Edge Connector Breakout Board for the BBC micro:bit

www.kitronik.co.uk/5601

Introduction: This breakout board has been designed to offer an easy way to connect additional circuits and hardware to the edge connector on the BBC micro:bit. This edge connector offers access to a large number of the BBC micro:bit processor pins. For details on these please refer to the next page.

To use the breakout board the BBC micro:bit should be inserted firmly into the connector as shown below.

Examples of board in use: This breakout board is used in our 'Inventors kit for BBC micro:bit'. This kit is supplied with instructions detailing a number of uses for the board. These can be found at www.kitronik.co.uk/microbitinvent

Assembly: Before using your breakout board you will need to solder the edge connector into place on the PCB.

You will also notice that there is a blue plastic covering some of the pins. This should just peeled away before the board is used (see image left).

Layout:

Solder pads connected through to the BBC micro:bit pin numbers as indicated

This area has been designed so that a 20x2 row of pin headers can be soldered in if required (for example to connect an IDC lead).

Prototyping area

This area has been designed to allow you to prototype small circuits. There is a 3V and 0V row, and three additional connecting sections.

Edge Connector Breakout Board for the BBC micro:bit

Breakout PCB Ref (if applicat

www.kitronik.co.uk/5601

Edge Connector Pinout

Note: A number of these pins may not be accessible in all editors.

0V
Snac

Special function pin

Digital input / output

Analogue input / digital IO

Digital input (shared with a button)

Digital output (shared with LED matrix)

ble)	Name
22	0)/
22	0V
0V	0V
24	01/
21	0V
20	SDA
10	SCL
19	JCL
18	3V
3V	3V
47	21/
17	3V

16

15

2

12

11

10

9

8

0

OV OV / ground

SDA Serial data pin connected to the magnetometer & accelerometer

SCL Serial clock pin connected to the magnetometer & accelerometer

3V 3V / positive supply

3V 3V positive supply
3V 3V positive supply

DIO General purpose digital IO (P16 in editors)

MOSI Serial connection - Master Output / Slave Input

OV / ground

0V / ground

MISO Serial connection - Master Input / Slave Output
 SCK Serial connection - Clock

PAD2 General purpose digital / analogue IO (P2 in editors)

DIO General purpose digital IO (P12 in editors)

BTN_B Button B – Normally high, going low on press (Button B in editors)

COL3 Column 3 on the LED matrix

COL7 Column 7 on the LED matrix

DIO General purpose digital IO (P8 in in editors)

PAD1 General purpose digital / analogue IO (P1 in editors)

7 COL8 Column 8 on the LED matrix
6 COL9 Column 9 on the LED matrix

6 COL9 Column 9 on the LED matrix
5 BTN_A Button A – Normally high, going low on press (Button A in editors)

4 COL2 Column 2 on the LED matrix

PADO General purpose digital / analogue IO (P0 in editors)

COL1 Column 1 on the LED matrix

Edge Connector Breakout Board for the BBC micro:bit

www.kitronik.co.uk/5601

Dimensions

(Dimensions +/- 0.8mm)