
11. COMMON CATHODE

1. COMMON CATHODE
2. COMMON ANODE
3. ANODE/CATHODE

STYLE 4:
PIN 1. NO CONNECTION 2. CATHODE
3. CATHODE
4. NO CONNECTION
5. CATHODE
6. NO CONNECTION
7. CATHODE
. CATHODE
9. CATHODE
10. NO CONNECTION
11. CATHODE
12. CATHODE
13. NO CONNECTION
14. COMMON ANODE

STYLE 8:
PIN 1. COMMON CATHODE
2. ANODE/CATHODE
3. ANODE/CATHODE
4. NO CONNECTION
4. NO CONNECTION
5. ANODE/CATHODE
6. ANODE/CATHODE
7. COMMON ANODE
8. COMMON ANODE
9. ANODE/CATHODE
10. ANODE/CATHODE
11. NO CONNECTION
11. NO CONNECTION
12. ANODE/CATHODE
12. ANODE/CATHODE
13. ANODE/CATHODE
14. COMMON CATHODE

| DOCUMENT NUMBER: | 98ASB42565B | Electronic versions are uncontrolled except when accessed directly from the Documment Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-14 NB | PAGE $\mathbf{2}$ OF 2 |

onsemi and OnSemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

TSSOP-14 WB
CASE 948G
ISSUE C
DATE 17 FEB 2016

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS MOLD FLASH OR GATE BURRS SHALL NOT MOLD FLASH OR GATE BURRS
4. DIMENSION B DOES NOT INCLUDE

INTERLEAD FLASH OR PROTRUSION.
INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	4.90	5.10	0.193	0.200
B	4.30	4.50	0.169	0.177
C	---	1.20	---	0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65	BSC	0.026	
BSC				
H	0.50	0.60	0.020	0.024
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40 BSC	0.252	BSC	
M	00°	8°	0°	8°

GENERIC MARKING DIAGRAM*

SOLDERING FOOTPRINT

A	$=$ Assembly Location
L	$=$ Wafer Lot
Y	$=$ Year
W	$=$ Work Week
-	$=$ Pb-Free Package

(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

| DOCUMENT NUMBER: | 98ASH70246A | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY' in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TSSOP-14 WB | PAGE 1 OF 1 |

onsemi and ONSemi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

