

Film Capacitors

Metallized Polypropylene Film Capacitors (MKP)

Series/Type: B32651 ... B32658

Date: November 2019

© TDK Electronics AG 2020. Reproduction, publication and dissemination of this publication, enclosures hereto and the information contained therein without TDK Electronics' prior express consent is prohibited.

Metallized polypropylene film capacitors (MKP)

B32651 ... B32658

High pulse (wound)

Typical applications

- Electronic ballasts
- Switch-mode power supplies
- IGBT
- Snubbering

Climatic

- Max. operating temperature: 110 °C
- Climatic category (IEC 60068-1:2013): 55/100/56

Construction

- Dielectric: polypropylene (PP)(MKP)
- Wound capacitor technology with internal series connection
- Plastic case (UL 94 V-0)
- Epoxy resin sealing (UL 94 V-0)

Features

- High pulse strength
- High contact reliability
- RoHS-compatible
- Very low inductance
- Halogen-free capacitors available on request
- AEC-Q200D compliant

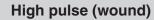
Terminals

- Parallel wire leads, lead-free tinned
- Special lead lengths available on request

Marking

Manufacturer's logo,

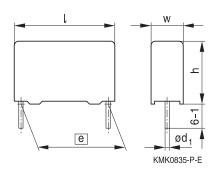
lot number (☐ ≤27.5 mm), series number (e.g. 651), rated capacitance (coded), cap. tolerance (code letter), rated DC voltage (AC voltage for 1600 V DC/700 V AC and 2000 V DC/1000 V AC), date of manufacture (coded)


Delivery mode

Bulk (untaped)

Taped (Ammo pack or reel)

For notes on taping, refer to chapter "Taping and packing".


Dimensional drawings

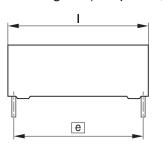
Number of wires	Lead spacing θ ±0.4	Lead diameter d ₁ ±0.05	Туре	Drawing
2-pin	10	0.6	B32651	A1
2-pin	15	0.8	B32652	A1
2-pin	22.5	0.8	B32653	A1
2-pin	27.5	0.8	B32654	A1
2-pin	37.5	1.0	B32656A/J	A1
2-pin	37.5	1.0	B32656T	A2
4-pin	37.5	1.2	B32656G	B1
4-pin	52.5	1.2	B32658G	B1

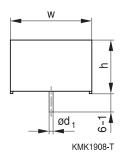
(Dimensions in mm)

Dimensional drawings 2-pin versions

Drawing A1

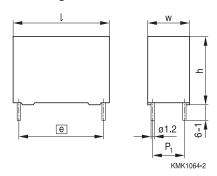
	B32651	B32652	B32653	B32654	B32656A/J
Lead spacing e ±0.4:	10	15	22.5	27.5	37.5
Lead diameter d₁:	0.6	0.8	8.0	0.8	1.0


(Dimensions in mm)



High pulse (wound)

Drawing A2 (low profile)

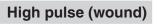


Lead spacing e ±0.4:	37.5
Lead diameter d₁:	1.0

(Dimensions in mm)

Dimensional drawings 4-pin versions

Drawing B1

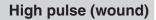


	B32656G	B32658G
Lead spacing e ±0.4:	37.5	52.5
Lead diameter d₁:	1.2	1.2

(Dimensions in mm)

	m La Ya	
B32651		
		datate:

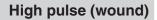
Lead spacing	10 mm
Туре	B32651
Page	12
V _R (V DC)	1250
V _{RMS} (V AC)	450
C _R (nF)	
2.2 3.3	
3.3	
4.7	
6.8	



High pulse (wound)

Lead spacing	15 mm							
Туре	B32652							
Page	13							
V _R (V DC)	250	400	630	1000	1250	1600	1600	2000
V _{RMS} (V AC)	160	200	250	250	500	500	700	700
C _R (nF)								
1.0								
1.5								
2.2								
3.3								
4.7								
5.6								
6.8								
10								
12								
15								
22								
33								
47								
56								
68								
100								
120								
150								
220								
330								
390								
470								
560								
680								
820								
1000								

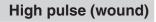
Lead spacing	22.5 mm							
Туре	B32653							
Page	16							
V _R (V DC)	250	400	630	1000	1250	1600	2000	2000
V _{RMS} (V AC)	160	200	250	250	500	500	700	1000
C _R (nF)								
2.2								
3.3								
4.7								
6.8								
10								
12								
15								
22								
33								
47								
56								
68								
82								
100								
120								
150								
220								
330								
470								
560								
680								
1000								
1200								
1500								
2200								
3300								



High pulse (wound)

 	T						
Lead spacing	†						
Туре	B32654						
Page	19						
V _R (V DC)	250	400	630	1000	1250	1600	2000
V _{RMS} (V AC)	160	200	250	250	500	500	700
C _R (nF)							
22							
33							
47							
68							
82							
100							
150							
220							
330							
470							
560							
680							
820							
1000							
1200							
1500							
2200							
2700							
3300							
4700							
5600							
6800							
8200							

Lead spacing	37.5 mm			
Туре	B32656			
Page	21			
V _R (V DC)	250	400	630	750
V _{RMS} (V AC)	160	200	250	350
C _R (nF)				
470				
560				
680				
820				
1000				
1200				
1500				
1800				
2000				
2200				
2500				
2700				
3000				
3300				
3500				
4000				
4700				
5600				
6800				
7000				
7500				
8000				
10000				
12000				
14000				
15000				
17000				
20000				
24000				



High pulse (wound)

Lead spacing	37.5 mm				
Туре	B32656				
Page	24				
V _R (V DC)	850	1000	1250	1600	2000
V _{RMS} (V AC)	450	500	500	600	700
C _R (nF)					
68					
100					
120					
150					
220					
270					
330					
390					
470					
560					
680					
820					
900					
1000					
1200					
1500					
1800					
2200					
2500					
2700					
3000					
3300					
3800					

Lead spacing	52.5 mm	1								
Type	B32658	B32658								
Page	28									
V _R (V DC)	250	400	630	750	850	1000	1250	1600	2000	
V _{RMS} (V AC)	160	200	250	350	450	500	500	600	700	
C _R (nF)										
680										
820										
1000										
1200										
1500										
2000										
2200										
2700										
3300										
4500										
4700										
5600										
6000										
6800										
9000										
12000										
15000										
20000										
26000										
30000										
40000										

High pulse (wound)

Ordering codes and packing units (lead spacing 10 mm)

V_R	V_{RMS}	C _R	Max. dimensions	Ordering code	Ammo	Reel	Untaped
	f≤1 kHz		$w \times h \times I$	(composition see	pack		
V DC ¹⁾	V AC	nF	mm	below)	pcs./MOQ	pcs./MOQ	pcs./MOQ
1250	450	2.2	$4.0 \times 9.0 \times 13.0$	B32651A7222+***	4000	6800	4000
		3.3	$5.0 \times 11.0 \times 13.0$	B32651A7332+***	3320	5200	4000
		4.7	$5.0 \times 11.0 \times 13.0$	B32651A7472+***	3320	5200	4000
		6.8	$6.0 \times 12.0 \times 13.0$	B32651A7682+***	2720	4400	4000

MOQ = Minimum Order Quantity, consisting of 4 packing units.

Further E series and intermediate capacitance values on request.

Composition of ordering code

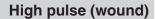
+ = Capacitance tolerance code:

 $K = \pm 10\%$

 $J = \pm 5\%$

*** = Packaging code:

289 = Straight terminals, Ammo pack


189 = Straight terminals, Reel

000 = Straight terminals, Untaped (standard lead

length 6-1 mm)

¹⁾ For pulse loads (pulse width \leq 1000 μ s), a peak voltage of 1400 V_p can be permitted.

Ordering codes and packing units (lead spacing 15 mm)

$\overline{V_R}$	V_{RMS}	C _R	Max. dimensions	Ordering code	Ammo	Reel	Untaped
	f≤1 kHz		$w \times h \times I$	(composition see	pack		
V DC	V AC	nF	mm	below)	pcs./MOQ	pcs./MOQ	pcs./MOQ
250	160	150	$5.0\times10.5\times18.0$	B32652A3154+***	4680	5200	4000
		220	$6.0 \times 11.0 \times 18.0$	B32652A3224+***	3840	4400	4000
		330	$7.0 \times 12.5 \times 18.0$	B32652A3334+***	3320	3600	4000
		470	$8.5 \times 14.5 \times 18.0$	B32652A3474+***	2720	2800	2000
		680	$9.0 \times 17.5 \times 18.0$	B32652A3684+***	2560	2800	2000
		820	$11.0 \times 18.5 \times 18.0$	B32652A3824+***	_	2200	1200
		1000	$11.0\times18.5\times18.0$	B32652A3105+***	_	2200	1200
400	200	68	$5.0 \times 10.5 \times 18.0$	B32652A4683+***	4680	5200	4000
		100	$5.0 \times 10.5 \times 18.0$	B32652A4104+***	4680	5200	4000
		150	$6.0 \times 11.0 \times 18.0$	B32652A4154+***	3840	4400	4000
		220	$7.0 \times 12.5 \times 18.0$	B32652A4224+***	3320	3600	4000
		330	$8.5 \times 14.5 \times 18.0$	B32652A4334+***	2720	2800	2000
		470	$9.0 \times 17.5 \times 18.0$	B32652A4474+***	2560	2800	2000
		560	$11.0 \times 18.5 \times 18.0$	B32652A4564+***	_	2200	1200
		680	$11.0 \times 18.5 \times 18.0$	B32652A4684+***	_	2200	1200
630	250	33	$5.0 \times 10.5 \times 18.0$	B32652A6333+***	4680	5200	4000
		47	$5.0 \times 10.5 \times 18.0$	B32652A6473+***	4680	2800	4000
		68	$6.0 \times 11.0 \times 18.0$	B32652A6683+***	3840	4400	4000
		100	$7.0 \times 12.5 \times 18.0$	B32652A6104+***	3320	3600	4000
		150	$8.5 \times 14.5 \times 18.0$	B32652A6154+***	2720	2800	2000
		220	$9.0 \times 17.5 \times 18.0$	B32652A6224+***	2560	2800	2000
		330	$11.0 \times 18.5 \times 18.0$	B32652A6334+***	_	2200	1200
		390	$11.0\times18.5\times18.0$	B32652A6394+***	_	2200	1200

MOQ = Minimum Order Quantity, consisting of 4 packing units. Further E series and intermediate capacitance values on request.

Composition of ordering code

+ = Capacitance tolerance code:

 $K = \pm 10\%$

 $J = \pm 5\%$

*** = Packaging code:

289 = Straight terminals, Ammo pack

189 = Straight terminals, Reel

000 = Straight terminals, Untaped (standard lead

High pulse (wound)

Ordering codes and packing units (lead spacing 15 mm)

$\overline{V_R}$	V_{RMS}	C _R	Max. dimensions	Ordering code	Ammo	Reel	Untaped
	f≤1 kHz		$w \times h \times I$	(composition see	pack		
V DC	V AC	nF	mm	below)	pcs./MOQ	pcs./MOQ	pcs./MOQ
1000	250	10	$5.0 \times 10.5 \times 18.0$	B32652A0103+***	4680	5200	4000
		15	$5.0 \times 10.5 \times 18.0$	B32652A0153+***	4680	5200	4000
		22	$5.0 \times 10.5 \times 18.0$	B32652A0223+***	4680	5200	4000
		33	$6.0 \times 11.0 \times 18.0$	B32652A0333+***	3840	4400	4000
		47	$7.0 \times 12.5 \times 18.0$	B32652A0473+***	3320	3600	4000
		68	$8.5 \times 14.5 \times 18.0$	B32652A0683+***	2720	2800	2000
		100	$9.0 \times 17.5 \times 18.0$	B32652A0104+***	2560	2800	2000
		120	$11.0 \times 18.5 \times 18.0$	B32652A0124+***	_	2200	1200
		150	$11.0\times18.5\times18.0$	B32652A0154+***	_	2200	1200
1250	500	6.8	$5.0 \times 10.5 \times 18.0$	B32652A7682+***	4680	5200	4000
		10	$6.0 \times 11.0 \times 18.0$	B32652A7103+***	3840	4400	4000
		15	$7.0 \times 12.5 \times 18.0$	B32652A7153+***	3320	3600	4000
		22	$8.5 \times 14.5 \times 18.0$	B32652A7223+***	2720	2800	2000
		33	$9.0 \times 17.5 \times 18.0$	B32652A7333+***	2560	2800	2000
		47	$11.0 \times 18.5 \times 18.0$	B32652A7473+***	_	2200	1200
		56	$11.0 \times 18.5 \times 18.0$	B32652A7563+***	_	2200	1200
1600	500	3.3	$5.0 \times 10.5 \times 18.0$	B32652A1332+***	4680	5200	4000
		4.7	$6.0 \times 11.0 \times 18.0$	B32652A1472+***	3840	4400	4000
		6.8	$7.0 \times 12.5 \times 18.0$	B32652A1682+***	3320	3600	4000
		10	$8.5 \times 14.5 \times 18.0$	B32652A1103+***	2720	2800	2000
		15	$9.0 \times 17.5 \times 18.0$	B32652A1153+***	2560	2800	2000
		22	$11.0\times18.5\times18.0$	B32652A1223+***	_	2200	1200

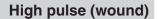
MOQ = Minimum Order Quantity, consisting of 4 packing units.

Further E series and intermediate capacitance values on request.

Composition of ordering code

+ = Capacitance tolerance code:

 $K = \pm 10\%$


 $J = \pm 5\%$

*** = Packaging code:

289 = Straight terminals, Ammo pack

189 = Straight terminals, Reel

Ordering codes and packing units (lead spacing 15 mm)

V_R	V_{RMS}	C _R	Max. dimensions	Ordering code	Ammo	Reel	Untaped
	f≤1 kHz		$w \times h \times I$	(composition see	pack		
V DC	V AC	nF	mm	below)	pcs./MOQ	pcs./MOQ	pcs./MOQ
1600	700	2.2	$5.0\times10.5\times18.0$	B32652J1222+***	4680	5200	4000
		3.3	$6.0 \times 11.0 \times 18.0$	B32652J1332+***	3840	4400	4000
		4.7	$7.0 \times 12.5 \times 18.0$	B32652J1472+***	3320	3600	4000
		6.8	$8.5 \times 14.5 \times 18.0$	B32652J1682+***	2720	2800	2000
		10	$9.0 \times 17.5 \times 18.0$	B32652J1103+***	2560	2800	2000
		12	$9.0 \times 17.5 \times 18.0$	B32652J1123+***	2560	2800	2000
		15	$11.0\times18.5\times18.0$	B32652J1153+***	-	2200	1200
2000	700	1.0	$5.0 \times 10.5 \times 18.0$	B32652A2102+***	4680	5200	4000
		1.5	$6.0 \times 11.0 \times 18.0$	B32652A2152+***	3840	4400	4000
		2.2	$7.0 \times 12.5 \times 18.0$	B32652A2222+***	3320	3600	4000
		3.3	$8.5 \times 14.5 \times 18.0$	B32652A2332+***	2720	2800	2000
		4.7	$9.0 \times 17.5 \times 18.0$	B32652A2472+***	2560	2800	2000
		5.6	$9.0 \times 17.5 \times 18.0$	B32652A2562+***	_	2200	1000
		6.8	$11.0\times18.5\times18.0$	B32652A2682+***	_	2200	1200

MOQ = Minimum Order Quantity, consisting of 4 packing units.

Further E series and intermediate capacitance values on request.

Composition of ordering code

+ = Capacitance tolerance code:

 $K = \pm 10\%$

 $J = \pm 5\%$

*** = Packaging code:

289 = Straight terminals, Ammo pack

189 = Straight terminals, Reel

High pulse (wound)

Ordering codes and packing units (lead spacing 22.5 mm)

$\overline{V_R}$	V _{RMS}	C _R	Max. dimensions	Ordering code	Ammo	Reel	Untaped
	f≤1 kHz		$w \times h \times l$	(composition see	pack pcs./	pcs./	pcs./
V DC	V AC	nF	mm	below)	MOQ	MOQ	MOQ
250	160	220	$6.0\times15.0\times26.5$	B32653A3224+***	2720	2800	2880
		330	$6.0\times15.0\times26.5$	B32653A3334+***	2720	2800	2880
		470	$7.0\times16.0\times26.5$	B32653A3474+***	2320	2400	2520
		680	$8.5 \times 16.5 \times 26.5$	B32653A3684+***	1920	2000	2040
		1000	$10.5\times16.5\times26.5$	B32653A3105+***	1560	1600	2160
		1200	$10.5\times18.5\times26.5$	B32653A3125+***	1560	1600	2160
		1500	$11.0\times20.5\times26.5$	B32653A3155+***	1480	1400	2040
		2200	$14.5 \times 29.5 \times 26.5$	B32653A3225+000	_	_	1040
		3300	$14.5 \times 29.5 \times 26.5$	B32653A3335+000	_	_	1040
400	200	150	$6.0 \times 15.0 \times 26.5$	B32653A4154+***	2720	2800	2880
		220	$6.0 \times 15.0 \times 26.5$	B32653A4224+***	2720	2800	2880
		330	$7.0\times16.0\times26.5$	B32653A4334+***	2320	2400	2520
		470	$8.5 \times 16.5 \times 26.5$	B32653A4474+***	1920	2000	2040
		680	$10.5\times16.5\times26.5$	B32653A4684+***	1560	1600	2160
		1000	$11.0\times20.5\times26.5$	B32653A4105+***	1480	1400	2040
		1200	$12.0 \times 22.0 \times 26.5$	B32653A4125+000	_	_	1800
		1500	$14.5 \times 29.5 \times 26.5$	B32653A4155+000	_	_	1040
		2200	$14.5 \times 29.5 \times 26.5$	B32653A4225+000	_	_	1040
630	250	100	$6.0\times15.0\times26.5$	B32653A6104+***	2720	2800	2880
		150	$6.0 \times 15.0 \times 26.5$	B32653A6154+***	2720	2800	2880
		220	$8.5\times16.5\times26.5$	B32653A6224+***	1920	2000	2040
		330	$10.5\times16.5\times26.5$	B32653A6334+***	1560	1600	2160
		470	$11.0\times20.5\times26.5$	B32653A6474+***	1480	1400	2040
	560 11.0 × 20.5 × 26.5		B32653A6564+***	1480	1400	2040	
	680 14.5 × 29.5 × 26		$14.5 \times 29.5 \times 26.5$	B32653A6684+000	_	_	1040
	1000 14.5 × 29.5 × 26.5		$14.5 \times 29.5 \times 26.5$	B32653A6105+000	_	_	1040
		1200	$14.5 \times 29.5 \times 26.5$	B32653A6125+000	_	_	1040

MOQ = Minimum Order Quantity, consisting of 4 packing units. Further E series and intermediate capacitance values on request.

Composition of ordering code

+ = Capacitance tolerance code:

 $K = \pm 10\%$


 $J = \pm 5\%$

*** = Packaging code:

289 = Straight terminals, Ammo pack

189 = Straight terminals, Reel

Ordering codes and packing units (lead spacing 22.5 mm)

$\overline{V_R}$	V _{RMS}	C _R	Max. dimensions	Ordering code	Ammo	Reel	Untaped
	f≤1 kHz		$w \times h \times l$	(composition see	pack pcs./	pcs./	pcs./
V DC	V AC	nF	mm	below)	MOQ	MOQ	MOQ
1000	250	33	$6.0 \times 15.0 \times 26.5$	B32653A0333+***	2720	2800	2880
		47	$6.0 \times 15.0 \times 26.5$	B32653A0473+***	2720	2800	2880
		68	$6.0 \times 15.0 \times 26.5$	B32653A0683+***	2720	2800	2880
		100	$8.5\times16.5\times26.5$	B32653A0104+***	1920	2000	2040
		150	$10.5\times16.5\times26.5$	B32653A0154+***	1560	1600	2160
		220	$11.0\times20.5\times26.5$	B32653A0224+***	1480	1400	2040
		330	$14.5 \times 29.5 \times 26.5$	B32653A0334+000	_	_	1040
		470	$14.5 \times 29.5 \times 26.5$	B32653A0474+000	_	_	1040
		560	$14.5 \times 29.5 \times 26.5$	B32653A0564+000	_	_	1040
1250	500	22	$6.0\times15.0\times26.5$	B32653A7223+***	2720	2800	2880
		33	$6.0\times15.0\times26.5$	B32653A7333+***	2720	2800	2880
		47	$8.5\times16.5\times26.5$	B32653A7473+***	1920	2000	2040
		68	$10.5\times16.5\times26.5$	B32653A7683+***	1560	1600	2160
		100	$11.0\times20.5\times26.5$	B32653A7104+***	1480	1400	2040
		120	$12.0\times22.0\times26.5$	B32653A7124+000	_	_	1800
		150	$14.5 \times 29.5 \times 26.5$	B32653A7154+000	_	_	1040
		220	$14.5 \times 29.5 \times 26.5$	B32653A7224+000	_	_	1040
1600	500	6.8	$6.0\times15.0\times26.5$	B32653A1682+***	2720	2800	2880
		10	$6.0\times15.0\times26.5$	B32653A1103+***	2720	2800	2880
		15	$7.0\times16.0\times26.5$	B32653A1153+***	2320	2400	2520
		22	$8.5\times16.5\times26.5$	B32653A1223+***	1920	2000	2040
		33	$10.5\times16.5\times26.5$	B32653A1333+***	1560	1600	2160
		47	$11.0\times20.5\times26.5$	B32653A1473+***	1480	1400	2040
		56	$12.0\times22.0\times26.5$	B32653A1563+000	_	_	1800
		68	$14.5 \times 29.5 \times 26.5$	B32653A1683+000	_	_	1040
		82	$14.5 \times 29.5 \times 26.5$	B32653A1823+000	_	_	1040
		100	$14.5 \times 29.5 \times 26.5$	B32653A1104+000	_	_	1040

MOQ = Minimum Order Quantity, consisting of 4 packing units. Further E series and intermediate capacitance values on request.

Composition of ordering code

+ = Capacitance tolerance code:

 $K = \pm 10\%$

 $J = \pm 5\%$

*** = Packaging code:

289 = Straight terminals, Ammo pack

189 = Straight terminals, Reel

High pulse (wound)

Ordering codes and packing units (lead spacing 22.5 mm)

V_R	V_{RMS}	C _R	Max. dimensions	Ordering code	Ammo	Reel	Untaped
	f≤1 kHz		$w \times h \times l$	(composition see	(composition see pack pcs./		pcs./
V DC	V AC	nF	mm	below)	MOQ	MOQ	MOQ
2000	700	3.3	$6.0\times15.0\times26.5$	B32653A2332+***	2720	2800	2880
		4.7	$6.0 \times 15.0 \times 26.5$	B32653A2472+***	2720	2800	2880
		6.8	$8.5\times16.5\times26.5$	B32653A2682+***	1920	2000	2040
		10	$10.5\times16.5\times26.5$	B32653A2103+***	1560	1600	2160
		15	$11.0\times20.5\times26.5$	B32653A2153+***	1480	1400	2040
		22	$14.5 \times 29.5 \times 26.5$	B32653A2223+000	_	_	1040
		33	$14.5 \times 29.5 \times 26.5$	B32653A2333+000	_	_	1040
2000	1000	2.2	$6.0\times15.0\times26.5$	B32653A8222+***	2720	2800	2880
		3.3	$6.0\times15.0\times26.5$	B32653A8332+***	2720	2800	2880
		4.7	$8.5\times16.5\times26.5$	B32653A8472+***	1920	2000	2040
		6.8	$10.5\times16.5\times26.5$	B32653A8682+***	1560	1600	2160
		10	$10.5 \times 20.5 \times 26.5$	B32653A8103+***	1560	1600	2160
		12	$12.0\times22.0\times26.5$	B32653A8123+000	_	_	1800
		15	$14.5 \times 29.5 \times 26.5$	B32653A8153+000	_	_	1040
		22	$14.5 \times 29.5 \times 26.5$	B32653A8223+000	_	_	1040

MOQ = Minimum Order Quantity, consisting of 4 packing units.

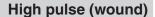
Further E series and intermediate capacitance values on request.

Composition of ordering code

+ = Capacitance tolerance code:

 $K = \pm 10\%$

 $J = \pm 5\%$


*** = Packaging code:

289 = Straight terminals, Ammo pack

189 = Straight terminals, Reel

000 = Straight terminals, Untaped (standard lead

Ordering codes and packing units (lead spacing 27.5 mm)

V_R	V_{RMS}	C_R	Max. dimensions	Ordering code	Ammo	Reel	Untaped
	f≤1 kHz		$w \times h \times I$	(composition see	pack pcs./	pcs./	pcs./
V DC	V AC	nF	mm	below)	MOQ	MOQ	MOQ
250	160	1500	$11.0 \times 21.0 \times 31.5$	B32654A3155+***	_	1400	1280
		2200	$12.5 \times 21.5 \times 31.5$	B32654A3225+***	_	1200	1120
		3300	$15.0 \times 24.5 \times 31.5$	B32654A3335+000	_	_	960
		4700	$18.0 \times 27.5 \times 31.5$	B32654A3475+000	_	_	800
		5600	$19.0 \times 30.0 \times 31.5$	B32654A3565+000	_	_	720
		6800	$22.0 \times 36.5 \times 31.5$	B32654A3685+000	_	_	640
		8200	$22.0 \times 36.5 \times 31.5$	B32654A3825+000	_	_	640
400	200	1000	$11.0 \times 21.0 \times 31.5$	B32654A4105+***	_	1400	1280
		1500	$12.5 \times 21.5 \times 31.5$	B32654A4155+***	_	1200	1120
		2200	$14.0 \times 24.5 \times 31.5$	B32654A4225+***	_	1000	1040
		3300	$19.0 \times 30.0 \times 31.5$	B32654A4335+000	_	_	720
		4700	$22.0 \times 36.5 \times 31.5$	B32654A4475+000	_	_	640
		5600	$22.0 \times 36.5 \times 31.5$	B32654A4565+000	_	_	640
630	250	680	$11.0 \times 21.0 \times 31.5$	B32654A6684+***	_	1400	1280
		1000	$13.5 \times 23.0 \times 31.5$	B32654A6105+***	_	1000	1040
		1500	$18.0 \times 27.5 \times 31.5$	B32654A6155+000	_	_	800
		2200	$18.0 \times 33.0 \times 31.5$	B32654A6225+000	_	_	800
		2700	$22.0 \times 36.5 \times 31.5$	B32654A6275+000	_	_	640
		3300	$22.0 \times 36.5 \times 31.5$	B32654A6335K000	_	_	640
1000	250	220	$11.0 \times 21.0 \times 31.5$	B32654A0224+***	_	1400	1280
		330	$11.0 \times 21.0 \times 31.5$	B32654A0334+***	_	1400	1280
		470	$14.0 \times 24.5 \times 31.5$	B32654A0474+***	_	1000	1040
		680	$18.0 \times 27.5 \times 31.5$	B32654A0684+000	_	_	800
		820	$19.0 \times 30.0 \times 31.5$	B32654A0824+000	_	_	720
		1000	$21.0 \times 31.0 \times 31.5$	B32654A0105+000	_	_	720
		1200	$22.0 \times 36.5 \times 31.5$	B32654A0125+000	_	_	640
		1500	$22.0 \times 36.5 \times 31.5$	B32654A0155K000	_	_	640

MOQ = Minimum Order Quantity, consisting of 4 packing units. Further E series and intermediate capacitance values on request.

Composition of ordering code

+ = Capacitance tolerance code:

 $K = \pm 10\%$

 $J = \pm 5\%$

*** = Packaging code:

189 = Straight terminals, Reel

000 = Straight terminals, Untaped (standard lead

High pulse (wound)

Ordering codes and packing units (lead spacing 27.5 mm)

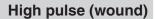
V_R	V_{RMS}	C _R	Max. dimensions	Ordering code	Ammo	Reel	Untaped
	f≤1 kHz		$w \times h \times I$	(composition see	pack pcs./	pcs./	pcs./
V DC	V AC	nF	mm	below)	MOQ	MOQ	MOQ
1250	500	100	$11.0 \times 21.0 \times 31.5$	B32654A7104+***	_	1400	1280
		150	$11.0 \times 21.0 \times 31.5$	B32654A7154+***	_	1400	1280
		220	$14.0 \times 24.5 \times 31.5$	B32654A7224+***	_	1000	1040
		330	$18.0 \times 27.5 \times 31.5$	B32654A7334+000	_	_	800
		470	$21.0 \times 31.0 \times 31.5$	B32654A7474+000	_	_	720
		560	$22.0 \times 36.5 \times 31.5$	B32654A7564+000	_	_	640
		680	$22.0\times36.5\times31.5$	B32654A7684+000	-	_	640
1600	500	47	$11.0 \times 21.0 \times 31.5$	B32654A1473+***	_	1400	1280
		68	$11.0 \times 21.0 \times 31.5$	B32654A1683+***	_	1400	1280
		100	$14.0\times24.5\times31.5$	B32654A1104+***	_	1000	1040
		150	$18.0 \times 27.5 \times 31.5$	B32654A1154+000	_	_	800
		220	$21.0\times31.0\times31.5$	B32654A1224+000	_	_	720
2000	700	22	$11.0 \times 21.0 \times 31.5$	B32654A2223+***	_	1400	1280
		33	$13.5 \times 23.0 \times 31.5$	B32654A2333+***	_	1000	1040
		47	$18.0 \times 27.5 \times 31.5$	B32654A2473+000	_	_	800
		68	$19.0 \times 30.0 \times 31.5$	B32654A2683+000	_	_	720
		82	$22.0 \times 36.5 \times 31.5$	B32654A2823+000	_	_	640
-		100	$22.0\times36.5\times31.5$	B32654A2104+000	_	_	640

MOQ = Minimum Order Quantity, consisting of 4 packing units. Further E series and intermediate capacitance values on request.

Composition of ordering code

+ = Capacitance tolerance code:

 $K = \pm 10\%$


 $J = \pm 5\%$

*** = Packaging code:

189 = Straight terminals, Reel

000 = Straight terminals, Untaped (standard lead

Ordering codes and packing units (lead spacing 37.5 mm)

V_R	V_{RMS}	C_R	Max. dimensions	P ₁	Ordering code	Untaped
	f≤1 kHz		$w \times h \times l$		(composition see	
V DC	V AC	nF	mm	mm	below)	pcs./MOQ
250	160	2700	$12.0 \times 22.0 \times 42.0$	_	B32656A3275+000	1620
		3000	$12.0 \times 22.0 \times 42.0$	_	B32656A3305+000	1620
		3300	$14.0 \times 25.0 \times 42.0$	_	B32656A3335+000	1380
		4000	$14.0 \times 25.0 \times 42.0$	_	B32656A3405+000	1380
		4000	$24.0 \times 15.0 \times 42.0$	_	B32656T3405+000	1040
		4700	$16.0 \times 28.5 \times 42.0$	_	B32656A3475+000	800
		5600	$16.0 \times 28.5 \times 42.0$	_	B32656A3565+000	800
		5600	$24.0 \times 19.0 \times 42.0$	_	B32656T3565+000	780
		6800	$18.0 \times 32.5 \times 42.0$	_	B32656A3685+000	720
		8000	$18.0 \times 32.5 \times 42.0$	_	B32656A3805+000	720
		10000	$20.0\times39.5\times42.0$	10.2	B32656G3106+000	640
		10000	$20.0\times39.5\times42.0$	_	B32656A3106+000	640
		12000	$20.0\times39.5\times42.0$	10.2	B32656G3126K000	640
		12000	$20.0\times39.5\times42.0$	_	B32656A3126K000	640
		15000	$28.0 \times 37.0 \times 42.0$	10.2	B32656G3156K000	440
		15000	$28.0 \times 37.0 \times 42.0$	_	B32656A3156K000	440
		17000	$28.0 \times 42.5 \times 42.0$	10.2	B32656G3176+000	440
		17000	$28.0 \times 42.5 \times 42.0$	_	B32656A3176+000	440
		20000	$30.0 \times 45.0 \times 42.0$	20.3	B32656G3206+000	400
		20000	$30.0 \times 45.0 \times 42.0$	_	B32656A3206+000	400
		24000	$33.0 \times 48.0 \times 42.0$	20.3	B32656G3246+000	180
		24000	$33.0 \times 48.0 \times 42.0$	_	B32656A3246+000	180

MOQ = Minimum Order Quantity, consisting of 4 packing units. Further E series and intermediate capacitance values on request.

Composition of ordering code

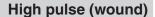
+ = Capacitance tolerance code:

 $K = \pm 10\%$

High pulse (wound)

Ordering codes and packing units (lead spacing 37.5 mm)

$\overline{V_R}$	V _{RMS}	C _R	Max. dimensions	P ₁	Ordering code	Untaped
	f≤1 kHz		$w \times h \times l$		(composition see	
V DC	V AC	nF	mm	mm	below)	pcs./MOQ
400	200	2000	$12.0 \times 22.0 \times 42.0$	_	B32656A4205+000	1620
		2700	$14.0 \times 25.0 \times 42.0$	_	B32656A4275+000	1380
		2700	$24.0 \times 15.0 \times 42.0$	_	B32656T4275+000	1040
		3500	$24.0 \times 19.0 \times 42.0$	_	B32656T4355+000	780
		4000	$16.0 \times 28.5 \times 42.0$	_	B32656A4405+000	800
		5600	$18.0 \times 32.5 \times 42.0$	_	B32656A4565+000	720
		7500	$20.0 \times 39.5 \times 42.0$	10.2	B32656G4755+000	640
		7500	$20.0 \times 39.5 \times 42.0$	_	B32656A4755+000	640
		10000	$28.0 \times 37.0 \times 42.0$	10.2	B32656G4106+000	440
		10000	$28.0 \times 37.0 \times 42.0$	_	B32656A4106+000	440
		12000	$28.0 \times 42.5 \times 42.0$	10.2	B32656G4126+000	440
		12000	$28.0 \times 42.5 \times 42.0$	_	B32656A4126+000	440
		14000	$30.0 \times 45.0 \times 42.0$	20.3	B32656G4146+000	400
		14000	$30.0 \times 45.0 \times 42.0$	_	B32656A4146+000	400
		17000	$33.0 \times 48.0 \times 42.0$	20.3	B32656G4176+000	180
		17000	$33.0 \times 48.0 \times 42.0$	_	B32656A4176+000	180
630	250	1000	$12.0 \times 22.0 \times 42.0$	_	B32656A6105+000	1620
		1500	$14.0 \times 25.0 \times 42.0$	_	B32656A6155+000	1380
		1500	$24.0 \times 15.0 \times 42.0$	_	B32656T6155+000	1040
		2200	$16.0 \times 28.5 \times 42.0$	_	B32656A6225+000	800
		2200	$24.0 \times 19.0 \times 42.0$	_	B32656T6225+000	780
		3000	$18.0 \times 32.5 \times 42.0$	_	B32656A6305+000	720
		4000	$20.0 \times 39.5 \times 42.0$	10.2	B32656G6405+000	640
		4000	$20.0 \times 39.5 \times 42.0$	_	B32656A6405+000	640
		5600	$28.0 \times 37.0 \times 42.0$	10.2	B32656G6565+000	440
		5600	$28.0 \times 37.0 \times 42.0$	_	B32656A6565+000	440
		7000	$28.0 \times 42.5 \times 42.0$	10.2	B32656G6705K000	440
		7000	$28.0 \times 42.5 \times 42.0$	_	B32656A6705K000	440
		8000	$30.0 \times 45.0 \times 42.0$	20.3	B32656G6805+000	400
		8000	$30.0 \times 45.0 \times 42.0$	_	B32656A6805+000	400
		10000	$33.0 \times 48.0 \times 42.0$	20.3	B32656G6106K000	180
		10000	$33.0\times48.0\times42.0$	_	B32656A6106K000	180


MOQ = Minimum Order Quantity, consisting of 4 packing units. Further E series and intermediate capacitance values on request.

Composition of ordering code

+ = Capacitance tolerance code:

 $K = \pm 10\%$

Ordering codes and packing units (lead spacing 37.5 mm)

V_R	V_{RMS}	C _R	Max. dimensions	P ₁	Ordering code	Untaped
	f≤1 kHz		$w \times h \times I$		(composition see	
V DC	V AC	nF	mm	mm	below)	pcs./MOQ
750	350	470	$12.0 \times 22.0 \times 42.0$	_	B32656A5474+000	1620
		560	$12.0 \times 22.0 \times 42.0$	_	B32656A5564+000	1620
		680	$12.0 \times 22.0 \times 42.0$	_	B32656A5684+000	1620
		820	$14.0 \times 25.0 \times 42.0$	_	B32656A5824+000	1380
		1000	$16.0 \times 28.5 \times 42.0$	_	B32656A5105+000	800
		1000	$24.0 \times 15.0 \times 42.0$	_	B32656T5105K000	1040
		1200	$16.0 \times 28.5 \times 42.0$	_	B32656A5125+000	800
		1200	$24.0 \times 19.0 \times 42.0$	_	B32656T5125+000	780
		1500	$18.0 \times 32.5 \times 42.0$	_	B32656A5155+000	720
		1800	$18.0 \times 32.5 \times 42.0$	_	B32656A5185+000	720
		2200	$20.0\times39.5\times42.0$	10.2	B32656G5225+000	640
		2200	$20.0\times39.5\times42.0$	-	B32656A5225+000	640
		2500	$20.0\times39.5\times42.0$	10.2	B32656G5255+000	640
		2500	$20.0\times39.5\times42.0$	-	B32656A5255+000	640
		2700	$28.0 \times 37.0 \times 42.0$	10.2	B32656G5275+000	440
		2700	$28.0 \times 37.0 \times 42.0$	-	B32656A5275+000	440
		3300	$28.0 \times 37.0 \times 42.0$	10.2	B32656G5335+000	440
		3300	$28.0 \times 37.0 \times 42.0$	-	B32656A5335+000	440
		4000	$28.0 \times 42.5 \times 42.0$	10.2	B32656G5405+000	440
		4000	$28.0 \times 42.5 \times 42.0$	_	B32656A5405+000	440
		4700	$30.0 \times 45.0 \times 42.0$	20.3	B32656G5475+000	400
		4700	$30.0 \times 45.0 \times 42.0$	_	B32656A5475+000	400
		5600	$33.0 \times 48.0 \times 42.0$	20.3	B32656G5565+000	180
		5600	$33.0 \times 48.0 \times 42.0$	_	B32656A5565+000	180

MOQ = Minimum Order Quantity, consisting of 4 packing units. Further E series and intermediate capacitance values on request.

Composition of ordering code

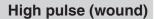
+ = Capacitance tolerance code:

 $K = \pm 10\%$

High pulse (wound)

Ordering codes and packing units (lead spacing 37.5 mm)

V_R	V_{RMS}	C _R	Max. dimensions	P ₁	Ordering code	Untaped
	f≤1 kHz		$w \times h \times l$		(composition see	
V DC	V AC	nF	mm	mm	below)	pcs./MOQ
850	450	220	$12.0 \times 22.0 \times 42.0$	_	B32656A8224+000	1620
		330	$12.0 \times 22.0 \times 42.0$	_	B32656A8334+000	1620
		470	$12.0 \times 22.0 \times 42.0$	_	B32656A8474+000	1620
		680	$16.0 \times 28.5 \times 42.0$	_	B32656A8684+000	800
		680	$24.0 \times 15.0 \times 42.0$	_	B32656T8684+000	1040
		820	$24.0 \times 19.0 \times 42.0$	_	B32656T8824+000	780
		1000	$18.0 \times 32.5 \times 42.0$	_	B32656A8105+000	720
		1200	$18.0 \times 32.5 \times 42.0$	_	B32656A8125+000	720
		1500	$20.0\times39.5\times42.0$	10.2	B32656G8155+000	640
		1500	$20.0\times39.5\times42.0$	_	B32656A8155+000	640
		1800	$20.0\times39.5\times42.0$	10.2	B32656G8185+000	640
		1800	$20.0\times39.5\times42.0$	_	B32656A8185+000	640
		2200	$28.0 \times 37.0 \times 42.0$	10.2	B32656G8225+000	440
		2200	$28.0 \times 37.0 \times 42.0$	_	B32656A8225+000	440
		2500	$28.0 \times 42.5 \times 42.0$	10.2	B32656G8255+000	440
		2500	$28.0 \times 42.5 \times 42.0$	_	B32656A8255+000	440
		2700	$30.0 \times 45.0 \times 42.0$	20.3	B32656G8275+000	400
		2700	$30.0 \times 45.0 \times 42.0$	_	B32656A8275+000	400
		3000	$30.0 \times 45.0 \times 42.0$	20.3	B32656G8305+000	400
		3000	$30.0 \times 45.0 \times 42.0$	_	B32656A8305+000	400
		3300	$33.0 \times 48.0 \times 42.0$	20.3	B32656G8335+000	180
		3300	$33.0 \times 48.0 \times 42.0$	_	B32656A8335+000	180
		3800	$33.0 \times 48.0 \times 42.0$	20.3	B32656G8385+000	180
		3800	$33.0 \times 48.0 \times 42.0$	_	B32656A8385+000	180


MOQ = Minimum Order Quantity, consisting of 4 packing units. Further E series and intermediate capacitance values on request.

Composition of ordering code

+ = Capacitance tolerance code:

 $K = \pm 10\%$

Ordering codes and packing units (lead spacing 37.5 mm)

$\overline{V_R}$	V_{RMS}	C _R	Max. dimensions	P ₁	Ordering code	Untaped
	f≤1 kHz		$w \times h \times l$		(composition see	
V DC	V AC	nF	mm	mm	below)	pcs./MOQ
1000	500	330	$12.0 \times 22.0 \times 42.0$	_	B32656A0334+000	1620
		470	$14.0 \times 25.0 \times 42.0$	_	B32656A0474+000	1380
		470	$24.0 \times 15.0 \times 42.0$	_	B32656T0474+000	1040
		680	$16.0 \times 28.5 \times 42.0$	_	B32656A0684+000	800
		680	$24.0 \times 19.0 \times 42.0$	_	B32656T0684+000	780
		1000	$20.0 \times 39.5 \times 42.0$	10.2	B32656G0105+000	640
		1000	$20.0 \times 39.5 \times 42.0$	_	B32656A0105+000	640
		1200	$28.0 \times 37.0 \times 42.0$	10.2	B32656G0125+000	440
		1200	$28.0 \times 37.0 \times 42.0$	_	B32656A0125+000	440
		1500	$28.0 \times 37.0 \times 42.0$	10.2	B32656G0155+000	440
		1500	$28.0 \times 37.0 \times 42.0$	_	B32656A0155+000	440
		2200	$30.0 \times 45.0 \times 42.0$	20.3	B32656G0225+000	400
		2200	$30.0 \times 45.0 \times 42.0$	_	B32656A0225+000	400
		2700	$30.0 \times 45.0 \times 42.0$	20.3	B32656G0275M000	400
		2700	$30.0 \times 45.0 \times 42.0$	_	B32656A0275M000	400
		2700	$33.0 \times 48.0 \times 42.0$	20.3	B32656G0275+000	180
		2700	$33.0 \times 48.0 \times 42.0$	_	B32656A0275+000	180

MOQ = Minimum Order Quantity, consisting of 4 packing units. Further E series and intermediate capacitance values on request.

Composition of ordering code

+ = Capacitance tolerance code:

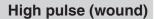
 $K = \pm 10\%$

High pulse (wound)

Ordering codes and packing units (lead spacing 37.5 mm)

V_R	V_{RMS}	C _R	Max. dimensions	P ₁	Ordering code	Untaped
	f≤1 kHz		$w \times h \times l$		(composition see	
V DC	V AC	nF	mm	mm	below)	pcs./MOQ
1250	500	150	$12.0 \times 22.0 \times 42.0$	_	B32656A7154+000	1620
		220	$14.0 \times 25.0 \times 42.0$	_	B32656A7224+000	1380
		270	$24.0 \times 15.0 \times 42.0$	_	B32656T7274+000	1040
		330	$16.0 \times 28.5 \times 42.0$	_	B32656A7334+000	800
		390	$24.0 \times 19.0 \times 42.0$	_	B32656T7394+000	780
		470	$18.0 \times 32.5 \times 42.0$	_	B32656A7474+000	720
		680	$20.0 \times 39.5 \times 42.0$	10.2	B32656G7684+000	640
		680	$20.0 \times 39.5 \times 42.0$	_	B32656A7684+000	640
		820	$28.0 \times 37.0 \times 42.0$	10.2	B32656G7824+000	440
		820	$28.0 \times 37.0 \times 42.0$	_	B32656A7824+000	440
		1000	$28.0 \times 37.0 \times 42.0$	10.2	B32656G7105+000	440
		1000	$28.0 \times 37.0 \times 42.0$	_	B32656A7105+000	440
		1200	$28.0 \times 42.5 \times 42.0$	10.2	B32656G7125+000	440
		1200	$28.0 \times 42.5 \times 42.0$	_	B32656A7125+000	440
		1500	$30.0 \times 45.0 \times 42.0$	20.3	B32656G7155+000	400
		1500	$30.0 \times 45.0 \times 42.0$	_	B32656A7155+000	400
		1800	$33.0 \times 48.0 \times 42.0$	20.3	B32656G7185K000	180
		1800	$33.0 \times 48.0 \times 42.0$	_	B32656A7185K000	180

MOQ = Minimum Order Quantity, consisting of 4 packing units.


Further E series and intermediate capacitance values on request.

Composition of ordering code

+ = Capacitance tolerance code:

 $K = \pm 10\%$

Ordering codes and packing units (lead spacing 37.5 mm)

$\overline{V_R}$	V_{RMS}	C _R	Max. dimensions	P ₁	Ordering code	Untaped
	f≤1 kHz		$w \times h \times l$		(composition see	
V DC	V AC	nF	mm	mm	below)	pcs./MOQ
1600	600	100	$12.0 \times 22.0 \times 42.0$	_	B32656J1104+000	1620
		150	$14.0 \times 25.0 \times 42.0$	_	B32656J1154+000	1380
		150	$24.0 \times 15.0 \times 42.0$	_	B32656T1154+000	1040
		220	$16.0 \times 28.5 \times 42.0$	_	B32656J1224+000	800
		220	$24.0 \times 19.0 \times 42.0$	_	B32656T1224+000	780
		330	$20.0 \times 39.5 \times 42.0$	10.2	B32656G1334+000	640
		330	$20.0 \times 39.5 \times 42.0$	_	B32656J1334+000	640
		470	$28.0 \times 37.0 \times 42.0$	10.2	B32656G1474+000	440
		470	$28.0 \times 37.0 \times 42.0$	_	B32656J1474+000	440
		560	$28.0 \times 37.0 \times 42.0$	10.2	B32656G1564+000	440
		560	$28.0 \times 37.0 \times 42.0$	_	B32656J1564+000	440
		680	$28.0 \times 42.5 \times 42.0$	10.2	B32656G1684+000	440
		680	$28.0 \times 42.5 \times 42.0$	_	B32656J1684+000	440
		820	$30.0 \times 45.0 \times 42.0$	20.3	B32656G1824+000	400
		820	$30.0 \times 45.0 \times 42.0$	_	B32656J1824+000	400
		900	$33.0 \times 48.0 \times 42.0$	20.3	B32656G1905+000	180
		900	$33.0 \times 48.0 \times 42.0$	_	B32656J1905+000	180
2000	700	68	$12.0 \times 22.0 \times 42.0$	_	B32656J2683+000	1620
		100	$14.0 \times 25.0 \times 42.0$	—	B32656J2104+000	1380
		100	$24.0 \times 15.0 \times 42.0$	_	B32656T2104+000	1040
		120	$24.0 \times 19.0 \times 42.0$	_	B32656T2124+000	780
		150	$18.0 \times 32.5 \times 42.0$	—	B32656J2154+000	720
		220	$20.0 \times 39.5 \times 42.0$	10.2	B32656G2224+000	640
		220	$20.0 \times 39.5 \times 42.0$	—	B32656J2224+000	640
		330	$28.0 \times 37.0 \times 42.0$	10.2	B32656G2334+000	440
		330	$28.0 \times 37.0 \times 42.0$	_	B32656J2334+000	440
		470	$30.0 \times 45.0 \times 42.0$	20.3	B32656G2474+000	400
		470	$30.0 \times 45.0 \times 42.0$	_	B32656J2474+000	400
		560	$33.0 \times 48.0 \times 42.0$	20.3	B32656G2564+000	180
		560	$33.0 \times 48.0 \times 42.0$	_	B32656J2564+000	180

MOQ = Minimum Order Quantity, consisting of 4 packing units. Further E series and intermediate capacitance values on request.

Composition of ordering code

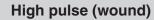
+ = Capacitance tolerance code:

 $K = \pm 10\%$

High pulse (wound)

Ordering codes and packing units (lead spacing 52.5 mm)

V_R	V_{RMS}	C_R	Max. dimensions	P ₁	Ordering code	Untaped
	f≤1 kHz		$w \times h \times I$		(composition see	
V DC	V AC	nF	mm	mm	below)	pcs./MOQ
250	160	30000	$30.0\times45.0\times57.5$	20.3	B32658G3306+000	280
		40000	$35.0\times50.0\times57.5$	20.3	B32658G3406K000	108
400	200	20000	$30.0\times45.0\times57.5$	20.3	B32658G4206+000	280
		26000	$35.0\times50.0\times57.5$	20.3	B32658G4266+000	108
630	250	12000	$30.0\times45.0\times57.5$	20.3	B32658G6126K000	280
		15000	$35.0\times50.0\times57.5$	20.3	B32658G6156+000	108
750	350	6800	$30.0\times45.0\times57.5$	20.3	B32658G5685+000	280
		9000	$35.0\times50.0\times57.5$	20.3	B32658G5905+000	108
850	450	4700	$30.0\times45.0\times57.5$	20.3	B32658G8475+000	280
		5600	$35.0 \times 50.0 \times 57.5$	20.3	B32658G8565+000	108
		6000	$35.0\times50.0\times57.5$	20.3	B32658G8605+000	108
1000	500	3300	$30.0\times45.0\times57.5$	20.3	B32658G0335+000	280
		4500	$35.0\times50.0\times57.5$	20.3	B32658G0455+000	108
1250	500	2000	$30.0\times45.0\times57.5$	20.3	B32658G7205+000	280
		2200	$35.0 \times 50.0 \times 57.5$	20.3	B32658G7225+000	108
		2700	$35.0\times50.0\times57.5$	20.3	B32658G7275+000	108
1600	600	1000	$30.0\times45.0\times57.5$	20.3	B32658G1105+000	280
		1200	$30.0 \times 45.0 \times 57.5$	20.3	B32658G1125K000	280
		1500	$35.0\times50.0\times57.5$	20.3	B32658G1155+000	108
2000	700	680	$30.0\times45.0\times57.5$	20.3	B32658G2684+000	280
		820	$35.0 \times 50.0 \times 57.5$	20.3	B32658G2824+000	108
		1000	$35.0\times50.0\times57.5$	20.3	B32658G2105K000	108


MOQ = Minimum Order Quantity, consisting of 4 packing units. Further E series and intermediate capacitance values on request.

Composition of ordering code

+ = Capacitance tolerance code:

 $K = \pm 10\%$

Technical data

Reference standard: IEC 60384-16:2005 and AEC-Q200D. All data given at T = 20 $^{\circ}$ C, unless otherwise specified.

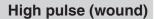
Max. operating temperature T _{op,max} +110 °C						
Upper category temperature T _{max} +100 °C						
Lower category temperature T _{min} −55 °C						
Rated temperature T _B +85 °C						
at	≤27 nF	27 nF <c<sub>R≤0.1 μF</c<sub>	0.1 μF <c<sub>R≤1 μF</c<sub>	C _R >1 μF		
1 kHz	0.8	0.8	0.8	0.8		
10 kHz	1.0	1.0	1.0	_		
100 kHz	2.0	3.0	_	_		
$C_{R} \le 0.33$	βμF	C _R > 0.33 μF				
100 GΩ	·	30000 s				
1.6 · V _R ,	2 s					
$J = \pm 5\%$						
$K = \pm 10\%$						
			T -			
			• •			
		11				
·		•	$V_{C,RMS} = V_{RMS} \cdot (165 - T_{op})/80$			
1000 h / 4	40 °C / 9	3% relative humidity	, with $V_{R,DC}$			
1			≤ 5%			
Dissipation factor change Δ tan δ			$\leq 2.0 \cdot 10^{-3}$ (at 1 kHz)			
		1110	≥ 50% of minimum			
or time co	onstant τ	$r = C_R \cdot R_{ins}$	as-delivered valu	es		
1 fit (≤ 1	· 10 ⁻⁹ /h) a	at 0.5 ⋅ V _R , 40 °C				
200 000 I	n at 1.0 ·	V _R , 85 °C				
			•	eratures,		
refer to c	hapter "C	Quality, 2 Reliability"	•			
Short circ	uit or op	en circuit				
Capacita	nce char	nge ∆C/C	> 10%			
Dissipation	on factor	$tan \delta$	> 4 · upper limit value			
Insulation resistance R _{ins}			$< 1500 \text{ M}\Omega \text{ (C}_{R} \le 0.33 \mu\text{F)}$			
or time constant $\tau = C_R \cdot R_{ins}$			$< 500 \text{ s } (C_R > 0.33 \mu\text{F})$			
	Upper callower can Rated ter at $ 1 \text{ kHz} $ $ 10 \text{ kHz} $ $ 100 \text{ kHz} $ $ 100 \text{ G}\Omega $ $ 1.6 \cdot \text{V}_{\text{R}}, $ $ 100 \text{ G}\Omega $ $ 1.6 \cdot \text{V}_{\text{R}}, $ $ 100 \text{ G}\Omega $ $ 1.6 \cdot \text{V}_{\text{R}}, $ $ 100 \text{ G}\Omega $ $ 1.6 \cdot \text{V}_{\text{R}}, $ $ 100 \text{ G}\Omega $ $ 1.6 \cdot \text{V}_{\text{R}}, $ $ 100 \text{ G}\Omega $ $ 1.6 \cdot \text{V}_{\text{R}}, $ $ 100 \text{ G}\Omega $ $ 1.6 \cdot \text{V}_{\text{R}}, $ $ 100 \text{ G}\Omega $ $ 1.6 \cdot \text{V}_{\text{R}}, $ $ 100 \text{ G}\Omega $ $ 1.6 \cdot \text{V}_{\text{R}}, $ $ 1.6 \cdot \text{V}_{\text$	Upper category to Lower category to Rated temperatur at $\leq 27 \text{ nF}$ 1 kHz	Upper category temperature T_{max} Lower category temperature T_{min} Rated temperature T_R at $\leq 27 \text{ nF}$ $= 27 \text{ nF} < C_R \leq 0.1 \text{ µF}$ 1 kHz $= 0.8$ $= 0.8$ 10 kHz $= 1.0$ $= 1.0$ 100 kHz $= 2.0$ $= 3.0$ C _R $\leq 0.33 \text{ µF}$ C _R > 0.33 µF 100 G Ω $= 30000 \text{ s}$ 1.6 · V _R , 2 s J = $\pm 5\%$ K = $\pm 10\%$ M = $\pm 20\%$ T _{op} (°C) DC voltage derating T _{op} ≤ 85 V _C = V _R 85 < T _{op} ≤ 100 V _C = V _R · (165 - T _{op})/80 T _{op} (°C) DC voltage (max. hours) T _{op} ≤ 85 V _{op} = 1.25 · V _c (2000 h) 85 < T _{op} ≤ 100 V _{op} = 1.25 · V _c (1000 h) 1000 h / 40 °C / 93% relative humidity Capacitance change Δ C/C Dissipation factor change Δ tan Δ Insulation resistance R _{ins} or time constant τ = C _R · R _{ins} 1 fit ($\leq 1 \cdot 10^{-9}$ /h) at 0.5 · V _R , 40 °C 200 000 h at 1.0 · V _R , 85 °C For conversion to other operating correfer to chapter "Quality, 2 Reliability" Short circuit or open circuit Capacitance change Δ C/C Dissipation factor tan Δ Insulation resistance R _{ins}	$\begin{array}{llllllllllllllllllllllllllllllllllll$		

High pulse (wound)

Pulse handling capability

"dV/dt" represents the maximum permissible voltage change per unit of time for non-sinusoidal voltages, expressed in $V/\mu s$.

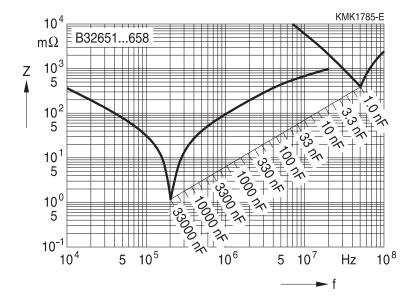
"k₀" represents the maximum permissible pulse characteristic of the waveform applied to the capacitor, expressed in $V^2/\mu s$.


Note:

The values of dV/dt and k_0 provided below must not be exceeded in order to avoid damaging the capacitor.

dV/dt values

Lead spacing		10 mm	15 mm	22.5 mm	27.5 mm	37.5 mm	52.5 mm			
$\overline{V_R}$	V _{RMS}									
V DC	V AC	dV/dt in V	dV/dt in V/μs							
250	160	_	200	120	50	36	24			
400	200	_	300	180	100	55	36			
630	250	_	400	300	150	80	50			
750	350	_	_	_	_	250	160			
850	450	_	_	_	_	340	220			
1000	250	_	975	600	300	_	_			
	500	_	_	_	_	400	265			
1250	450	4000	_	_	_	_	_			
	500	_	1850	1150	600	500	350			
1600	500	_	4500	2400	1000	_	_			
	600	_	_	_	_	600	400			
	700	_	5200	_	_	_	_			
2000	700	_	8000	7000	2300	700	475			
	1000	_	_	7500	_	_	_			

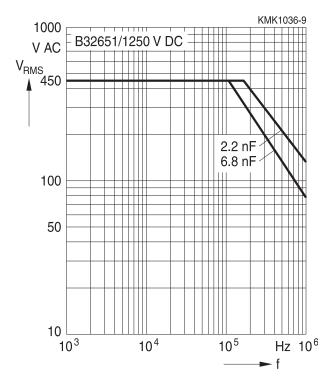


k₀ values

Lead spacing		10 mm	15 mm	22.5 mm	27.5 mm	37.5 mm	52.5 mm
V_R	V_{RMS}				!		-
V DC	V AC	k ₀ in V²/μs					
250	160	_	100 000	60 000	25 000	18 000	12 000
400	200	_	250 000	200 000	110 000	44 000	28 800
630	250	_	500 000	350 000	250 000	100 800	63 000
750	350	_	_	_	_	375 000	240 000
850	450	_	_	_	_	578 000	374 000
1000	250	_	3 000 000	1 500 000	1 000 000	_	_
	500	_	_	_	_	800 000	530 000
1250	450	25 000 000	_	_	_	_	_
	500	_	9 000 000	3 750 000	2 000 000	1 250 000	875 000
1600	500	_	20 000 000	10 000 000	4 000 000	_	_
	600	_	_	_	_	1 920 000	1 280 000
	700	_	28 000 000	_	_	_	_
2000	700	_	60 000 000	40 000 000	15 000 000	2 800 000	1 900 000
	1000	_	_	50 000 000	_	_	_

Impedance Z versus frequency f

(typical values)

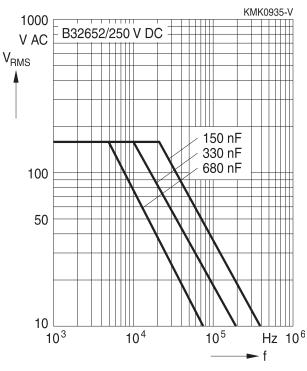


Permissible AC voltage V_{RMS} versus frequency f (for sinusoidal waveforms, $T_A \le 90$ °C)

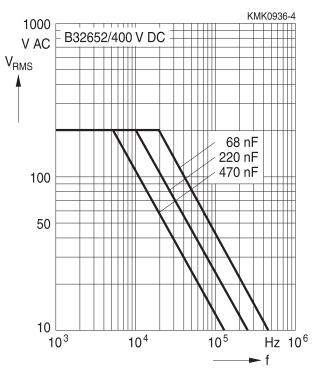
For $T_A > 90$ °C, please refer to "General technical information", section 3.2.3.

Lead spacing 10 mm

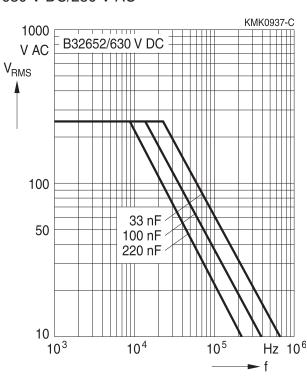
1250 V DC/450 V AC

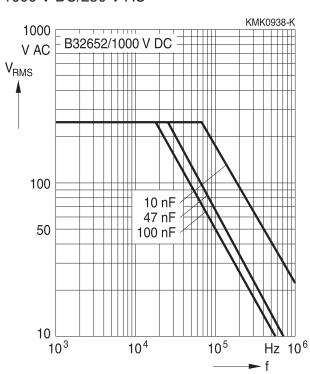

High pulse (wound)

Permissible AC voltage V_{RMS} versus frequency f (for sinusoidal waveforms, T_A ≤90 °C)


For T_A >90 °C, please refer to "General technical information", section 3.2.3.

Lead spacing 15 mm

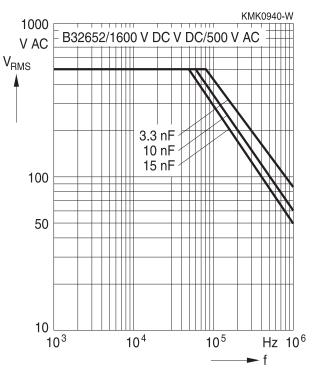

250 V DC/160 V AC


400 V DC/200 V AC

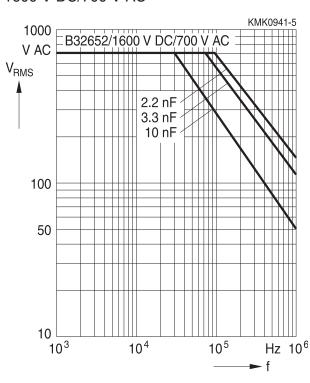
630 V DC/250 V AC

1000 V DC/250 V AC

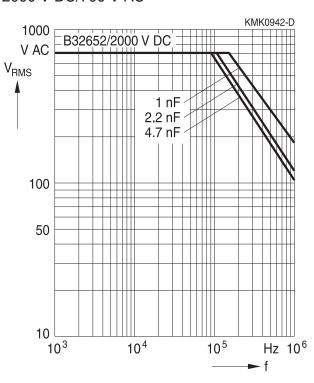
Permissible AC voltage V_{RMS} versus frequency f (for sinusoidal waveforms, T_A ≤90 °C)


For $T_A > 90$ °C, please refer to "General technical information", section 3.2.3.

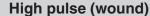
Lead spacing 15 mm


1250 V DC/500 V AC

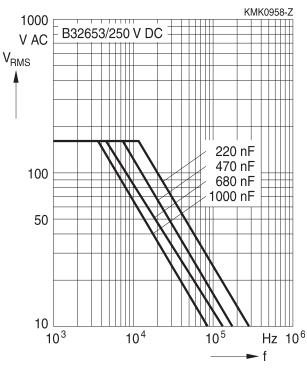
KMK0939-T 1000 B32652/1250 V DC V AC V_{RMS} 6.8 nF 10 nF 33 nF 100 50 10 10⁴ 10³ 10⁵ Hz 10⁶


1600 V DC/500 V AC

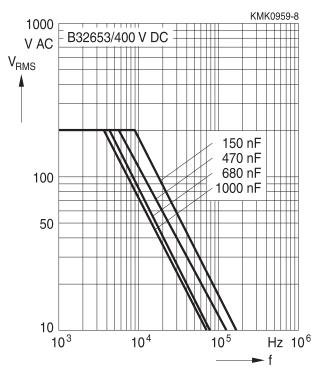
1600 V DC/700 V AC



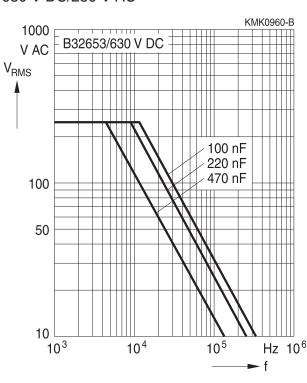
2000 V DC/700 V AC

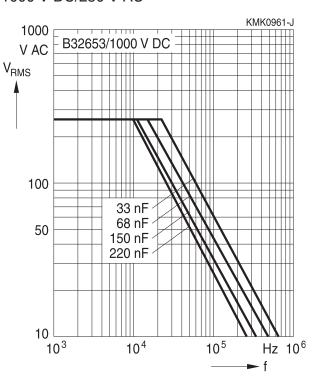


Permissible AC voltage V_{RMS} versus frequency f (for sinusoidal waveforms, T_A ≤90 °C)


For T_A >90 °C, please refer to "General technical information", section 3.2.3.

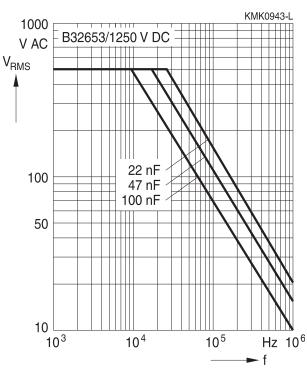
Lead spacing 22.5 mm


250 V DC/160 V AC

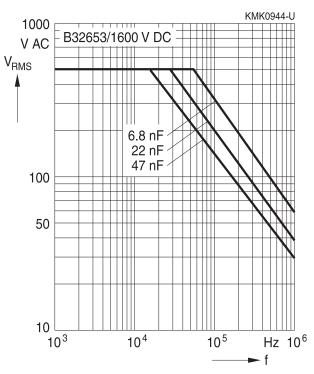

400 V DC/200 V AC

630 V DC/250 V AC

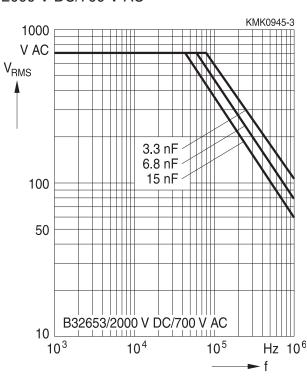
1000 V DC/250 V AC

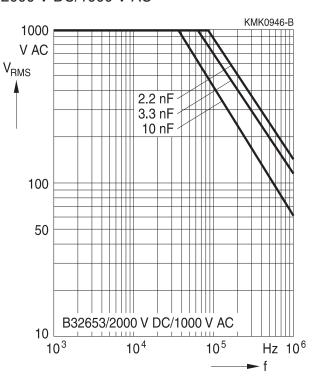

High pulse (wound)

Permissible AC voltage V_{RMS} versus frequency f (for sinusoidal waveforms, T_A ≤90 °C)


For $T_A > 90$ °C, please refer to "General technical information", section 3.2.3.

Lead spacing 22.5 mm

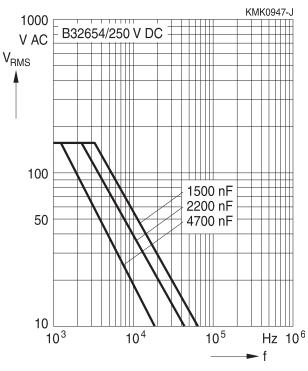

1250 V DC/500 V AC


1600 V DC/500 V AC

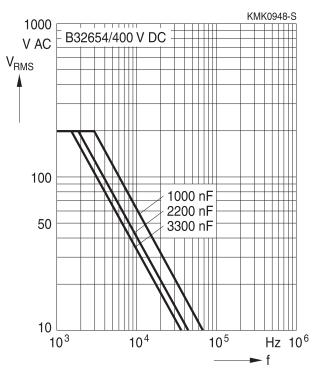
2000 V DC/700 V AC

2000 V DC/1000 V AC

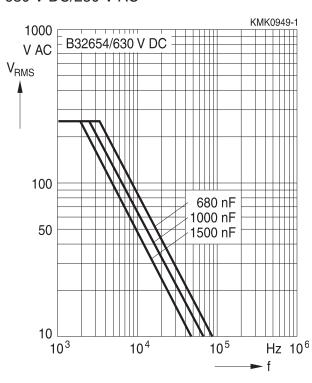
High pulse (wound)

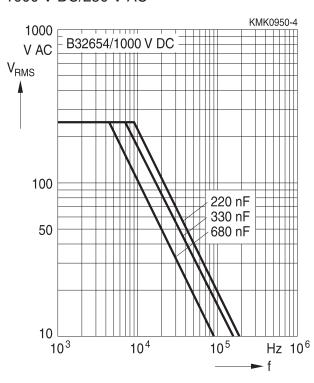


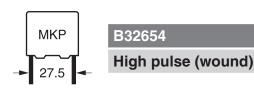
Permissible AC voltage V_{RMS} versus frequency f (for sinusoidal waveforms, T_A ≤90 °C)


For T_A >90 °C, please refer to "General technical information", section 3.2.3.

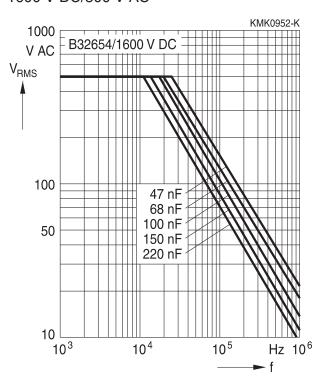
Lead spacing 27.5 mm


250 V DC/160 V AC


400 V DC/200 V AC


630 V DC/250 V AC

1000 V DC/250 V AC

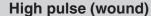

For $T_A > 90$ °C, please refer to "General technical information", section 3.2.3.

Lead spacing 27.5 mm

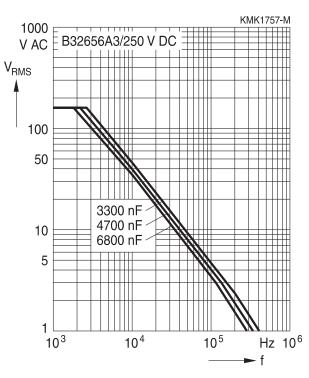
1250 V DC/500 V AC

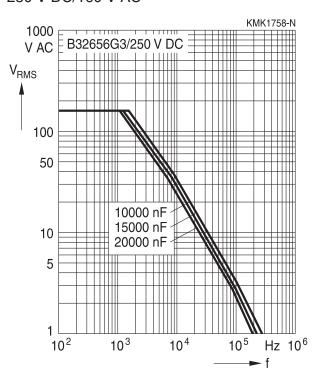
KMK0951-C 1000 B32654/1250 V DC V AC V_{RMS} 100 100 nF 220 nF 330 nF 50 470 nF 680 nF 10 10³ 10^4 10⁵ Hz 10⁶ **-** f

1600 V DC/500 V AC

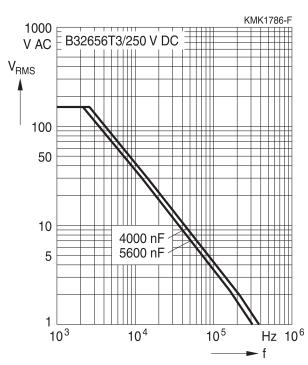


2000 V DC/700 V AC



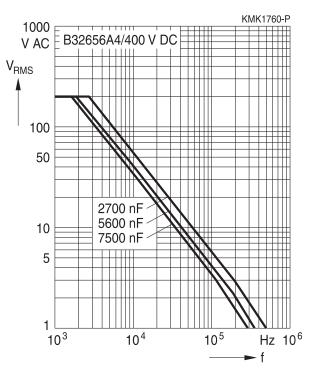

For $T_A > 90$ °C, please refer to "General technical information", section 3.2.3.

Lead spacing 37.5 mm

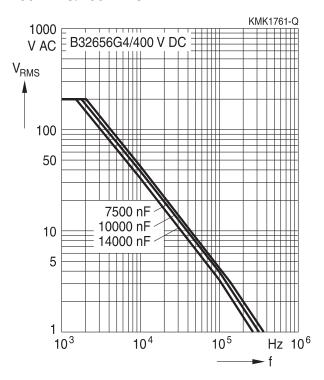

250 V DC/160 V AC

250 V DC/160 V AC

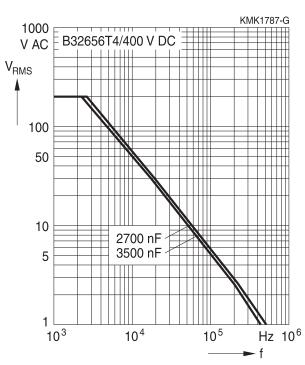
250 V DC/160 V AC


High pulse (wound)

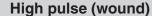
Permissible AC voltage V_{RMS} versus frequency f (for sinusoidal waveforms, T_A ≤90 °C)


For $T_A > 90$ °C, please refer to "General technical information", section 3.2.3.

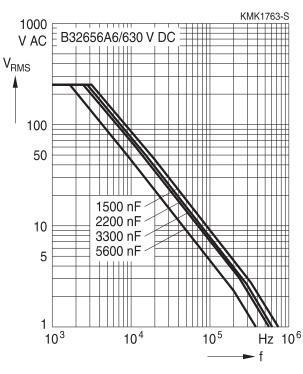
Lead spacing 37.5 mm

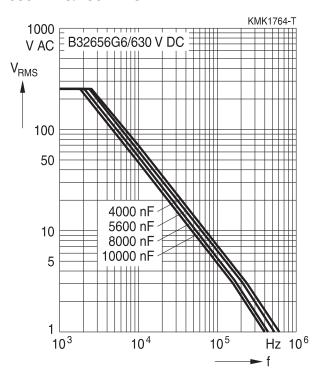

400 V DC/200 V AC

400 V DC/200 V AC

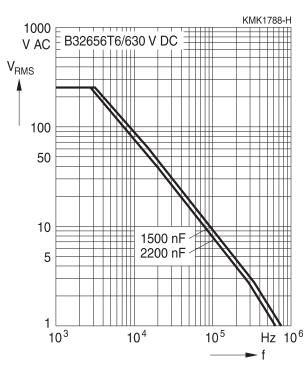


400 V DC/200 V AC



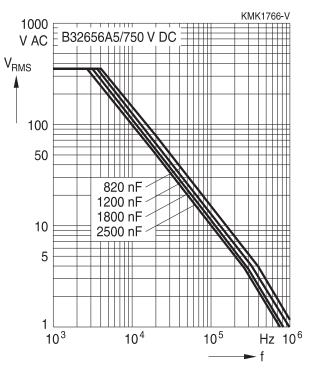

For $T_A > 90$ °C, please refer to "General technical information", section 3.2.3.

Lead spacing 37.5 mm


630 V DC/250 V AC

630 V DC/250 V AC

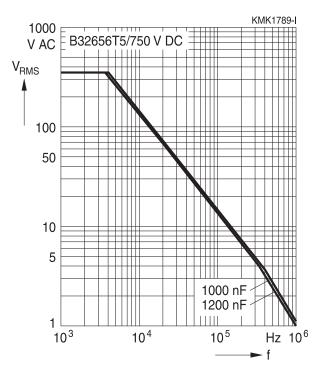
630 V DC/250 V AC


High pulse (wound)

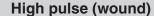
Permissible AC voltage V_{RMS} versus frequency f (for sinusoidal waveforms, T_A ≤90 °C)

For $T_A > 90$ °C, please refer to "General technical information", section 3.2.3.

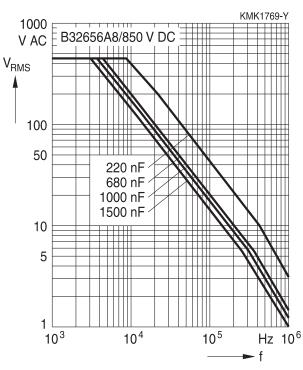
Lead spacing 37.5 mm

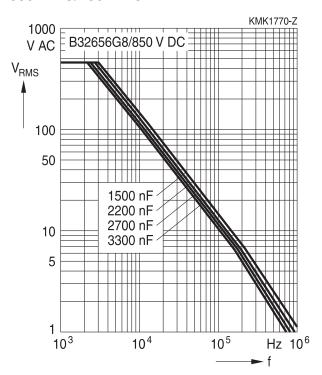

750 V DC/350 V AC

750 V DC/350 V AC

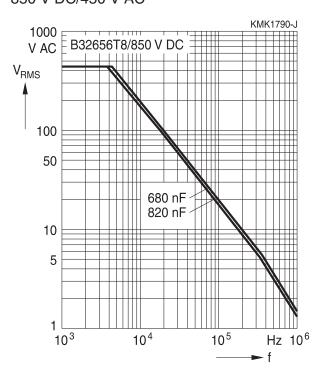


750 V DC/350 V AC




For $T_A > 90$ °C, please refer to "General technical information", section 3.2.3.

Lead spacing 37.5 mm

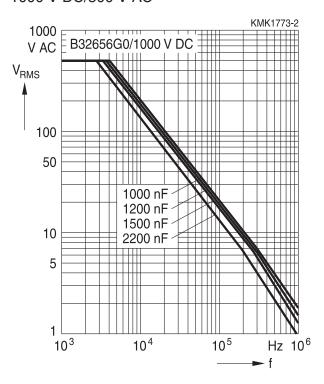

850 V DC/450 V AC

850 V DC/450 V AC

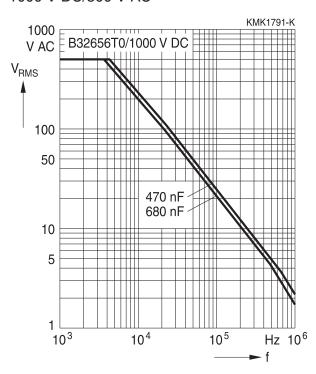
850 V DC/450 V AC

High pulse (wound)

Permissible AC voltage V_{RMS} versus frequency f (for sinusoidal waveforms, T_A ≤90 °C)

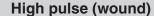

For $T_A > 90$ °C, please refer to "General technical information", section 3.2.3.

Lead spacing 37.5 mm

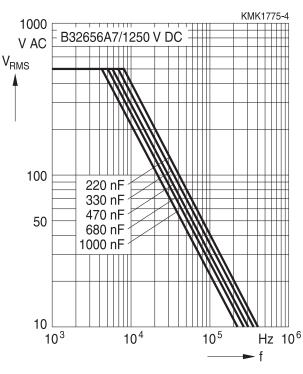

1000 V DC/500 V AC

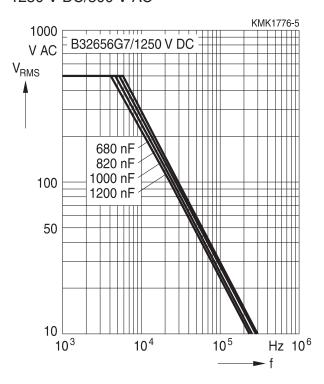
KMK1772-1 1000 B32656A0/1000 V DC V AC V_{RMS} 100 50 470 nF 680 nF 1000 nF 10 1500 nF 5 10⁴ 10⁵ 10³ Hz 10⁶

1000 V DC/500 V AC

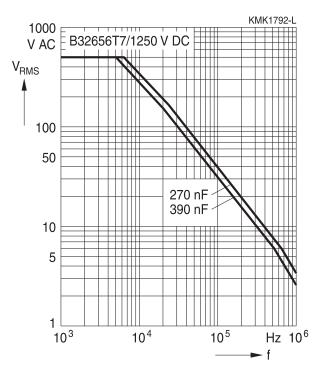


1000 V DC/500 V AC



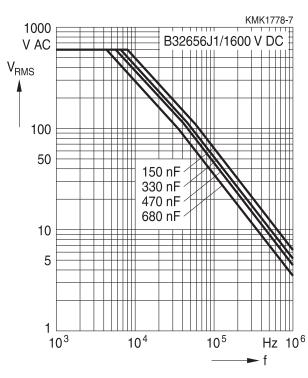

For $T_A > 90$ °C, please refer to "General technical information", section 3.2.3.

Lead spacing 37.5 mm

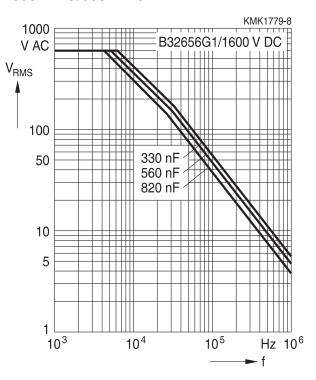

1250 V DC/500 V AC

1250 V DC/500 V AC

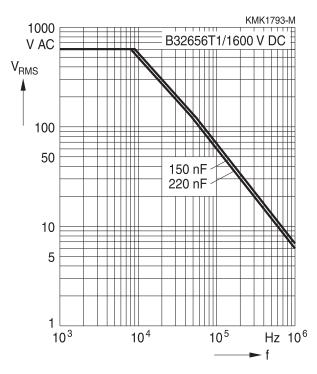
1250 V DC/500 V AC


High pulse (wound)

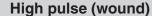
Permissible AC voltage V_{RMS} versus frequency f (for sinusoidal waveforms, T_A ≤90 °C)


For $T_A > 90$ °C, please refer to "General technical information", section 3.2.3.

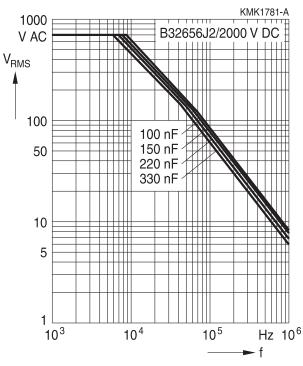
Lead spacing 37.5 mm

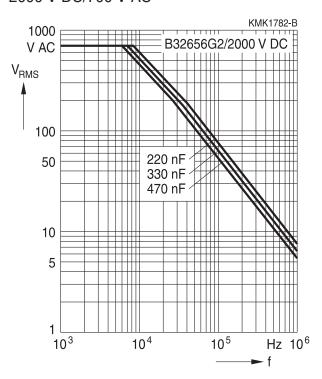

1600 V DC/600 V AC

1600 V DC/600 V AC

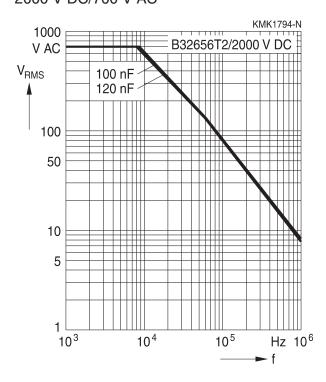


1600 V DC/600 V AC



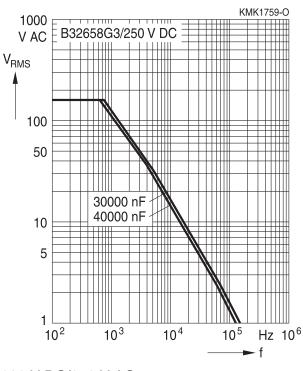

For $T_A > 90$ °C, please refer to "General technical information", section 3.2.3.

Lead spacing 37.5 mm

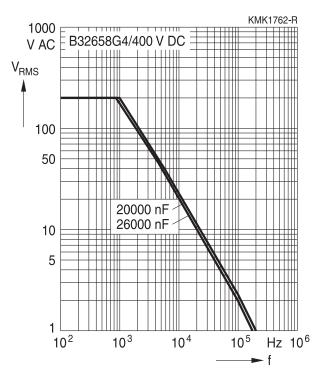

2000 V DC/700 V AC

2000 V DC/700 V AC

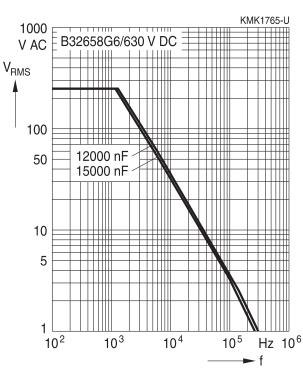
2000 V DC/700 V AC

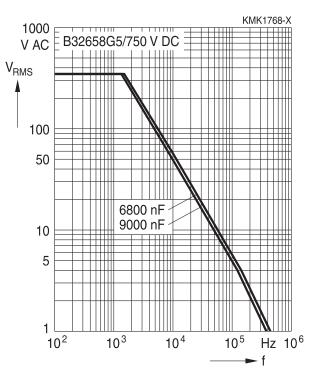

High pulse (wound)

Permissible AC voltage V_{RMS} versus frequency f (for sinusoidal waveforms, T_A ≤90 °C)

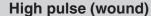

For $T_A > 90$ °C, please refer to "General technical information", section 3.2.3.

Lead spacing 52.5 mm

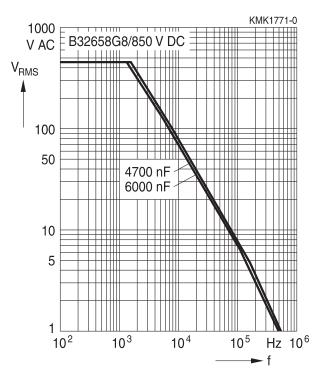

250 V DC/160 V AC

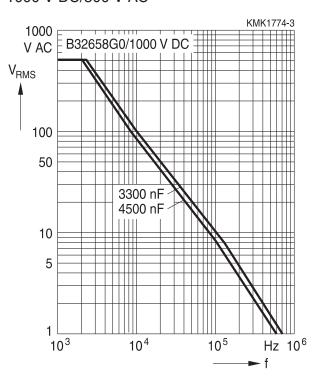

400 V DC/200 V AC

630 V DC/250 V AC

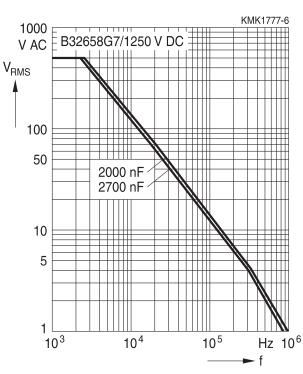


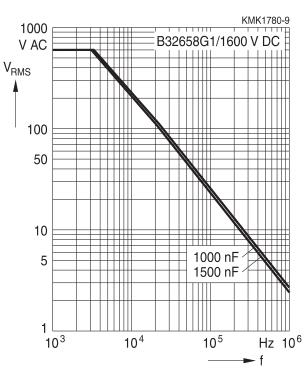
750 V DC/350 V AC




For $T_A > 90$ °C, please refer to "General technical information", section 3.2.3.

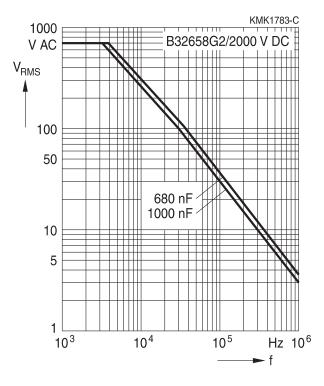
Lead spacing 52.5 mm


850 V DC/450 V AC

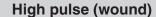

1000 V DC/500 V AC

1250 V DC/500 V AC

1600 V DC/600 V AC


High pulse (wound)

Permissible AC voltage V_{RMS} versus frequency f (for sinusoidal waveforms, $T_A \le 90$ °C)


For $T_A > 90$ °C, please refer to "General technical information", section 3.2.3.

Lead spacing 52.5 mm

2000 V DC/700 V AC

Mounting guidelines

1 Soldering

1.1 Solderability of leads

The solderability of terminal leads is tested to IEC 60068-2-20:2008, test Ta, method 1.

Before a solderability test is carried out, terminals are subjected to accelerated ageing (to IEC 60068-2-2:2007, test Ba: 4 h exposure to dry heat at 155 °C). Since the ageing temperature is far higher than the upper category temperature of the capacitors, the terminal wires should be cut off from the capacitor before the ageing procedure to prevent the solderability being impaired by the products of any capacitor decomposition that might occur.

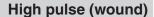
Solder bath temperature	235 ±5 °C
Soldering time	2.0 ±0.5 s
Immersion depth	2.0 +0/-0.5 mm from capacitor body or seating plane
Evaluation criteria:	
Visual inspection	Wetting of wire surface by new solder ≥90%, free-flowing solder

1.2 Resistance to soldering heat


Resistance to soldering heat is tested to IEC 60068-2-20:2008, test Tb, method 1. Conditions:

Series	s	Solder bath temperature	Soldering time
MKT	boxed (except $2.5 \times 6.5 \times 7.2$ mm)	260 ±5 °C	10 ±1 s
	coated		
	uncoated (lead spacing >10 mm)		
MFP			
MKP	(lead spacing >7.5 mm)		
MKT	boxed (case $2.5 \times 6.5 \times 7.2$ mm)		5 ±1 s
MKP	(lead spacing ≤7.5 mm)		<4 s
MKT	uncoated (lead spacing ≤10 mm)		recommended soldering
	insulated (B32559)		profile for MKT uncoated
			(lead spacing ≤ 10 mm) and
			insulated (B32559)

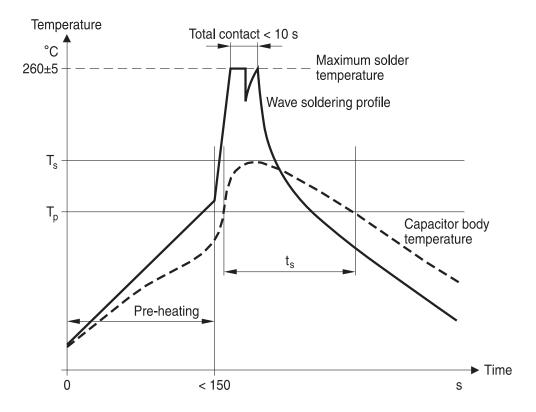
High pulse (wound)


Immersion depth	2.0 + 0/-0.5 mm from capacitor body or seating plane	
Shield	Heat-absorbing board, (1.5 ± 0.5) mm thick, between capacitor body and liquid solder	
Evaluation criteria:	capacitor body and liquid solder	
Visual inspection	No visible damage	
$\Delta C/C_0$	2% for MKT/MKP/MFP 5% for EMI suppression capacitors	
$tan \delta$	As specified in sectional specification	

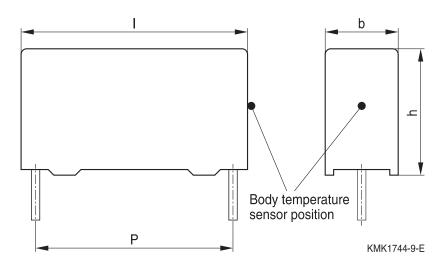
1.3 General notes on soldering

Permissible heat exposure loads on film capacitors are primarily characterized by the upper category temperature T_{max}. Long exposure to temperatures above this type-related temperature limit can lead to changes in the plastic dielectric and thus change irreversibly a capacitor's electrical characteristics. For short exposures (as in practical soldering processes) the heat load (and thus the possible effects on a capacitor) will also depend on other factors like:

- Pre-heating temperature and time
- Forced cooling immediately after soldering
- Terminal characteristics: diameter, length, thermal resistance, special configurations (e.g. crimping)
- Height of capacitor above solder bath
- Shadowing by neighboring components
- Additional heating due to heat dissipation by neighboring components
- Use of solder-resist coatings


KMK1745-A-E

The overheating associated with some of these factors can usually be reduced by suitable countermeasures. For example, if a pre-heating step cannot be avoided, an additional or reinforced cooling process may possibly have to be included.


Recommendations

As a reference, the recommended wave soldering profile for our film capacitors is as follows:

T_s: Capacitor body maximum temperature at wave soldering

T_p: Capacitor body maximum temperature at pre-heating

High pulse (wound)

Body temperature should follow the description below:

MKP capacitor

During pre-heating: $T_p \le 110 \, ^{\circ}C$ During soldering: $T_s \le 120 \, ^{\circ}C$, $t_s \le 45 \, s$

MKT capacitor

During pre-heating: T_p ≤125 °C

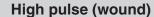
During soldering: $T_s \le 160$ °C, $t_s \le 45$ s

When SMD components are used together with leaded ones, the film capacitors should not pass into the SMD adhesive curing oven. The leaded components should be assembled after the SMD curing step.

Leaded film capacitors are not suitable for reflow soldering.

In order to ensure proper conditions for manual or selective soldering, the body temperature of the capacitor (T_s) must be ≤ 120 °C.

One recommended condition for manual soldering is that the tip of the soldering iron should be <360 °C and the soldering contact time should be no longer than 3 seconds.


For uncoated MKT capacitors with lead spacings ≤10 mm (B32560/B32561) the following measures are recommended:

- pre-heating to not more than 110 °C in the preheater phase
- rapid cooling after soldering

Please refer to our Film Capacitors Data Book in case more details are needed.

Cautions and warnings

- Do not exceed the upper category temperature (UCT).
- Do not apply any mechanical stress to the capacitor terminals.
- Avoid any compressive, tensile or flexural stress.
- Do not move the capacitor after it has been soldered to the PC board.
- Do not pick up the PC board by the soldered capacitor.
- Do not place the capacitor on a PC board whose PTH hole spacing differs from the specified lead spacing.
- Do not exceed the specified time or temperature limits during soldering.
- Avoid external energy inputs, such as fire or electricity.
- Avoid overload of the capacitors.
- Consult us if application is with severe temperature and humidity condition.
- There are no serviceable or repairable parts inside the capacitor. Opening the capacitor or any attempts to open or repair the capacitor will void the warranty and liability of TDK Electronics.
- Please note that the standards referred to in this publication may have been revised in the meantime.

The table below summarizes the safety instructions that must always be observed. A detailed description can be found in the relevant sections of the chapters "General technical information" and "Mounting guidelines".

Topic	Safety information	Reference chapter "General technical information"
Storage	Make sure that capacitors are stored within the	4.5
conditions	specified range of time, temperature and humidity conditions.	"Storage conditions"
Flammability	Avoid external energy, such as fire or electricity (passive flammability), avoid overload of the capacitors (active flammability) and consider the flammability of materials.	5.3 "Flammability"
Resistance to vibration	Do not exceed the tested ability to withstand vibration. The capacitors are tested to IEC 60068-2-6:2007. TDK Electronics offers film capacitors specially designed for operation under more severe vibration regimes such as those found in automotive applications. Consult our catalog "Film Capacitors for Automotive Electronics".	5.2 "Resistance to vibration"

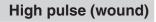
High pulse (wound)

Topic	Safety information	Reference chapter "Mounting guidelines"
Soldering	Do not exceed the specified time or temperature limits during soldering.	1 "Soldering"
Cleaning	Use only suitable solvents for cleaning capacitors.	2 "Cleaning"
Embedding of capacitors in finished assemblies	When embedding finished circuit assemblies in plastic resins, chemical and thermal influences must be taken into account. Caution: Consult us first, if you also wish to embed other uncoated component types!	3 "Embedding of capacitors in finished assemblies"

Display of ordering codes for TDK Electronics products

The ordering code for one and the same product can be represented differently in data sheets, data books, other publications, on the company website, or in order-related documents such as shipping notes, order confirmations and product labels. The varying representations of the ordering codes are due to different processes employed and do not affect the specifications of the respective products.

Detailed information can be found on the Internet under www.tdk-electronics.tdk.com/orderingcodes.


Correlation of data sheet values and modelling tool outputs

Data sheet values and results of design tools may deviate as they have not been derived in the same context.

While data sheets show individual parameter statements without considering a possible dependency to other parameters. Tools model a complete given scenario as input and processed inside the tool.

Furthermore as we constantly strive to improve our models, the results of tools can change over time and be a non-binding indication only.

Symbols and terms

Symbol	English	German
α	Heat transfer coefficient	Wärmeübergangszahl
α_{C}	Temperature coefficient of capacitance	Temperaturkoeffizient der Kapazität
Α	Capacitor surface area	Kondensatoroberfläche
β_{C}	Humidity coefficient of capacitance	Feuchtekoeffizient der Kapazität
С	Capacitance	Kapazität
C_R	Rated capacitance	Nennkapazität
ΔC	Absolute capacitance change	Absolute Kapazitätsänderung
ΔC/C	Relative capacitance change (relative deviation of actual value)	Relative Kapazitätsänderung (relative Abweichung vom Ist-Wert)
$\Delta C/C_R$	Capacitance tolerance (relative deviation from rated capacitance)	Kapazitätstoleranz (relative Abweichung vom Nennwert)
dt	Time differential	Differentielle Zeit
Δt	Time interval	Zeitintervall
ΔΤ	Absolute temperature change (self-heating)	Absolute Temperaturänderung (Selbsterwärmung)
∆tan δ	Absolute change of dissipation factor	Absolute Änderung des Verlustfaktors
ΔV	Absolute voltage change	Absolute Spannungsänderung
dV/dt	Time differential of voltage function (rate of voltage rise)	Differentielle Spannungsänderung (Spannungsflankensteilheit)
$\Delta V/\Delta t$	Voltage change per time interval	Spannungsänderung pro Zeitintervall
E	Activation energy for diffusion	Aktivierungsenergie zur Diffusion
ESL	Self-inductance	Eigeninduktivität
ESR	Equivalent series resistance	Ersatz-Serienwiderstand
f	Frequency	Frequenz
f ₁	Frequency limit for reducing permissible AC voltage due to thermal limits	Grenzfrequenz für thermisch bedingte Reduzierung der zulässigen Wechselspannung
f ₂	Frequency limit for reducing permissible AC voltage due to current limit	Grenzfrequenz für strombedingte Reduzierung der zulässigen Wechselspannung
f _r	Resonant frequency	Resonanzfrequenz
$F_{\mathtt{D}}$	Thermal acceleration factor for diffusion	Therm. Beschleunigungsfaktor zur Diffusion
F _T	Derating factor	Deratingfaktor
i	Current (peak)	Stromspitze
I _C	Category current (max. continuous current)	Kategoriestrom (max. Dauerstrom)

High pulse (wound)

Symbol	English	German
I _{RMS}	(Sinusoidal) alternating current, root-mean-square value	(Sinusförmiger) Wechselstrom
İ _z	Capacitance drift	Inkonstanz der Kapazität
k_0	Pulse characteristic	Impulskennwert
Ls	Series inductance	Serieninduktivität
λ	Failure rate	Ausfallrate
λ_{o}	Constant failure rate during useful service life	Konstante Ausfallrate in der Nutzungsphase
λ_{test}	Failure rate, determined by tests	Experimentell ermittelte Ausfallrate
P_{diss}	Dissipated power	Abgegebene Verlustleistung
P_{gen}	Generated power	Erzeugte Verlustleistung
Q	Heat energy	Wärmeenergie
ρ	Density of water vapor in air	Dichte von Wasserdampf in Luft
R	Universal molar constant for gases	Allg. Molarkonstante für Gas
R	Ohmic resistance of discharge circuit	Ohmscher Widerstand des Entladekreises
R_i	Internal resistance	Innenwiderstand
R_{ins}	Insulation resistance	Isolationswiderstand
R_P	Parallel resistance	Parallelwiderstand
R_s	Series resistance	Serienwiderstand
S	severity (humidity test)	Schärfegrad (Feuchtetest)
t	Time	Zeit
Т	Temperature	Temperatur
τ	Time constant	Zeitkonstante
tan δ	Dissipation factor	Verlustfaktor
$tan \; \delta_{\scriptscriptstyle D}$	Dielectric component of dissipation factor	Dielektrischer Anteil des Verlustfaktors
tan δ_P	Parallel component of dissipation factor	Parallelanteil des Verlfustfaktors
tan δ_{S}	Series component of dissipation factor	Serienanteil des Verlustfaktors
T _A	Temperature of the air surrounding the component	Temperatur der Luft, die das Bauteil umgibt
T_{max}	Upper category temperature	Obere Kategorietemperatur
T _{min}	Lower category temperature	Untere Kategorietemperatur
t _{OL}	Operating life at operating temperature and voltage	Betriebszeit bei Betriebstemperatur und -spannung
T_op	Operating temperature, $T_A + \Delta T$	Beriebstemperatur, $T_A + \Delta T$
T _R	Rated temperature	Nenntemperatur
T_{ref}	Reference temperature	Referenztemperatur
t _{SL}	Reference service life	Referenz-Lebensdauer

High pulse (wound)

Symbol	English	German
V_{AC}	AC voltage	Wechselspannung
V_{C}	Category voltage	Kategoriespannung
$V_{C,RMS}$	Category AC voltage	(Sinusförmige)
		Kategorie-Wechselspannung
V_{CD}	Corona-discharge onset voltage	Teilentlade-Einsatzspannung
V_{ch}	Charging voltage	Ladespannung
V_{DC}	DC voltage	Gleichspannung
$V_{\sf FB}$	Fly-back capacitor voltage	Spannung (Flyback)
V_{i}	Input voltage	Eingangsspannung
V_{o}	Output voltage	Ausgangssspannung
V_{op}	Operating voltage	Betriebsspannung
V_p	Peak pulse voltage	Impuls-Spitzenspannung
V_{pp}	Peak-to-peak voltage Impedance	Spannungshub
V_R	Rated voltage	Nennspannung
ν̂ _R	Amplitude of rated AC voltage	Amplitude der Nenn-Wechselspannung
V_{RMS}	(Sinusoidal) alternating voltage,	(Sinusförmige) Wechselspannung
	root-mean-square value	
V_{SC}	S-correction voltage	Spannung bei Anwendung "S-correction"
V_{sn}	Snubber capacitor voltage	Spannung bei Anwendung
		"Beschaltung"
Z	Impedance	Scheinwiderstand
е	Lead spacing	Rastermaß

Important notes

The following applies to all products named in this publication:

- 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, we are either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether a product with the properties described in the product specification is suitable for use in a particular customer application.
- 2. We also point out that in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or lifesaving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component.
- 3. The warnings, cautions and product-specific notes must be observed.
- 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous). Useful information on this will be found in our Material Data Sheets on the Internet (www.tdk-electronics.tdk.com/material). Should you have any more detailed questions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order. We also reserve the right to discontinue production and delivery of products. Consequently, we cannot guarantee that all products named in this publication will always be available. The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.
- 6. Unless otherwise agreed in individual contracts, all orders are subject to our General Terms and Conditions of Supply.

Important notes

- 7. Our manufacturing sites serving the automotive business apply the IATF 16949 standard. The IATF certifications confirm our compliance with requirements regarding the quality management system in the automotive industry. Referring to customer requirements and customer specific requirements ("CSR") TDK always has and will continue to have the policy of respecting individual agreements. Even if IATF 16949 may appear to support the acceptance of unilateral requirements, we hereby like to emphasize that only requirements mutually agreed upon can and will be implemented in our Quality Management System. For clarification purposes we like to point out that obligations from IATF 16949 shall only become legally binding if individually agreed upon.
- 8. The trade names EPCOS, CarXield, CeraCharge, CeraDiode, CeraLink, CeraPad, CeraPlas, CSMP, CTVS, DeltaCap, DigiSiMic, ExoCore, FilterCap, FormFit, LeaXield, MiniBlue, MiniCell, MKD, MKK, ModCap, MotorCap, PCC, PhaseCap, PhaseCube, PhaseMod, PhiCap, PowerHap, PQSine, PQvar, SIFERRIT, SIFI, SIKOREL, SilverCap, SIMDAD, SiMic, SIMID, SineFormer, SIOV, ThermoFuse, WindCap, XieldCap are trademarks registered or pending in Europe and in other countries. Further information will be found on the Internet at www.tdk-electronics.tdk.com/trademarks.

Release 2020-06