EFM32 Gecko Family EFM32G Data Sheet

The EFM32 Gecko MCUs are the world's most energy-friendly mi-

 crocontrollers.The EFM32G offers unmatched performance and ultra low power consumption in both active and sleep modes. EFM32G devices consume as little as $0.6 \mu \mathrm{~A}$ in Stop mode and $180 \mu \mathrm{~A} / \mathrm{MHz}$ in Run mode. It also features autonomous peripherals, high overall chip and analog integration, and the performance of the industry standard 32-bit ARM Cortex-M3 processor, making it perfect for battery-powered systems and systems with high-performance, low-energy requirements.

EFM32G applications include the following:

- Energy, gas, water and smart metering
- Health and fitness applications
- Alarm and security systems
- Industrial and home automation

KEY FEATURES

- ARM Cortex-M3 at 32 MHz
- Ultra low power operation
- $0.6 \mu \mathrm{~A}$ current in Stop (EM3), with brown-out detection and RAM retention
- $45 \mu \mathrm{~A} / \mathrm{MHz}$ in EM1
- $180 \mu \mathrm{~A} / \mathrm{MHz}$ in Run mode (EMO)
- Fast wake-up time of $2 \mu \mathrm{~s}$
- Hardware cryptography (AES)
- Up to 128 kB of Flash and 16 kB of RAM
- Smart accessories

Lowest power mode with peripheral operational:

EMO - Active

EM1-Sleep

1. Feature List

- ARM Cortex-M3 CPU platform
- High Performance 32-bit processor @ up to 32 MHz
- Memory Protection Unit
- Wake-up Interrupt Controller
- SysTick System Timer
- Flexible Energy Management System
- 20 nA @ 3 V Shutoff Mode
- $0.6 \mu \mathrm{~A} @ 3 \mathrm{~V}$ Stop Mode, including Power-on Reset, Brown-out Detector, RAM and CPU retention
- $0.9 \mu \mathrm{~A} @ 3 \mathrm{~V}$ Deep Sleep Mode, including RTC with 32.768 kHz oscillator, Power-on Reset, Brown-out Detector, RAM and CPU retention
- $45 \mu \mathrm{~A} / \mathrm{MHz}$ @ 3 V Sleep Mode
- $180 \mu \mathrm{~A} / \mathrm{MHz}$ @ 3 V Run Mode, with code executed from flash
- 128/64/32 KB Flash
- 16/8 KB RAM
- Up to 90 General Purpose I/O pins
- Configurable push-pull, open-drain, pull-up/down, input filter, drive strength
- Configurable peripheral I/O locations
- 16 asynchronous external interrupts
- Output state retention and wake-up from Shutoff Mode
- 8 Channel DMA Controller
- 8 Channel Peripheral Reflex System (PRS) for autonomous inter-peripheral signaling
- Hardware AES with $128 / 256$-bit keys in $54 / 75$ cycles
- Timers/Counters
- 3×16-bit Timer/Counter
- 3×3 Compare/Capture/PWM channels
- Dead-Time Insertion on TIMER0
- 16-bit Low Energy Timer
- 1×24-bit Real-Time Counter
- 3×8-bit Pulse Counter
- Watchdog Timer with dedicated RC oscillator @ 50 nA
- Integrated LCD Controller for up to 4×40 segments
- Voltage boost, adjustable contrast and autonomous animation
- External Bus Interface for up to 4×64 MB of external memory mapped space
- Communication interfaces
- Up to $3 \times$ Universal Synchronous/Asynchronous Receiver/ Transmitter
- UART/SPI/SmartCard (ISO 7816)/IrDA/I2S
- Triple buffered full/half-duplex operation
- $1 \times$ Universal Asynchronous Receiver/Transmitter
- $2 \times$ Low Energy UART
- Autonomous operation with DMA in Deep Sleep Mode
- $I^{2} C$ Interface with SMBus support
- Address recognition in Stop Mode
- Ultra low power precision analog peripherals
- 12-bit 1 Msamples/s Analog to Digital Converter
- 8 single-ended channels/4 differential channels
- On-chip temperature sensor
- 12-bit 500 ksamples/s Digital to Analog Converter
- 2 single-ended channels/1 differential channel
- $2 \times$ Analog Comparator
- Capacitive sensing with up to 16 inputs
- Supply Voltage Comparator
- Ultra efficient Power-on Reset and Brown-Out Detector
- 2-pin Serial Wire Debug Interface
- 1-pin Serial Wire Viewer
- Pre-Programmed UART Bootloader
- Temperature range -40 to $85^{\circ} \mathrm{C}$
- Single power supply 1.98 to 3.8 V
- Packages
- BGA112
- LQFP100
- TQFP64
- TQFP48
- QFN64
- QFN32

2. Ordering Information

The following table shows the available EFM32G devices.
Table 2.1. Ordering Information

Ordering Code	Flash (kB)	RAM (kB)	Max Speed (MHz)	Supply Voltage (V)	Temperature (${ }^{\circ} \mathrm{C}$)	Package
EFM32G200F16G-E-QFN32	16	8	32	1.98-3.8	-40-85	QFN32
EFM32G200F32G-E-QFN32	32	8	32	1.98-3.8	-40-85	QFN32
EFM32G200F64G-E-QFN32	64	16	32	1.98-3.8	-40-85	QFN32
EFM32G210F128G-E-QFN32	128	16	32	1.98-3.8	-40-85	QFN32
EFM32G222F32G-E-QFP48	32	8	32	1.98-3.8	-40-85	TQFP48
EFM32G222F64G-E-QFP48	64	16	32	1.98-3.8	-40-85	TQFP48
EFM32G222F128G-E-QFP48	128	16	32	1.98-3.8	-40-85	TQFP48
EFM32G230F32G-E-QFN64	32	8	32	1.98-3.8	-40-85	QFN64
EFM32G230F64G-E-QFN64	64	16	32	1.98-3.8	-40-85	QFN64
EFM32G230F128G-E-QFN64	128	16	32	1.98-3.8	-40-85	QFN64
EFM32G232F32G-E-QFP64	32	8	32	1.98-3.8	-40-85	TQFP64
EFM32G232F64G-E-QFP64	64	16	32	1.98-3.8	-40-85	TQFP64
EFM32G232F128G-E-QFP64	128	16	32	1.98-3.8	-40-85	TQFP64
EFM32G280F32G-E-QFP100	32	8	32	1.98-3.8	-40-85	LQFP100
EFM32G280F64G-E-QFP100	64	16	32	1.98-3.8	-40-85	LQFP100
EFM32G280F128G-E-QFP100	128	16	32	1.98-3.8	-40-85	LQFP100
EFM32G290F32G-E-BGA112	32	8	32	1.98-3.8	-40-85	BGA112
EFM32G290F64G-E-BGA112	64	16	32	1.98-3.8	-40-85	BGA112
EFM32G290F128G-E-BGA112	128	16	32	1.98-3.8	-40-85	BGA112
EFM32G840F32G-E-QFN64	32	8	32	1.98-3.8	-40-85	QFN64
EFM32G840F64G-E-QFN64	64	16	32	1.98-3.8	-40-85	QFN64
EFM32G840F128G-E-QFN64	128	16	32	1.98-3.8	-40-85	QFN64
EFM32G842F32G-E-QFP64	32	8	32	1.98-3.8	-40-85	TQFP64
EFM32G842F64G-E-QFP64	64	16	32	1.98-3.8	-40-85	TQFP64
EFM32G842F128G-E-QFP64	128	16	32	1.98-3.8	-40-85	TQFP64
EFM32G880F32G-E-QFP100	32	8	32	1.98-3.8	-40-85	LQFP100
EFM32G880F64G-E-QFP100	64	16	32	1.98-3.8	-40-85	LQFP100
EFM32G880F128G-E-QFP100	128	16	32	1.98-3.8	-40-85	LQFP100
EFM32G890F32G-E-BGA112	32	8	32	1.98-3.8	-40-85	BGA112
EFM32G890F64G-E-BGA112	64	16	32	1.98-3.8	-40-85	BGA112
EFM32G890F128G-E-BGA112	128	16	32	1.98-3.8	-40-85	BGA112

EFM32 G 890 F 128 G-E-BGA 112 R

Figure 2.1. Ordering Code Decoder
Adding the suffix 'R' to the part number (e.g., EFM32G890F128G-E-BGA112R) denotes tape and reel.
Visit www.silabs.com for information on global distributors and representatives.

Table of Contents

1. Feature List 2
2. Ordering Information 4
3. System Overview 10
3.1 System Introduction 10
3.1.1 ARM Cortex-M3 Core 10
3.1.2 Debug Interface (DBG). 10
3.1.3 Memory System Controller (MSC) 10
3.1.4 Direct Memory Access Controller (DMA) 11
3.1.5 Reset Management Unit (RMU) 11
3.1.6 Energy Management Unit (EMU) 11
3.1.7 Clock Management Unit (CMU) 11
3.1.8 Watchdog (WDOG) 11
3.1.9 Peripheral Reflex System (PRS) 11
3.1.10 External Bus Interface (EBI) 11
3.1.11 Inter-Integrated Circuit Interface (I2C) 11
3.1.12 Universal Synchronous/Asynchronous Receiver/Transmitter (USART) 11
3.1.13 Pre-Programmed USB/UART Bootloader 11
3.1.14 Universal Asynchronous Receiver/Transmitter (UART) 12
3.1.15 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART) 12
3.1.16 Timer/Counter (TIMER) 12
3.1.17 Real Time Counter (RTC) 12
3.1.18 Low Energy Timer (LETIMER) 12
3.1.19 Pulse Counter (PCNT) 12
3.1.20 Analog Comparator (ACMP) 12
3.1.21 Voltage Comparator (VCMP) 12
3.1.22 Analog to Digital Converter (ADC) 12
3.1.23 Digital to Analog Converter (DAC) 12
3.1.24 Advanced Encryption Standard Accelerator (AES) 13
3.1.25 General Purpose Input/Output (GPIO) 13
3.1.26 Liquid Crystal Display Driver (LCD) 13
3.2 Configuration Summary 14
3.2.1 EFM32G200 14
3.2.2 EFM32G210 15
3.2.3 EFM32G222 16
3.2.4 EFM32G230 17
3.2.5 EFM32G232 18
3.2.6 EFM32G280 19
3.2.7 EFM32G290 20
3.2.8 EFM32G840 21
3.2.9 EFM32G842 22
3.2.10 EFM32G880 23
3.2.11 EFM32G890 25
3.3 Memory Map 27
4. Electrical Characteristics 29
4.1 Test Conditions 29
4.1.1 Typical Values 29
4.1.2 Minimum and Maximum Values 29
4.2 Absolute Maximum Ratings 29
4.3 General Operating Conditions 29
4.4 Current Consumption 30
4.4.1 EMO Current Consumption 31
4.4.2 EM1 Current Consumption 34
4.4.3 EM2 Current Consumption 37
4.4.4 EM3 Current Consumption 38
4.4.5 EM4 Current Consumption 39
4.5 Transition between Energy Modes 39
4.6 Power Management. 40
4.7 Flash 41
4.8 General Purpose Input Output 42
4.9 Oscillators 50
4.9.1 LFXO 50
4.9.2 HFXO 51
4.9.3 LFRCO 52
4.9.4 HFRCO 53
4.9.5 AUXHFRCO 57
4.9.6 ULFRCO 57
4.10 Analog Digital Converter (ADC) 58
4.10.1 Typical Performance 67
4.11 Digital Analog Converter (DAC) 71
4.12 Analog Comparator (ACMP) 73
4.13 Voltage Comparator (VCMP) 75
4.14 LCD 76
4.15 I2C 77
4.16 Digital Peripherals 78
5. Pin Definitions 79
5.1 EFM32G200 \& EFM32G210 (QFN32). 79
5.1.1 Pinout 79
5.1.2 Alternate Functionality Pinout 82
5.1.3 GPIO Pinout Overview 84
5.2 EFM32G222 (TQFP48). 85
5.2.1 Pinout 85
5.2.2 Alternate Functionality Pinout 88
5.2.3 GPIO Pinout Overview 90
5.3 EFM32G230 (QFN64) 91
5.3.1 Pinout 91
5.3.2 Alternate Functionality Pinout 94
5.3.3 GPIO Pinout Overview 97
5.4 EFM32G232 (TQFP64). 98
5.4.1 Pinout 98
5.4.2 Alternate Functionality Pinout 101
5.4.3 GPIO Pinout Overview 103
5.5 EFM32G280 (LQFP100) 104
5.5.1 Pinout 104
5.5.2 Alternate Functionality Pinout 109
5.5.3 GPIO Pinout Overview 113
5.6 EFM32G290 (BGA112). 114
5.6.1 Pinout 114
5.6.2 Alternate Functionality Pinout 119
5.6.3 GPIO Pinout Overview 123
5.7 EFM32G840 (QFN64) 124
5.7.1 Pinout 124
5.7.2 Alternate Functionality Pinout 127
5.7.3 GPIO Pinout Overview 131
5.8 EFM32G842 (TQFP64). 132
5.8.1 Pinout 132
5.8.2 Alternate Functionality Pinout 135
5.8.3 GPIO Pinout Overview 139
5.9 EFM32G880 (LQFP100) 140
5.9.1 Pinout 140
5.9.2 Alternate Functionality Pinout 146
5.9.3 GPIO Pinout Overview 152
5.10 EFM32G890 (BGA112) 153
5.10.1 Pinout 153
5.10.2 Alternate Functionality Pinout 159
5.10.3 GPIO Pinout Overview 165
6. BGA112 Package Specifications 166
6.1 BGA112 Package Dimensions 166
6.2 BGA112 PCB Layout 167
6.3 BGA112 Package Marking 169
7. LQFP100 Package Specifications 170
7.1 LQFP100 Package Dimensions 170
7.2 LQFP100 PCB Layout 172
7.3 LQFP100 Package Marking 174
8. TQFP64 Package Specifications 175
8.1 TQFP64 Package Dimensions 175
8.2 TQFP64 PCB Layout 177
8.3 TQFP64 Package Marking 179
9. TQFP48 Package Specifications 180
9.1 TQFP48 Package Dimensions 180
9.2 TQFP48 PCB Layout 182
9.3 TQFP48 Package Marking 184
10. QFN64 Package Specifications 185
10.1 QFN64 Package Dimensions 185
10.2 QFN64 PCB Layout 187
10.3 QFN64 Package Marking 189
11. QFN32 Package Specifications 190
11.1 QFN32 Package Dimensions 190
11.2 QFN32 PCB Layout 191
11.3 QFN32 Package Marking 193
12. Chip Revision, Solder Information, Errata 194
12.1 Chip Revision 194
12.2 Soldering Information 194
12.3 Errata 194
13. Revision History. 195
13.1 Revision 2.20 195
13.2 Revision 2.10 195
13.3 Revision 2.00 196
13.4 Revision 1.90 197
13.5 Revision 1.80 197
13.6 Revision 1.71 198
13.7 Revision 1.70 198
13.8 Revision 1.60 198
13.9 Revision 1.50 198
13.10 Revision 1.40 199
13.11 Revision 1.30 199
13.12 Revision 1.20 200
13.13 Revision 1.11 200
13.14 Revision 1.10 201
13.15 Revision 1.00 201
13.16 Revision 0.90 202
13.17 Revision 0.85 202
13.18 Revision 0.84 202
13.19 Revision 0.83 202
13.20 Revision 0.82 203
13.21 Revision 0.81 203
13.22 Revision 0.80 204

3. System Overview

3.1 System Introduction

EFM32 MCUs are the world's most energy friendly microcontrollers. With a unique combination of the powerful 32-bit ARM Cortex-M3, innovative low energy techniques, short wake-up time from energy saving modes, and a wide selection of peripherals, the EFM32G microcontroller is well suited for any battery operated application as well as other systems requiring high performance and low-energy consumption. This section gives a short introduction to each of the modules in general terms and also shows a summary of the configuration for the EFM32G devices. For a complete feature set and in-depth information on the modules, the reader is referred to the EFM32G Reference Manual.

The diagram shows a superset of features available on the family, which vary by OPN. For more information about specific device features, consult Ordering Information.

Figure 3.1. Block Diagram

3.1.1 ARM Cortex-M3 Core

The ARM Cortex-M3 includes a 32-bit RISC processor which can achieve as much as 1.25 Dhrystone MIPS/MHz. A Memory Protection Unit with support for up to 8 memory segments is included, as well as a Wake-up Interrupt Controller handling interrupts triggered while the CPU is asleep. The EFM32 implementation of the Cortex-M3 is described in detail in EFM32G Reference Manual.

3.1.2 Debug Interface (DBG)

This device includes hardware debug support through a 2-pin serial-wire debug interface. In addition there is also a 1-wire Serial Wire Viewer pin which can be used to output profiling information, data trace and software-generated messages.

3.1.3 Memory System Controller (MSC)

The Memory System Controller (MSC) is the program memory unit of the EFM32G microcontroller. The flash memory is readable and writable from both the Cortex-M3 and DMA. The flash memory is divided into two blocks; the main block and the information block. Program code is normally written to the main block. Additionally, the information block is available for special user data and flash lock bits. There is also a read-only page in the information block containing system and device calibration data. Read and write operations are supported in the energy modes EM0 and EM1.

3.1.4 Direct Memory Access Controller (DMA)

The Direct Memory Access (DMA) controller performs memory operations independently of the CPU. This has the benefit of reducing the energy consumption and the workload of the CPU, and enables the system to stay in low energy modes when moving for instance data from the USART to RAM or from the External Bus Interface to a PWM-generating timer. The DMA controller uses the PL230 μ DMA controller licensed from ARM.

3.1.5 Reset Management Unit (RMU)

The RMU is responsible for handling the reset functionality of the EFM32G.

3.1.6 Energy Management Unit (EMU)

The Energy Management Unit (EMU) manages all the low energy modes (EM) in EFM32G microcontrollers. Each energy mode manages if the CPU and the various peripherals are available. The EMU can also be used to turn off the power to unused SRAM blocks.

3.1.7 Clock Management Unit (CMU)

The Clock Management Unit (CMU) is responsible for controlling the oscillators and clocks on-board the EFM32G. The CMU provides the capability to turn on and off the clock on an individual basis to all peripheral modules in addition to enable/disable and configure the available oscillators. The high degree of flexibility enables software to minimize energy consumption in any specific application by not wasting power on peripherals and oscillators that are inactive.

3.1.8 Watchdog (WDOG)

The purpose of the watchdog timer is to generate a reset in case of a system failure, to increase application reliability. The failure may e.g. be caused by an external event, such as an ESD pulse, or by a software failure.

3.1.9 Peripheral Reflex System (PRS)

The Peripheral Reflex System (PRS) system is a network which lets the different peripheral module communicate directly with each other without involving the CPU. Peripheral modules which send out Reflex signals are called producers. The PRS routes these reflex signals to consumer peripherals which apply actions depending on the data received. The format for the Reflex signals is not given, but edge triggers and other functionality can be applied by the PRS.

3.1.10 External Bus Interface (EBI)

The External Bus Interface provides access to external parallel interface devices such as SRAM, FLASH, ADCs and LCDs. The interface is memory mapped into the address bus of the Cortex-M3. This enables seamless access from software without manually manipulating the IO settings each time a read or write is performed. The data and address lines are multiplexed in order to reduce the number of pins required to interface the external devices. The timing is adjustable to meet specifications of the external devices. The interface is limited to asynchronous devices.

3.1.11 Inter-Integrated Circuit Interface (I2C)

The $I^{2} \mathrm{C}$ module provides an interface between the MCU and a serial $I^{2} \mathrm{C}$-bus. It is capable of acting as both a master and a slave, and supports multi-master buses. Both standard-mode, fast-mode and fastmode plus speeds are supported, allowing transmission rates all the way from $10 \mathrm{kbit} / \mathrm{s}$ up to $1 \mathrm{Mbit} / \mathrm{s}$. Slave arbitration and timeouts are also provided to allow implementation of an SMBus compliant system. The interface provided to software by the $\mathrm{I}^{2} \mathrm{C}$ module, allows both fine-grained control of the transmission process and close to automatic transfers. Automatic recognition of slave addresses is provided in all energy modes.

3.1.12 Universal Synchronous/Asynchronous Receiver/Transmitter (USART)

The Universal Synchronous Asynchronous serial Receiver and Transmitter (USART) is a very flexible serial I/O module. It supports full duplex asynchronous UART communication as well as RS-485, SPI, MicroWire and 3-wire. It can also interface with ISO7816 SmartCards, and IrDA devices.

3.1.13 Pre-Programmed USB/UART Bootloader

The bootloader presented in application note AN0003.0 is pre-programmed in the device at factory. Autobaud and destructive write are supported. The autobaud feature, interface and commands are described further in the application note.

3.1.14 Universal Asynchronous Receiver/Transmitter (UART)

The Universal Asynchronous serial Receiver and Transmitter (UART) is a very flexible serial I/O module. It supports full- and half-duplex asynchronous UART communication.

3.1.15 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART)

The unique LEUART ${ }^{\text {TM }}$, the Low Energy UART, is a UART that allows two-way UART communication on a strict power budget. Only a 32.768 kHz clock is needed to allow UART communication up to 9600 baud/ s . The LEUART includes all necessary hardware support to make asynchronous serial communication possible with minimum of software intervention and energy consumption.

3.1.16 Timer/Counter (TIMER)

The 16-bit general purpose Timer has 3 compare/capture channels for input capture and compare/Pulse-Width Modulation (PWM) output. TIMERO also includes a Dead-Time Insertion module suitable for motor control applications.

3.1.17 Real Time Counter (RTC)

The Real Time Counter (RTC) contains a 24 -bit counter and is clocked either by a 32.768 kHz crystal oscillator, or a 32.768 kHz RC oscillator. In addition to energy modes EM0 and EM1, the RTC is also available in EM2. This makes it ideal for keeping track of time since the RTC is enabled in EM2 where most of the device is powered down.

3.1.18 Low Energy Timer (LETIMER)

The unique LETIMER ${ }^{\text {TM }}$, the Low Energy Timer, is a 16 -bit timer that is available in energy mode EM2 in addition to EM1 and EM0. Because of this, it can be used for timing and output generation when most of the device is powered down, allowing simple tasks to be performed while the power consumption of the system is kept at an absolute minimum. The LETIMER can be used to output a variety of waveforms with minimal software intervention. It is also connected to the Real Time Counter (RTC), and can be configured to start counting on compare matches from the RTC.

3.1.19 Pulse Counter (PCNT)

The Pulse Counter (PCNT) can be used for counting pulses on a single input or to decode quadrature encoded inputs. It runs off either the internal LFACLK or the PCNTn_SOIN pin as external clock source. The module may operate in energy mode EMO - EM3.

3.1.20 Analog Comparator (ACMP)

The Analog Comparator is used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is higher. Inputs can either be one of the selectable internal references or from external pins. Response time and thereby also the current consumption can be configured by altering the current supply to the comparator.

3.1.21 Voltage Comparator (VCMP)

The Voltage Supply Comparator is used to monitor the supply voltage from software. An interrupt can be generated when the supply falls below or rises above a programmable threshold. Response time and thereby also the current consumption can be configured by altering the current supply to the comparator.

3.1.22 Analog to Digital Converter (ADC)

The ADC is a Successive Approximation Register (SAR) architecture, with a resolution of up to 12 bits at up to one million samples per second. The integrated input mux can select inputs from 8 external pins and 6 internal signals.

3.1.23 Digital to Analog Converter (DAC)

The Digital to Analog Converter (DAC) can convert a digital value to an analog output voltage. The DAC is fully differential rail-to-rail, with 12 -bit resolution. It has two single-ended output buffers which can be combined into one differential output. The DAC may be used for a number of different applications such as sensor interfaces or sound output.

3.1.24 Advanced Encryption Standard Accelerator (AES)

The AES accelerator performs AES encryption and decryption with 128-bit or 256-bit keys. Encrypting or decrypting one 128-bit data block takes 52 HFCORECLK cycles with 128 -bit keys and 75 HFCORECLK cycles with 256 -bit keys. The AES module is an AHB slave which enables efficient access to the data and key registers. All write accesses to the AES module must be 32-bit operations, i.e. 8 - or 16-bit operations are not supported.

3.1.25 General Purpose Input/Output (GPIO)

General Purpose Input/Output (GPIO) pins are organized into ports with up to 16 pins each. These pins can individually be configured as either an output or input. More advanced configurations like open-drain, filtering and drive strength can also be configured individually for the pins. The GPIO pins can also be overridden by peripheral pin connections, like Timer PWM outputs or USART communication, which can be routed to several locations on the device. The GPIO supports up to 16 asynchronous external pin interrupts, which enables interrupts from any pin on the device. Also, the input value of a pin can be routed through the Peripheral Reflex System to other peripherals.

3.1.26 Liquid Crystal Display Driver (LCD)

The LCD driver is capable of driving a segmented LCD display with up to 4×40 segments. A voltage boost function enables it to provide the LCD display with higher voltage than the supply voltage for the device. In addition, an animation feature can run custom animations on the LCD display without any CPU intervention. The LCD driver can also remain active even in Energy Mode 2 and provides a Frame Counter interrupt that can wake-up the device on a regular basis for updating data.

3.2 Configuration Summary

3.2.1 EFM32G200

The features of the EFM32G200 is a subset of the feature set described in the EFM32G Reference Manual. The following table describes device specific implementation of the features.

Table 3.1. EFM32G200 Configuration Summary

Module	Configuration	Pin Connections
Cortex-M3	Full configuration	NA
DBG	Full configuration	DBG_SWCLK, DBG_SWDIO, DBG_SWO
MSC	Full configuration	NA
DMA	Full configuration	NA
RMU	Full configuration	NA
EMU	Full configuration	NA
CMU	Full configuration	CMU_OUT0, CMU_OUT1
WDOG	Full configuration	NA
PRS	Full configuration	NA
I2C0	Full configuration	12C0_SDA, I2C0_SCL
USART0	Full configuration with IrDA	USO_TX, USO_RX. USO_CLK, USO_CS
USART1	Full configuration	US1_TX, US1_RX, US1_CLK, US1_CS
LEUART0	Full configuration	LEU0_TX, LEU0_RX
TIMER0	Full configuration with DTI	TIM0_CC[2:0], TIM0_CDTI[2:0]
TIMER1	Full configuration	TIM1_CC[2:0]
RTC	Full configuration	NA
LETIMER0	Full configuration	LET0_O[1:0]
PCNTO	Full configuration, 8-bit count register	PCNT0_S[1:0]
ACMP0	Full configuration	ACMP0_CH[1:0], ACMP0_O
ACMP1	Full configuration	ACMP1_CH[7:5], ACMP1_O
VCMP	Full configuration	NA
ADC0	Full configuration	ADC0_CH[7:4]
DAC0	Full configuration	DAC0_OUT[0]
GPIO	24 pins	Available pins are shown in Table 4.3 (p. 57)

3.2.2 EFM32G210

The features of the EFM32G210 is a subset of the feature set described in the EFM32G Reference Manual. The following table describes device specific implementation of the features.

Table 3.2. EFM32G210 Configuration Summary

Module	Configuration	Pin Connections
Cortex-M3	Full configuration	NA
DBG	Full configuration	DBG_SWCLK, DBG_SWDIO, DBG_SWO
MSC	Full configuration	NA
DMA	Full configuration	NA
RMU	Full configuration	NA
EMU	Full configuration	NA
CMU	Full configuration	CMU_OUT0, CMU_OUT1
WDOG	Full configuration	NA
PRS	Full configuration	NA
I2C0	Full configuration	I2C0_SDA, I2C0_SCL
USARTO	Full configuration with IrDA	USO_TX, USO_RX. USO_CLK, USO_CS
USART1	Full configuration	US1_TX, US1_RX, US1_CLK, US1_CS
LEUART0	Full configuration	LEU0_TX, LEU0_RX
TIMER0	Full configuration with DTI	TIMO_CC[2:0], TIMO_CDTI[2:0]
TIMER1	Full configuration	TIM1_CC[2:0]
RTC	Full configuration	NA
LETIMER0	Full configuration	LET0_O[1:0]
PCNTO	Full configuration, 8-bit count register	PCNTO_S[1:0]
ACMP0	Full configuration	ACMP0_CH[1:0], ACMP0_O
ACMP1	Full configuration	ACMP1_CH[7:5], ACMP1_O
VCMP	Full configuration	NA
ADC0	Full configuration	ADC0_CH[7:4]
DAC0	Full configuration	DAC0_OUT[0]
AES	Full configuration	NA
GPIO	24 pins	Available pins are shown in Table 4.3 (p.57)

3.2.3 EFM32G222

The features of the EFM32G222 is a subset of the feature set described in the EFM32G Reference Manual. The following table describes device specific implementation of the features.

Table 3.3. EFM32G222 Configuration Summary

Module	Configuration	Pin Connections
Cortex-M3	Full configuration	NA
DBG	Full configuration	DBG_SWCLK, DBG_SWDIO, DBG_SWO
MSC	Full configuration	NA
DMA	Full configuration	NA
RMU	Full configuration	NA
EMU	Full configuration	NA
CMU	Full configuration	CMU_OUT0, CMU_OUT1
WDOG	Full configuration	NA
PRS	Full configuration	NA
I2C0	Full configuration	I2C0_SDA, I2C0_SCL
USART0	Full configuration with IrDA	US0_TX, USO_RX. USO_CLK, US0_CS
USART1	Full configuration	US1_TX, US1_RX, US1_CLK, US1_CS
LEUART0	Full configuration	LEU0_TX, LEU0_RX
TIMER0	Full configuration with DTI	TIMO_CC[2:0], TIMO_CDTI[2:0]
TIMER1	Full configuration	TIM1_CC[2:0]
TIMER2	Full configuration	TIM2_CC[2:0]
RTC	Full configuration	NA
LETIMER0	Full configuration	LET0_O[1:0]
PCNT0	Full configuration, 8-bit count register	PCNTO_S[1:0]
PCNT1	Full configuration, 8-bit count register	PCNT1_S[1:0]
ACMP0	Full configuration	ACMPO_CH[4:0], ACMP0_O
ACMP1	Full configuration	ACMP1_CH[7:0], ACMP1_O
VCMP	Full configuration	NA
ADC0	Full configuration	ADC0_CH[7:4]
DAC0	Full configuration	DAC0_OUT[1]
AES	Full configuration	NA
GPIO	37 pins	Available pins are shown in Table 4.3 (p.57)

3.2.4 EFM32G230

The features of the EFM32G230 is a subset of the feature set described in the EFM32G Reference Manual. The following table describes device specific implementation of the features.

Table 3.4. EFM32G230 Configuration Summary

Module	Configuration	Pin Connections
Cortex-M3	Full configuration	NA
DBG	Full configuration	DBG_SWCLK, DBG_SWDIO, DBG_SWO
MSC	Full configuration	NA
DMA	Full configuration	NA
RMU	Full configuration	NA
EMU	Full configuration	NA
CMU	Full configuration	CMU_OUT0, CMU_OUT1
WDOG	Full configuration	NA
PRS	Full configuration	NA
I2C0	Full configuration	I2C0_SDA, I2C0_SCL
USART0	Full configuration with IrDA	US0_TX, USO_RX. USO_CLK, US0_CS
USART1	Full configuration	US1_TX, US1_RX, US1_CLK, US1_CS
USART2	Full configuration	US2_TX, US2_RX, US2_CLK, US2_CS
LEUART0	Full configuration	LEU0_TX, LEU0_RX
LEUART1	Full configuration	LEU1_TX, LEU1_RX
TIMER0	Full configuration with DTI	TIMO_CC[2:0], TIMO_CDTI[2:0]
TIMER1	Full configuration	TIM1_CC[2:0]
TIMER2	Full configuration	TIM2_CC[2:0]
RTC	Full configuration	NA
LETIMER0	Full configuration	LET0_O[1:0]
PCNT0	Full configuration, 8-bit count register	PCNT0_S[1:0]
PCNT1	Full configuration, 8-bit count register	PCNT1_S[1:0]
PCNT2	Full configuration, 8-bit count register	PCNT2_S[1:0]
ACMP0	Full configuration	ACMP0_CH[7:0], ACMP0_O
ACMP1	Full configuration	ACMP1_CH[7:0], ACMP1_O
VCMP	Full configuration	NA
ADC0	Full configuration	ADC0_CH[7:0]
DAC0	Full configuration	DAC0_OUT[1:0]
AES	Full configuration	NA
GPIO	56 pins	Available pins are shown in Table 4.3 (p.57)

3.2.5 EFM32G232

The features of the EFM32G232 is a subset of the feature set described in the EFM32G Reference Manual. The following table describes device specific implementation of the features.

Table 3.5. EFM32G232 Configuration Summary

Module	Configuration	Pin Connections
Cortex-M3	Full configuration	NA
DBG	Full configuration	DBG_SWCLK, DBG_SWDIO, DBG_SWO
MSC	Full configuration	NA
DMA	Full configuration	NA
RMU	Full configuration	NA
EMU	Full configuration	NA
CMU	Full configuration	CMU_OUT0, CMU_OUT1
WDOG	Full configuration	NA
PRS	Full configuration	NA
I2C0	Full configuration	I2C0_SDA, I2C0_SCL
USARTO	Full configuration with IrDA	US0_TX, USO_RX. USO_CLK, USO_CS
USART1	Full configuration	US1_TX, US1_RX, US1_CLK, US1_CS
USART2	Full configuration	US2_TX, US2_RX, US2_CLK, US2_CS
LEUART0	Full configuration	LEU0_TX, LEU0_RX
LEUART1	Full configuration	LEU1_TX, LEU1_RX
TIMER0	Full configuration with DTI	TIMO_CC[2:0], TIMO_CDTI[2:0]
TIMER1	Full configuration	TIM1_CC[2:0]
TIMER2	Full configuration	TIM2_CC[2:0]
RTC	Full configuration	NA
LETIMER0	Full configuration	LET0_O[1:0]
PCNT0	Full configuration, 8-bit count register	PCNT0_S[1:0]
PCNT1	Full configuration, 8-bit count register	PCNT1_S[1:0]
PCNT2	Full configuration, 8-bit count register	PCNT2_S[1:0]
ACMP0	Full configuration	ACMPO_CH[7:0], ACMP0_O
ACMP1	Full configuration	ACMP1_CH[15:8], ACMP1_O
VCMP	Full configuration	NA
ADC0	Full configuration	ADC0_CH[7:0]
DAC0	Full configuration	DAC0_OUT[0]
AES	Full configuration	NA
GPIO	53 pins	Available pins are shown in Table 4.3 (p.57)

3.2.6 EFM32G280

The features of the EFM32G280 is a subset of the feature set described in the EFM32G Reference Manual. The following table describes device specific implementation of the features.

Table 3.6. EFM32G280 Configuration Summary

Module	Configuration	Pin Connections
Cortex-M3	Full configuration	NA
DBG	Full configuration	DBG_SWCLK, DBG_SWDIO, DBG_SWO
MSC	Full configuration	NA
DMA	Full configuration	NA
RMU	Full configuration	NA
EMU	Full configuration	NA
CMU	Full configuration	CMU_OUT0, CMU_OUT1
WDOG	Full configuration	NA
PRS	Full configuration	NA
EBI	Full configuration	EBI_ARDY, EBI_ALE, EBI_WEn, EBI_REn, EBI_CS[3:0], EBI_AD[15:0]
I2C0	Full configuration	I2C0_SDA, I2C0_SCL
USART0	Full configuration with IrDA	USO_TX, USO_RX. USO_CLK, USO_CS
USART1	Full configuration	US1_TX, US1_RX, US1_CLK, US1_CS
USART2	Full configuration	US2_TX, US2_RX, US2_CLK, US2_CS
UART0	Full configuration	U0_TX, U0_RX
LEUART0	Full configuration	LEU0_TX, LEU0_RX
LEUART1	Full configuration	LEU1_TX, LEU1_RX
TIMER0	Full configuration with DTI	TIM0_CC[2:0], TIM0_CDTI[2:0]
TIMER1	Full configuration	TIM1_CC[2:0]
TIMER2	Full configuration	TIM2_CC[2:0]
RTC	Full configuration	NA
LETIMER0	Full configuration	LET0_O[1:0]
PCNT0	Full configuration, 8-bit count register	PCNT0_S[1:0]
PCNT1	Full configuration, 8-bit count register	PCNT1_S[1:0]
PCNT2	Full configuration, 8-bit count register	PCNT2_S[1:0]
ACMP0	Full configuration	ACMP0_CH[7:0], ACMP0_O
ACMP1	Full configuration	ACMP1_CH[7:0], ACMP1_O
VCMP	Full configuration	NA
ADC0	Full configuration	ADCO_CH[7:0]
DAC0	Full configuration	DAC0_OUT[1:0]
AES	Full configuration	NA
GPIO	86 pins	Available pins are shown in Table 4.3 (p.57)

3.2.7 EFM32G290

The features of the EFM32G290 is a subset of the feature set described in the EFM32G Reference Manual. The following table describes device specific implementation of the features.

Table 3.7. EFM32G290 Configuration Summary

Module	Configuration	Pin Connections
Cortex-M3	Full configuration	NA
DBG	Full configuration	DBG_SWCLK, DBG_SWDIO, DBG_SWO
MSC	Full configuration	NA
DMA	Full configuration	NA
RMU	Full configuration	NA
EMU	Full configuration	NA
CMU	Full configuration	CMU_OUT0, CMU_OUT1
WDOG	Full configuration	NA
PRS	Full configuration	NA
EBI	Full configuration	EBI_ARDY, EBI_ALE, EBI_WEn, EBI_REn, EBI_CS[3:0], EBI_AD[15:0]
I2C0	Full configuration	I2C0_SDA, I2C0_SCL
USART0	Full configuration with IrDA	US0_TX, USO_RX. US0_CLK, US0_CS
USART1	Full configuration	US1_TX, US1_RX, US1_CLK, US1_CS
USART2	Full configuration	US2_TX, US2_RX, US2_CLK, US2_CS
UARTO	Full configuration	U0_TX, U0_RX
LEUART0	Full configuration	LEU0_TX, LEU0_RX
LEUART1	Full configuration	LEU1_TX, LEU1_RX
TIMER0	Full configuration with DTI	TIMO_CC[2:0], TIMO_CDTI[2:0]
TIMER1	Full configuration	TIM1_CC[2:0]
TIMER2	Full configuration	TIM2_CC[2:0]
RTC	Full configuration	NA
LETIMER0	Full configuration	LET0_O[1:0]
PCNT0	Full configuration, 8-bit count register	PCNT0_S[1:0]
PCNT1	Full configuration, 8-bit count register	PCNT1_S[1:0]
PCNT2	Full configuration, 8-bit count register	PCNT2_S[1:0]
ACMP0	Full configuration	ACMPO_CH[7:0], ACMPO_O
ACMP1	Full configuration	ACMP1_CH[7:0], ACMP1_O
VCMP	Full configuration	NA
ADC0	Full configuration	ADC0_CH[7:0]
DAC0	Full configuration	DAC0_OUT[1:0]
AES	Full configuration	NA
GPIO	90 pins	Available pins are shown in Table 4.3 (p. 57)

3.2.8 EFM32G840

The features of the EFM32G840 is a subset of the feature set described in the EFM32G Reference Manual. The following table describes device specific implementation of the features.

Table 3.8. EFM32G840 Configuration Summary

Module	Configuration	Pin Connections
Cortex-M3	Full configuration	NA
DBG	Full configuration	DBG_SWCLK, DBG_SWDIO, DBG_SWO
MSC	Full configuration	NA
DMA	Full configuration	NA
RMU	Full configuration	NA
EMU	Full configuration	NA
CMU	Full configuration	CMU_OUT0, CMU_OUT1
WDOG	Full configuration	NA
PRS	Full configuration	NA
I2C0	Full configuration	I2C0_SDA, I2C0_SCL
USART0	Full configuration with IrDA	US0_TX, USO_RX. US0_CLK, US0_CS
USART1	Full configuration	US1_TX, US1_RX, US1_CLK, US1_CS
USART2	Full configuration	US2_TX, US2_RX, US2_CLK, US2_CS
LEUART0	Full configuration	LEU0_TX, LEU0_RX
LEUART1	Full configuration	LEU1_TX, LEU1_RX
TIMER0	Full configuration with DTI	TIM0_CC[2:0], TIM0_CDTI[2:0]
TIMER1	Full configuration	TIM1_CC[2:0]
TIMER2	Full configuration	TIM2_CC[2:0]
RTC	Full configuration	NA
LETIMER0	Full configuration	LET0_O[1:0]
PCNT0	Full configuration, 8-bit count register	PCNTO_S[1:0]
PCNT1	Full configuration, 8-bit count register	PCNT1_S[1:0]
PCNT2	Full configuration, 8-bit count register	PCNT2_S[1:0]
ACMP0	Full configuration	ACMPO_CH[7:4], ACMPO_O
ACMP1	Full configuration	ACMP1_CH[7:4], ACMP1_O
VCMP	Full configuration	NA
ADC0	Full configuration	ADC0_CH[7:0]
DAC0	Full configuration	DAC0_OUT[1:0]
AES	Full configuration	NA
GPIO	56 pins	Available pins are shown in Table 4.3 (p.57)
LCD	Full configuration	LCD_SEG[23:0], LCD_COM[3:0], LCD_BCAP_P, LCD_BCAP_N, LCD_BEXT

3.2.9 EFM32G842

The features of the EFM32G842 is a subset of the feature set described in the EFM32G Reference Manual. The following table describes device specific implementation of the features.

Table 3.9. EFM32G842 Configuration Summary

Module	Configuration	Pin Connections
Cortex-M3	Full configuration	NA
DBG	Full configuration	DBG_SWCLK, DBG_SWDIO, DBG_SWO
MSC	Full configuration	NA
DMA	Full configuration	NA
RMU	Full configuration	NA
EMU	Full configuration	NA
CMU	Full configuration	CMU_OUT0, CMU_OUT1
WDOG	Full configuration	NA
PRS	Full configuration	NA
I2C0	Full configuration	I2C0_SDA, I2C0_SCL
USART0	Full configuration with IrDA	USO_TX, US0_RX. USO_CLK, USO_CS
USART1	Full configuration	US1_TX, US1_RX, US1_CLK, US1_CS
USART2	Full configuration	US2_TX, US2_RX, US2_CLK, US2_CS
LEUART0	Full configuration	LEU0_TX, LEU0_RX
LEUART1	Full configuration	LEU1_TX, LEU1_RX
TIMER0	Full configuration with DTI	TIMO_CC[2:0], TIMO_CDTI[2:0]
TIMER1	Full configuration	TIM1_CC[2:0]
TIMER2	Full configuration	TIM2_CC[2:0]
RTC	Full configuration	NA
LETIMER0	Full configuration	LET0_O[1:0]
PCNT0	Full configuration, 8-bit count register	PCNT0_S[1:0]
PCNT1	Full configuration, 8-bit count register	PCNT1_S[1:0]
PCNT2	Full configuration, 8-bit count register	PCNT2_S[1:0]
ACMP0	Full configuration	ACMPO_CH[3:0], ACMP0_O
ACMP1	Full configuration	ACMP1_CH[7:4], ACMP1_O
VCMP	Full configuration	NA
ADC0	Full configuration	ADC0_CH[7:0]
DAC0	Full configuration	DAC0_OUT[0]
AES	Full configuration	NA
GPIO	53 pins	Available pins are shown in Table 4.3 (p. 57)

3.2.10 EFM32G880

The features of the EFM32G880 is a subset of the feature set described in the EFM32G Reference Manual. The following table describes device specific implementation of the features.

Table 3.10. EFM32G880 Configuration Summary

Module	Module	Module
Cortex-M3	Full configuration	NA
DBG	Full configuration	DBG_SWCLK, DBG_SWDIO, DBG_SWO
MSC	Full configuration	NA
DMA	Full configuration	NA
RMU	Full configuration	NA
EMU	Full configuration	NA
CMU	Full configuration	CMU_OUT0, CMU_OUT1
WDOG	Full configuration	NA
PRS	Full configuration	NA
EBI	Full configuration	EBI_ARDY, EBI_ALE, EBI_WEn, EBI_REn, EBI_CS[3:0], EBI_AD[15:0]
I2C0	Full configuration	I2C0_SDA, I2C0_SCL
USART0	Full configuration with IrDA	USO_TX, USO_RX. USO_CLK, USO_CS
USART1	Full configuration	US1_TX, US1_RX, US1_CLK, US1_CS
USART2	Full configuration	US2_TX, US2_RX, US2_CLK, US2_CS
UART0	Full configuration	U0_TX, U0_RX
LEUART0	Full configuration	LEU0_TX, LEU0_RX
LEUART1	Full configuration	LEU1_TX, LEU1_RX
TIMER0	Full configuration with DTI	TIMO_CC[2:0], TIMO_CDTI[2:0]
TIMER1	Full configuration	TIM1_CC[2:0]
TIMER2	Full configuration	TIM2_CC[2:0]
RTC	Full configuration	NA
LETIMER0	Full configuration	LET0_O[1:0]
PCNT0	Full configuration, 8-bit count register	PCNT0_S[1:0]
PCNT1	Full configuration, 8-bit count register	PCNT1_S[1:0]
PCNT2	Full configuration, 8-bit count register	PCNT2_S[1:0]
ACMP0	Full configuration	ACMPO_CH[7:0], ACMP0_O
ACMP1	Full configuration	ACMP1_CH[7:0], ACMP1_O
VCMP	Full configuration	NA
ADC0	Full configuration	ADC0_CH[7:0]
DAC0	Full configuration	DAC0_OUT[1:0]
AES	Full configuration	NA
GPIO	86 pins	Available pins are shown in Table 4.3 (p. 57)

Module	Module	Module
LCD	Full configuration	LCD_SEG[39:0], LCD_COM[3:0], LCD_BCAP_P, LCD_BCAP_N, LCD_BEXT

3.2.11 EFM32G890

The features of the EFM32G890 is a subset of the feature set described in the EFM32G Reference Manual. The following table describes device specific implementation of the features.

Table 3.11. EFM32G890 Configuration Summary

Module	Configuration	Pin Connections
Cortex-M3	Full configuration	NA
DBG	Full configuration	DBG_SWCLK, DBG_SWDIO, DBG_SWO
MSC	Full configuration	NA
DMA	Full configuration	NA
RMU	Full configuration	NA
EMU	Full configuration	NA
CMU	Full configuration	CMU_OUT0, CMU_OUT1
WDOG	Full configuration	NA
PRS	Full configuration	NA
EBI	Full configuration	EBI_ARDY, EBI_ALE, EBI_WEn, EBI_REn, EBI_CS[3:0], EBI_AD[15:0]
I2C0	Full configuration	I2C0_SDA, I2C0_SCL
USART0	Full configuration with IrDA	US0_TX, USO_RX. US0_CLK, US0_CS
USART1	Full configuration	US1_TX, US1_RX, US1_CLK, US1_CS
USART2	Full configuration	US2_TX, US2_RX, US2_CLK, US2_CS
UARTO	Full configuration	U0_TX, U0_RX
LEUART0	Full configuration	LEU0_TX, LEU0_RX
LEUART1	Full configuration	LEU1_TX, LEU1_RX
TIMER0	Full configuration with DTI	TIMO_CC[2:0], TIMO_CDTI[2:0]
TIMER1	Full configuration	TIM1_CC[2:0]
TIMER2	Full configuration	TIM2_CC[2:0]
RTC	Full configuration	NA
LETIMER0	Full configuration	LET0_O[1:0]
PCNT0	Full configuration, 8-bit count register	PCNT0_S[1:0]
PCNT1	Full configuration, 8-bit count register	PCNT1_S[1:0]
PCNT2	Full configuration, 8-bit count register	PCNT2_S[1:0]
ACMP0	Full configuration	ACMPO_CH[7:0], ACMPO_O
ACMP1	Full configuration	ACMP1_CH[7:0], ACMP1_O
VCMP	Full configuration	NA
ADC0	Full configuration	ADC0_CH[7:0]
DAC0	Full configuration	DAC0_OUT[1:0]
AES	Full configuration	NA
GPIO	90 pins	Available pins are shown in Table 4.3 (p. 57)

Module	Configuration	Pin Connections
LCD	Full configuration	LCD_SEG[39:0], LCD_COM[7:0], LCD_BCAP_P, LCD_BCAP_N, LCD_BEXT

3.3 Memory Map

The EFM32G memory map is shown in the figure below. RAM and Flash sizes are for the largest memory configuration.

Figure 3.2. System Address Space with Core and Code Space Listing

Figure 3.3. System Address Space with Peripheral Listing

4. Electrical Characteristics

4.1 Test Conditions

4.1.1 Typical Values

The typical data are based on $\mathrm{T}_{\mathrm{AMB}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$, as defined in Table 4.2 General Operating Conditions on page 29, unless otherwise specified.

4.1.2 Minimum and Maximum Values

The minimum and maximum values represent the worst conditions of ambient temperature, supply voltage and frequencies, as defined in Table 4.2 General Operating Conditions on page 29, unless otherwise specified.

4.2 Absolute Maximum Ratings

The absolute maximum ratings are stress ratings, and functional operation under such conditions are not guaranteed. Stress beyond the limits specified in the following table may affect the device reliability or cause permanent damage to the device. Functional operating conditions are given in Table 4.2 General Operating Conditions on page 29.

Table 4.1. Absolute Maximum Ratings

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Storage temperature range	TSTG		-40	-	150	${ }^{\circ} \mathrm{C}$
Maximum soldering temperature	T_{S}	Latest IPC/JEDEC J-STD-020 Standard	-	-	260	${ }^{\circ} \mathrm{C}$
External main supply voltage	$V_{\text {DDMAX }}$		0	-	3.8	V
Voltage on any I/O pin	VIOPIN		-0.3	-	$\mathrm{V}_{\mathrm{DD}}+0.3$	V
Current per I/O pin (sink)	IIOMAX_SINK		-	-	100	mA
Current per I/O pin (source)	IIOMAX_SOURCE		-	-	-100	mA

4.3 General Operating Conditions

Table 4.2. General Operating Conditions

Parameter	Symbol	Min	Typ	Max	Unit
Ambient temperature range	$\mathrm{T}_{\text {AMB }}$	-40	-	85	${ }^{\circ} \mathrm{C}$
Operating supply voltage	$\mathrm{V}_{\text {DDOP }}$	1.98	-	3.8	V
Internal APB clock frequency	$\mathrm{f}_{\text {APB }}$	-	-	32	MHz
Internal AHB clock frequency	$\mathrm{f}_{\text {AHB }}$	-	-	32	MHz

Table 4.3. Current Consumption

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
EMO current. No prescaling. Running prime number calculation code from Flash. (Production test condition = 14 MHz)	Iemo	32 MHz HFXO , all peripheral clocks disabled, $V_{D D}=3.0 \mathrm{~V}$	-	180	-	$\mu \mathrm{A} / \mathrm{MHz}$
		28 MHz HFRCO, all peripheral clocks disabled, $V_{D D}=3.0 \mathrm{~V}$	-	181	206	$\mu \mathrm{A} / \mathrm{MHz}$
		21 MHz HFRCO , all peripheral clocks disabled, $V_{D D}=3.0 \mathrm{~V}$	-	183	207	$\mu \mathrm{A} / \mathrm{MHz}$
		14 MHz HFRCO, all peripheral clocks disabled, $V_{D D}=3.0 \mathrm{~V}$	-	185	211	$\mu \mathrm{A} / \mathrm{MHz}$
		11 MHz HFRCO, all peripheral clocks disabled, $V_{D D}=3.0 \mathrm{~V}$	-	186	215	$\mu \mathrm{A} / \mathrm{MHz}$
		6.6 MHz HFRCO, all peripheral clocks disabled, $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$	-	191	218	$\mu \mathrm{A} / \mathrm{MHz}$
		1.2 MHz HFRCO, all peripheral clocks disabled, $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$	-	220	-	$\mu \mathrm{A} / \mathrm{MHz}$
EM1 current (Production test condition $=14 \mathrm{MHz}$)	$\mathrm{I}_{\mathrm{EM} 1}$	32 MHz HFXO , all peripheral clocks disabled, $V_{D D}=3.0 \mathrm{~V}$	-	45	-	$\mu \mathrm{A} / \mathrm{MHz}$
		28 MHz HFRCO, all peripheral clocks disabled, $V_{D D}=3.0 \mathrm{~V}$	-	47	62	$\mu \mathrm{A} / \mathrm{MHz}$
		21 MHz HFRCO, all peripheral clocks disabled, $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$	-	48	64	$\mu \mathrm{A} / \mathrm{MHz}$
		14 MHz HFRCO, all peripheral clocks disabled, $V_{D D}=3.0 \mathrm{~V}$	-	50	69	$\mu \mathrm{A} / \mathrm{MHz}$
		11 MHz HFRCO, all peripheral clocks disabled, $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$	-	51	72	$\mu \mathrm{A} / \mathrm{MHz}$
		6.6 MHz HFRCO, all peripheral clocks disabled, $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$	-	56	83	$\mu \mathrm{A} / \mathrm{MHz}$
		1.2 MHz HFRCO. all peripheral clocks disabled, $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$	-	103	-	$\mu \mathrm{A} / \mathrm{MHz}$
EM2 current	IEM2	EM2 current with RTC prescaled to 1 Hz , 32.768 kHz LFRCO, $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{AMB}}=25^{\circ} \mathrm{C}$	-	0.9	1.5	$\mu \mathrm{A}$
		EM2 current with RTC prescaled to 1 Hz , 32.768 kHz LFRCO, $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{AMB}}=85^{\circ} \mathrm{C}$	-	3.0	6.0	$\mu \mathrm{A}$
EM3 current	lem3	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{AMB}}=25^{\circ} \mathrm{C}$	-	0.59	1.0	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{~T}_{\text {AMB }}=85^{\circ} \mathrm{C}$	-	2.75	5.8	$\mu \mathrm{A}$
EM4 current	lem4	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{~T}_{\text {AMB }}=25^{\circ} \mathrm{C}$	-	0.02	0.045	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{~T}_{\text {AMB }}=85^{\circ} \mathrm{C}$	-	0.25	0.7	$\mu \mathrm{A}$

4.4.1 EMO Current Consumption

Figure 4.1. EMO Current consumption while executing prime number calculation code from flash with HFRCO running at 28 MHz

Figure 4.2. EMO Current consumption while executing prime number calculation code from flash with HFRCO running at 21 MHz

Figure 4.3. EMO Current consumption while executing prime number calculation code from flash with HFRCO running at 14 MHz

Figure 4.4. EMO Current consumption while executing prime number calculation code from flash with HFRCO running at 11 MHz

Figure 4.5. EMO Current consumption while executing prime number calculation code from flash with HFRCO running at 7 MHz

4.4.2 EM1 Current Consumption

Figure 4.6. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 28 MHz

Figure 4.7. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at $21 \mathbf{~ M H z}$

Figure 4.8. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at $14 \mathbf{~ M H z}$

Figure 4.9. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at $11 \mathbf{~ M H z}$

Figure 4.10. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at $7 \mathbf{M H z}$

4.4.3 EM2 Current Consumption

Figure 4.11. EM2 Current Consumption, RTC prescaled to 1 kHz, 32.768 kHz LFRCO

4.4.4 EM3 Current Consumption

Figure 4.12. EM3 Current Consumption

4.4.5 EM4 Current Consumption

Figure 4.13. EM4 Current Consumption

4.5 Transition between Energy Modes

The transition times are measured from the trigger to the first clock edge in the CPU.
Table 4.4. Energy Modes Transitions

Parameter	Symbol	Min	Typ	Max	Unit
Transition time from EM1 to EM0	teM10	-	0	-	HFCORECLK cycles
Transition time from EM2 to EM0	$\mathrm{t}_{\text {EM20 }}$	-	2	-	$\mu \mathrm{s}$
Transition time from EM3 to EM0	$\mathrm{t}_{\text {EM30 }}$	-	2	-	$\mu \mathrm{s}$
Transition time from EM4 to EM0	$\mathrm{t}_{\text {EM40 }}$	-	163	-	$\mu \mathrm{s}$

4.6 Power Management

The EFM32G requires the AVDD_x, VDD_DREG and IOVDD_x pins to be connected together (with optional filter) at the PCB level. For practical schematic recommendations, please see the application note, "AN0002 EFM32 Hardware Design Considerations".

Table 4.5. Power Management

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
BOD threshold on falling external supply voltage	V ${ }_{\text {BODexthr- }}$	EMO	1.74	-	1.96	V
		EM1	1.74	-	1.96	V
		EM2	1.74	-	1.96	V
BOD threshold on rising external supply voltage	VBODexthr +	EMO	-	1.85	-	V
Power-on Reset (POR) threshold on rising external supply voltage	$\mathrm{V}_{\text {PORthr }}+$		-	-	1.98	V
Delay from reset is released until program execution starts	treseTdly	Applies to Power-on Reset, Brown-out Reset and pin reset.	-	163	-	$\mu \mathrm{s}$
negative pulse length to ensure complete reset of device	$\mathrm{t}_{\text {RESET }}$		50	-	-	ns
Voltage regulator decoupling capacitor.	$\mathrm{C}_{\text {DECOUPLE }}$	X5R capacitor recommended. Apply between DECOUPLE pin and GROUND	-	1	-	$\mu \mathrm{F}$

4.7 Flash

Table 4.6. Flash

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Flash erase cycles before failure	ECFLASH		20000	-	-	cycles
Flash word write cycles between erase	WWC FLASH		-	-	2^{1}	cycles
Flash data retention	RET ${ }_{\text {FLASH }}$	$\mathrm{T}_{\text {AMB }}<150^{\circ} \mathrm{C}$	10000	-	-	h
		$\mathrm{T}_{\text {AMB }}<85^{\circ} \mathrm{C}$	10	-	-	years
		$\mathrm{T}_{\text {AMB }}<70^{\circ} \mathrm{C}$	20	-	-	years
Word (32-bit) programming time	tw_PROG		20	-	-	$\mu \mathrm{s}$
Page erase time ${ }^{2}$	tp_ERASE		20.7	22.0	24.8	ms
Device erase time ${ }^{3}$	$t_{\text {D_ERASE }}$		41.8	45.0	49.2	ms
Erase current	Ierase		-	-	74	mA
Write current	IWRITE		-	-	7^{4}	mA
Supply voltage during flash erase and write	$\mathrm{V}_{\text {FLASH }}$		1.98	-	3.8	V

Note:

1. There is a maximum of two writes to the same word between each erase due to a physical limitation of the flash. No bit should be written to ' 0 ' more than once between erases. To write a word twice between erases, any bit written to ' 0 ' by the first write should be written to ' 1 ' by the second write. This preserves the specified flash write/erase endurance and does not change the ' 0 ' written by the first write.
2. From setting ERASEPAGE bit in MSC_WRITECMD to 1 to reading 1 in ERASE bit in MSC_IF. Internal setup and hold times for flash control signals are included.
3. From setting DEVICEERASE bit in AAP_CMD to 1 to reading 0 in ERASEBUSY bit in AAP_STATUS. Internal setup and hold times for flash control signals are included.
4. Measured at $25^{\circ} \mathrm{C}$.

4.8 General Purpose Input Output

Table 4.7. GPIO

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Input low voltage	VIOIL		-	-	$0.30 \times V_{D D}{ }^{1}$	V
Input high voltage	$\mathrm{V}_{\mathrm{IOIH}}$		$0.70 \times V_{D D}{ }^{1}$	-	-	V
Output high voltage (Production test condition $=3.0 \mathrm{~V}$, DRIVEMODE = STANDARD)	V OOH	Sourcing $0.1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=1.98 \mathrm{~V}$, GPIO Px_CTRL DRIVEMODE = LOWEST	-	$0.80 \times V_{D D}$	-	V
		Sourcing $0.1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V}$, GPIO_Px_CTRL DRIVEMODE = LOWEST	-	$0.90 \times V_{\text {DD }}$	-	V
		Sourcing $1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=1.98 \mathrm{~V}$, GPIO_Px_CTRL DRIVEMODE = LOW	-	$0.85 \times V_{\text {DD }}$	-	V
		Sourcing $1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V}$, GPIO_Px_CTRL DRIVEMODE = LOW	-	$0.90 \times V_{\text {DD }}$	-	V
		Sourcing $6 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=1.98 \mathrm{~V}$, GPIO_Px_CTRL DRIVEMODE = STANDARD	$0.75 \times V_{\text {DD }}$	-	-	V
		Sourcing $6 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V}$, GPIO_Px_CTRL DRIVEMODE = STANDARD	$0.85 \times \mathrm{V}_{\mathrm{DD}}$	-	-	V
		Sourcing $20 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=1.98 \mathrm{~V}$, GPIO_Px_CTRL DRIVEMODE $=\mathrm{HIGH}$	$0.60 \times V_{\text {DD }}$	-	-	V
		Sourcing $20 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V}$, GPIO_Px_CTRL DRIVEMODE $=\mathrm{HIGH}$	$0.80 \times V_{\text {DD }}$	-	-	V

EFM32G Data Sheet

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Output low voltage (Production test condition $=3.0 \mathrm{~V}$, DRIVEMODE = STANDARD)	VIOOL	Sinking $0.1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=1.98 \mathrm{~V}$, GPIO_Px_CTRL DRIVEMODE = LOWEST	-	$0.20 \times V_{D D}$	-	V
		Sinking $0.1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V}$, GPIO_Px_CTRL DRIVEMODE = LOWEST	-	$0.10 \times V_{D D}$	-	V
		Sinking $1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=1.98 \mathrm{~V}$, GPIO_Px_CTRL DRIVEMODE = LOW	-	$0.10 \times V_{D D}$	-	V
		Sinking $1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V}$, GPIO_Px_CTRL DRIVEMODE = LOW	-	$0.05 \times V_{\text {DD }}$	-	V
		Sinking $6 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=1.98 \mathrm{~V}$, GPIO Px CTRL DRIVEMODE = STANDARD	-	-	$0.30 \times V_{D D}$	V
		Sinking $6 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V}$, GPIO_Px_CTRL DRIVEMODE = STANDARD	-	-	$0.20 \times V_{\text {DD }}$	V
		Sinking $20 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=1.98 \mathrm{~V}$, GPIO_Px_CTRL DRIVEMODE = HIGH	-	-	$0.35 \times V_{\text {DD }}$	V
		Sinking $20 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V}$, GPIO_Px_CTRL DRIVEMODE $=\mathrm{HIGH}$	-	-	$0.25 \times V_{\text {DD }}$	V
Input leakage current	IIOLEAK	High Impedance IO connected to GROUND or $V_{D D}$	-	± 0.1	± 40	nA
I/O pin pull-up resistor	R PU		-	40	-	$\mathrm{k} \Omega$
I/O pin pull-down resistor	$\mathrm{R}_{\text {PD }}$		-	40	-	k ת
Internal ESD series resistor	R IOESD		-	200	-	Ω
Pulse width of pulses to be removed by the glitch suppression filter	tioglitch		10	-	50	ns
Output fall time	$\mathrm{t}_{\text {IOOF }}$	GPIO_Px_CTRL DRIVEMODE = LOWEST and load capacitance $\mathrm{C}_{\mathrm{L}}=12.5-25 \mathrm{pF}$.	$20+0.1 \mathrm{C}_{\mathrm{L}}$	-	250	ns
		GPIO_Px_CTRL DRIVEMODE = LOW and load capacitance $\mathrm{C}_{\mathrm{L}}=350-600 \mathrm{pF}$	$20+0.1 \mathrm{C}_{\mathrm{L}}$	-	250	ns
I/O pin hysteresis ($\mathrm{V}_{\text {IOTHR }}$ -VIOTHR-)	VIOHYST	$V_{D D}=1.98-3.8 \mathrm{~V}$	$0.1 \times V_{\text {DD }}$	-	-	V
Note: 1. If the GPIO input voltage is between $0.3 \times V_{D D}$ and $0.7 \times V_{D D}$, the current consumption will increase.						

Figure 4.14. Typical Low-Level Output Current, 2V Supply Voltage

Figure 4.15. Typical High-Level Output Current, 2V Supply Voltage

Figure 4.16. Typical Low-Level Output Current, 3V Supply Voltage

Figure 4.17. Typical High-Level Output Current, 3V Supply Voltage

Figure 4.18. Typical Low-Level Output Current, 3.8V Supply Voltage

Figure 4.19. Typical High-Level Output Current, 3.8V Supply Voltage

4.9 Oscillators

4.9.1 LFXO

Table 4.8. LFXO

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Supported nominal crystal frequency	flfXo		-	32.768	-	kHz
Supported crystal equivalent series resistance (ESR)	ESR ${ }_{\text {LFXO }}$		-	30	120	kOhm
Supported crystal external load range	CLFXOL		X^{1}	-	25	pF
Current consumption for core and buffer after startup	ILFXO	$E S R=30 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$, LFXOBOOST in CMU_CTRL is 1	-	190	-	nA
Start-up time	$\mathrm{t}_{\text {LFXO }}$	$\mathrm{ESR}=30 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, 40 \%$ 60% duty cycle has been reached, LFXOBOOST in CMU_CTRL is 1	-	400	-	ms

Note:

1. See Minimum Load Capacitance (CLFXoL) Requirement For Safe Crystal Startup in Configurator in Simplicity Studio.

For safe startup of a given crystal, the Configurator tool in Simplicity Studio contains a tool to help users configure both load capacitance and software settings for using the LFXO. For details regarding the crystal configuration, the reader is referred to application note "AN0016 EFM32 Oscillator Design Consideration".

4.9.2 HFXO

Table 4.9. HFXO

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Supported nominal crystal Frequency	$\mathrm{f}_{\mathrm{HFXO}}$		4	-	32	MHz
Supported crystal equivalent series resistance (ESR)	ESR ${ }_{\text {HFXO }}$	Crystal frequency 32 MHz	-	30	60	Ω
		Crystal frequency 4 MHz	-	400	1500	Ω
The transconductance of the HFXO input transistor at crystal startup	gmHFXO	HFXOBOOST in CMU_CTRL equals 0b11	20	-	-	mS
Supported crystal external load range	$\mathrm{C}_{\text {HFXOL }}$		5	-	25	pF
Current consumption for HFXO after startup	Infxo	$4 \mathrm{MHz}: \mathrm{ESR}=400 \Omega, \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF},$ HFXOBOOST in CMU_CTRL equals 0b11	-	85	-	$\mu \mathrm{A}$
		$32 \mathrm{MHz}: \mathrm{ESR}=30 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$, HFXOBOOST in CMU_CTRL equals 0b11	-	165	-	$\mu \mathrm{A}$
Startup time	$\mathrm{t}_{\mathrm{HFXO}}$	$32 \mathrm{MHz}: \mathrm{ESR}=30 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF} \text {, }$ HFXOBOOST in CMU_CTRL equals 0b11	-	400	-	$\mu \mathrm{s}$
Pulse width removed by glitch detector			1	-	4	ns

4.9.3 LFRCO

Table 4.10. LFRCO

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Oscillation frequency, $\mathrm{V}_{\mathrm{DD}}=3.0$ $\mathrm{V}, \mathrm{T}_{\mathrm{AMB}}=25^{\circ} \mathrm{C}$	flFRCO		31.29	32.768	34.24	kHz
Startup time not including software calibration	tLFRCO		-	150	-	$\mu \mathrm{s}$
Current consumption	ILFRCO		-	190	-	nA
Temperature coefficient	TC ${ }_{\text {LFRCO }}$		-	± 0.02	-	\%/ ${ }^{\circ} \mathrm{C}$
Supply voltage coefficient	VC ${ }_{\text {LFRCO }}$		-	± 15	-	\%/V
Frequency step for LSB change in TUNING value	TUNESTEP ${ }_{\text {LFRCO }}$		-	1.5	-	\%

Figure 4.20. Calibrated LFRCO Frequency vs Temperature and Supply Voltage

4.9.4 HFRCO

Table 4.11. HFRCO

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Oscillation frequency, $\mathrm{V}_{\mathrm{DD}}=3.0$ $\mathrm{V}, \mathrm{T}_{\mathrm{AMB}}=25^{\circ} \mathrm{C}$	$\mathrm{f}_{\mathrm{HFRCO}}$	28 MHz frequency band	27.16	28	28.84	MHz
		21 MHz frequency band	20.37	21	21.63	MHz
		14 MHz frequency band	13.58	14	14.42	MHz
		11 MHz frequency band	10.67	11	11.33	MHz
		7 MHz frequency band	6.402	6.61	6.798	MHz
		1 MHz frequency band	1.164	1.2^{2}	1.236	MHz
Settling time	$\mathrm{t}_{\text {HFRCO_settling }}$	After start-up, $\mathrm{f}_{\text {HFRCO }}=14 \mathrm{MHz}$	-	0.6	-	Cycles
		After band switch	-	25	-	Cycles
Current consumption (Production test condition $=14 \mathrm{MHz}$)	I HFRCO	$\mathrm{f}_{\text {HFRCO }}=28 \mathrm{MHz}$	-	158	190	$\mu \mathrm{A}$
		$\mathrm{f}_{\text {HFRCO }}=21 \mathrm{MHz}$	-	125	155	$\mu \mathrm{A}$
		$\mathrm{f}_{\text {HFRCO }}=14 \mathrm{MHz}$	-	99	120	$\mu \mathrm{A}$
		$\mathrm{f}_{\text {HFRCO }}=11 \mathrm{MHz}$	-	88	110	$\mu \mathrm{A}$
		$\mathrm{f}_{\mathrm{HFRCO}}=6.6 \mathrm{MHz}$	-	72	90	$\mu \mathrm{A}$
		$\mathrm{f}_{\mathrm{HFRCO}}=1.2 \mathrm{MHz}$	-	24	32	$\mu \mathrm{A}$
Duty cycle	DCHFRCO	$\mathrm{f}_{\text {HFRCO }}=14 \mathrm{MHz}$	48.5	50	51	\%
Frequency step for LSB change in TUNING value	TUNESTEP ${ }_{\text {HFRCO }}$		-	0.33	-	\%

Note:

1. For devices with prod. rev. <19, Typ $=7 \mathrm{MHz}$ and Min/Max values not applicable.
2. For devices with prod. rev. <19, Typ $=1 \mathrm{MHz}$ and $\mathrm{Min} / \mathrm{Max}$ values not applicable.
3. The TUNING field in the CMU_HFRCOCTRL register may be used to adjust the HFRCO frequency. There is enough adjustment range to ensure that the frequency bands above 7 MHz will always have some overlap across supply voltage and temperature. By using a stable frequency reference such as the LFXO or HFXO, a firmware calibration routine can vary the TUNING bits and the frequency band to maintain the HFRCO frequency at any arbitrary value between 7 MHz and 28 MHz across operating conditions.

Figure 4.21. Calibrated HFRCO 1 MHz Band Frequency vs Supply Voltage and Temperature

Figure 4.22. Calibrated HFRCO 7 MHz Band Frequency vs Supply Voltage and Temperature

Figure 4.23. Calibrated HFRCO 11 MHz Band Frequency vs Supply Voltage and Temperature

Figure 4.24. Calibrated HFRCO 14 MHz Band Frequency vs Supply Voltage and Temperature

Figure 4.25. Calibrated HFRCO 21 MHz Band Frequency vs Supply Voltage and Temperature

Figure 4.26. Calibrated HFRCO 28 MHz Band Frequency vs Supply Voltage and Temperature

4.9.5 AUXHFRCO

Table 4.12. AUXHFRCO

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Oscillation frequency, $\mathrm{V}_{\mathrm{DD}}=3.0$ $\mathrm{~V}, \mathrm{~T}_{\mathrm{AMB}}=25^{\circ} \mathrm{C}$	$\mathrm{f}_{\text {AUXHFRCO }}$	14 MHz frequency band	13.580	14.0	14.420	MHz
Settling time after start-up	$\mathrm{t}_{\text {AUXHFRCO_settling }}$	$\mathrm{f}_{\text {AUXHFRCO }}=14 \mathrm{MHz}$	-	0.6	-	Cycles
Duty cycle	DC $_{\text {AUXHFRCO }}$	$\mathrm{f}_{\text {AUXHFRCO }}=14 \mathrm{MHz}$	48.5	50	51	$\%$
Frequency step for LSB change in TUNING value	TUNESTEP $_{\text {AUXHFRCO }}$		-	0.3^{1}	-	$\%$

Note:

1. The TUNING field in the CMU_AUXHFRCOCTRL register may be used to adjust the AUXHFRCO frequency. By using a stable frequency reference such as the LFXO or HFXO, a firmware calibration routine can vary the TUNING bits and the frequency band to maintain the AUXHFRCO frequency at any arbitrary value in the 14 MHz range across operating conditions.

4.9.6 ULFRCO

Table 4.13. ULFRCO

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Oscillation frequency	fULFRCO	$25^{\circ} \mathrm{C}, 3 \mathrm{~V}$	0.7	-	1.75	kHz
Temperature coefficient	TC		-	0.05	-	$\% /{ }^{\circ} \mathrm{C}$
Supply voltage coefficient	VC		-	-	-18.2	-
$\% / V R C O$						

4.10 Analog Digital Converter (ADC)

Table 4.14. ADC

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Input voltage range	$\mathrm{V}_{\text {ADCIN }}$	Single-ended	0	-	$V_{\text {REF }}$	V
		Differential	- $\mathrm{V}_{\text {REF }} / 2$	-	$\mathrm{V}_{\mathrm{REF}} / 2$	V
Input range of external reference voltage, single-ended and differential	$V_{\text {ADCREFIN }}$		1.25	-	$V_{D D}$	V
Input range of external negative reference voltage on channel 7	$\mathrm{V}_{\text {ADCREFIN_CH7 }}$	See V ${ }_{\text {ADCREFIN }}$	0	-	$V_{D D}-1.1$	V
Input range of external positive reference voltage on channel 6	$\mathrm{V}_{\text {ADCREFIN_CH6 }}$	See V ${ }_{\text {AdCREFIN }}$	0.625	-	$V_{D D}$	V
Common mode input range	$\mathrm{V}_{\text {ADCCMIN }}$		0	-	$V_{\text {DD }}$	V
Input current	$\mathrm{I}_{\text {ADCIN }}$	2 pF sampling capacitors	-	<100	-	nA
Analog input common mode rejection ratio	$\mathrm{CMRR}_{\text {ADC }}$		-	65	-	dB
Average active current	$\mathrm{I}_{\text {ADC }}$	1 Msamples/s, 12 bit, external reference, ADC_CLK = 13 MHz , BIASPROG = 0xF4B	-	7351	-	$\mu \mathrm{A}$
		1 Msamples/s, 12 bit, internal 1.25 V reference, ADC_CLK = 13 MHz , BIASPROG $=0 x F 4 B$	-	7601	-	$\mu \mathrm{A}$
		500 Ksamples/s, 12 bit, external reference, ADC_CLK $=7 \mathrm{MHz}$, BIASPROG $=0 \times 747$	-	3461	-	$\mu \mathrm{A}$
		500 Ksamples/s, 12 bit, internal 1.25 V reference, ADC_CLK = 7 MHz , BIASPROG $=0 \times 747$	-	$354{ }^{1}$	-	$\mu \mathrm{A}$
		10 kSamples/s, 12 bit, internal 1.25 V reference, WARMUP = 00b, ADC_CLK $=7 \mathrm{MHz}$, BIASPROG $=0 \times 747$	-	52^{1}	-	$\mu \mathrm{A}$
		10 kSamples/s, 12 bit, internal 1.25 V reference, WARMUP = 01b, ADC_CLK = 7 MHz , BIASPROG $=0 \times 747$	-	50^{1}	-	$\mu \mathrm{A}$
		10 kSamples/s, 12 bit, internal 1.25 V reference, WARMUP = 10b, ADC_CLK $=7 \mathrm{MHz}$, BIASPROG $=0 \times 747$	-	541	-	$\mu \mathrm{A}$
Input capacitance	$\mathrm{C}_{\text {ADCIN }}$		-	2	-	pF
Input ON resistance	$\mathrm{R}_{\text {ADCIN }}$		300	-	800	Ω
Input RC filter resistance	R ${ }_{\text {ADCFILT }}$		-	10	-	$\mathrm{k} \Omega$
Input RC filter/decoupling capacitance	C ADCFILT		-	250	-	fF
Input bias current	$\mathrm{I}_{\text {ADCBIASIN }}$	VSS < VIN < VDD	-40	-	40	nA

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Input offset current	$\mathrm{I}_{\text {AdCOFFSETIN }}$	VSS < VIN < VDD	-40	-	40	nA
ADC Clock Frequency	$\mathrm{f}_{\text {ADCCLK }}$	BIASPROG $=0 \times 747$	-	-	7	MHz
		BIASPROG $=0 \times 54 \mathrm{~B}$	-	-	13	MHz
Conversion time	$\mathrm{t}_{\text {ADCCONV }}$	6 bit	7	-	-	ADCCLK Cycles
		8 bit	11	-	-	ADCCLK Cycles
		12 bit	13	-	-	ADCCLK Cycles
Acquisition time	$\mathrm{t}_{\text {ADCACQ }}$	Programmable	1	-	256	ADCCLK Cycles
Required acquisition time for VDD/3 reference	$\mathrm{t}_{\text {ADCACQVDD3 }}$		2	-	-	$\mu \mathrm{s}$
Startup time of reference generator and ADC core	$\mathrm{t}_{\text {ADCSTART }}$	NORMAL mode	-	5	-	$\mu \mathrm{s}$
		KEEPADCWARM mode	-	1	-	$\mu \mathrm{s}$

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Signal-to-Noise Ratio (SNR)	SNR ${ }_{\text {ADC }}$	1 MSamples/s, 12 bit, singleended, internal 1.25 V reference, ADC_CLK $=13 \mathrm{MHz}$, BIASPROG $=0 \times F 4 B$	-	59	-	dB
		1 MSamples/s, 12 bit, singleended, internal 2.5 V reference, ADC_CLK $=13 \mathrm{MHz}$, BIASPROG $=0 x F 4 B$	-	63	-	dB
		1 MSamples/s, 12 bit, singleended, V_{DD} reference, ADC_CLK $=13 \mathrm{MHz}$, BIASPROGG $=0 \times F 4 B$	-	67	-	dB
		1 MSamples/s, 12 bit, differential, internal 1.25 V reference, ADC_CLK $=13 \mathrm{MHz}$, BIASPROG $=0 \times F 4 B$	-	63	-	dB
		1 MSamples/s, 12 bit, differential, internal 2.5 V reference, ADC_CLK $=13 \mathrm{MHz}$, BIASPROG $=0 x F 4 B$	-	66	-	dB
		1 MSamples/s, 12 bit, differential, 5 V reference, ADC_CLK $=13 \mathrm{MHz}$, BIASPROG $=0 x F 4 B$	-	66	-	dB
		1 MSamples/s, 12 bit, differential, V_{DD} reference, ADC_CLK= 13 MHz , BIASPROG =0xF4B	63	69	-	dB
		1 MSamples/s, 12 bit, differential, $2 x V_{D D}$ reference, ADC_CLK = 13 MHz , BIASPROG $=0 \times F 4 B$	-	70	-	dB
		200 kSamples/s, 12 bit, singleended, internal 1.25 V reference, ADC_CLK $=7 \mathrm{MHz}$, BIASPROG $=0 \times 747$	-	62	-	dB
		200 kSamples/s, 12 bit, singleended, internal 2.5 V reference, ADC_CLK $=7 \mathrm{MHz}$, BIASPROG $=0 \times 747$	-	63	-	dB
		200 kSamples/s, 12 bit, singleended, V_{DD} reference, ADC_CLK = 7 MHz , BIASPROG $=0 \times 747$	-	67	-	dB
		200 kSamples/s, 12 bit, differential, internal 1.25 V reference, ADC_CLK $=7 \mathrm{MHz}$, BIASPRŌG $=0 \times 747$	-	63	-	dB
		200 kSamples/s, 12 bit, differential, internal 2.5 V reference, ADC_CLK $=7 \mathrm{MHz}$, BIASPRŌG $=0 \times 747$	-	66	-	dB
		200 kSamples/s, 12 bit, differential, 5 V reference, ADC_CLK = 7 MHz , BIASPROG $=0 \times 747$	-	66	-	dB

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Signal-to-Noise Ratio (SNR)	$\mathrm{SNR}_{\text {ADC }}$	200 kSamples/s, 12 bit, differential, V_{DD} reference,ADC_CLK = 7 MHz , BIASPROG $=0 \times 747$	63	69	-	dB
		200 kSamples/s, 12 bit, differential, $2 x V_{\text {DD }}$ reference,ADC_CLK $=7 \mathrm{MHz}$, BIASPROG $=0 \times 747$	-	70	-	dB

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Signal-to-Noise And Distortion Ratio (SINAD)	$\mathrm{SINAD}_{\text {ADC }}$	1 MSamples/s, 12 bit, singleended, internal 1.25 V reference, ADC_CLK = 13 MHz , BIASPROG $=0 x F 4 B$	-	58	-	dB
		1 MSamples/s, 12 bit, singleended, internal 2.5 V reference, ADC_CLK $=13 \mathrm{MHz}$, BIASPROG $=0 \times F 4 B$	-	62	-	dB
		1 MSamples/s, 12 bit, singleended, V_{DD} reference, ADC_CLK $=13 \mathrm{MHz}$, BIASPROG $=0 \times F 4 B$	-	66	-	dB
		1 MSamples/s, 12 bit, differential, internal 1.25 V reference, ADC_CLK $=13 \mathrm{MHz}$, BIASPROG $=0 \times F 4 B$	-	63	-	dB
		1 MSamples/s, 12 bit, differential, internal 2.5 V reference, ADC_CLK = 13 MHz , BIASPROG $=0 \times 54 B$	-	66	-	dB
		1 MSamples/s, 12 bit, differential, 5 V reference, ADC_CLK = 13 MHz , BIASPROG $=0 x F 4 B$	-	66	-	dB
		1 MSamples/s, 12 bit, differential, V_{DD} reference, ADC_CLK = 13 MHz , BIASPROG $=0 x F 4 B$	62	68	-	dB
		1 MSamples/s, 12 bit, differential, $2 x V_{D D}$ reference, ADC_CLK = 13 MHz , BIASPROG $=0 \times F 4 B$	-	68	-	dB
		200 kSamples/s, 12 bit, singleended, internal 1.25 V reference, ADC_CLK $=7 \mathrm{MHz}$, BIASPROG $=0 \times 747$	-	61	-	dB
		200 kSamples/s, 12 bit, singleended, internal 2.5 V reference, ADC_CLK $=7 \mathrm{MHz}$, BIASPROG $=0 \times 747$	-	62	-	dB
		200 kSamples/s, 12 bit, singleended, VDD reference, ADC_CLK $=7 \mathrm{MHz}$, BIASPROG $=0 \times 747$	-	66	-	dB
		200 kSamples/s, 12 bit, differential, internal 1.25 V reference, ADC_CLK $=7 \mathrm{MHz}$, BIASPROG $=0 \times 747$	-	63	-	dB
		200 kSamples/s, 12 bit, differential, internal 2.5 V reference, ADC_CLK $=7 \mathrm{MHz}$, BIASPROG $=0 \times 747$	-	66	-	dB
		200 kSamples/s, 12 bit, differential, 5V reference, ADC_CLK= 7 MHz , BIASPROG $=0 \times 747$	-	66	-	dB

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Signal-to-Noise And Distortion Ratio (SINAD)	$\mathrm{SINAD}_{\text {ADC }}$	200 kSamples/s, 12 bit, differential, V_{DD} reference, ADC_CLK = 7 MHz , BIASPROG $=0 \times 747$	62	68	-	dB
		200 kSamples/s, 12 bit, differential, $2 x V_{D D}$ reference, ADC_CLK $=7 \mathrm{MHz}$, BIASPRŌG $=0 \times 747$	-	69	-	dB

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Spurious-Free Dynamic Range (SFDR)	$\mathrm{SFDR}_{\text {ADC }}$	1 MSamples/s, 12 bit, singleended, internal 1.25 V reference, ADC_CLK = 13 MHz , BIASPROG $=0 \times F 4 B$	-	75	-	dBc
		1 MSamples/s, 12 bit, singleended, internal 2.5 V reference, ADC_CLK $=13 \mathrm{MHz}$, BIASPROG $=0 x F 4 B$	-	76	-	dBc
		1 MSamples/s, 12 bit, singleended, V_{DD} reference, ADC_CLK $=13 \mathrm{MHz}$, BIASPROGG $=0 \times F 4 B$	-	76	-	dBc
		1 MSamples/s, 12 bit, differential, internal 1.25 V reference, ADC_CLK $=13 \mathrm{MHz}$, BIASPROG $=0 x F 4 B$	-	78	-	dBc
		1 MSamples/s, 12 bit, differential, internal 2.5 V reference, ADC_CLK $=13 \mathrm{MHz}$, BIASPROG $=0 x F 4 B$	-	77	-	dBc
		1 MSamples/s, 12 bit, differential, V_{DD} reference, ADC_CLK= 13 MHz , BIASPROG $=0 x F 4 B$	-	76	-	dBc
		1 MSamples/s, 12 bit, differential, $2 x V_{D D}$ reference, ADC_CLK $=13 \mathrm{MHz}$, BIASPROG $=0 \times F 4 B$	68	79	-	dBc
		1 MSamples/s, 12 bit, differential, 5 V reference, ADC_CLK $=13 \mathrm{MHz}$, BIASPROG $=0 x F 4 B$	-	79	-	dBc
		200 kSamples/s, 12 bit, singleended, internal 1.25 V reference, ADC_CLK $=7 \mathrm{MHz}$, BIASPROG $=0 \times 747$	-	75	-	dBc
		200 kSamples/s, 12 bit, singleended, internal 2.5 V reference, ADC_CLK = 7 MHz , BIASPROG $=0 \times 747$	-	75	-	dBc
		200 kSamples/s, 12 bit, singleended, V_{DD} reference, ADC_CLK = 7 MHz , BIASPROG $=0 \times 747$	-	76	-	dBc
		200 kSamples/s, 12 bit, differential, internal 1.25 V reference, ADC_CLK $=7 \mathrm{MHz}$, BIASPRŌG $=0 \times 747$	-	79	-	dBc
		200 kSamples/s, 12 bit, differential, internal 2.5 V reference, ADC_CLK $=7 \mathrm{MHz}$, BIASPRŌG $=0 \times 747$	-	79	-	dBc
		200 kSamples/s, 12 bit, differential, 5 V reference, ADC_CLK = 7 MHz , BIASPROG $=0 \times 747$	-	78	-	dBc

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Spurious-Free Dynamic Range (SFDR)	SFDR ${ }_{\text {ADC }}$	200 kSamples/s, 12 bit, differential, V_{DD} reference, ADC_CLK = 7 MHz , BIASPROG $=0 \times 747$	68	79	-	dBc
		200 kSamples/s, 12 bit, differential, $2 x V_{\text {DD }}$ reference,ADC_CLK $=7 \mathrm{MHz}$, BIASPROG $=0 \times 747$	-	79	-	dBc
Offset voltage	$\mathrm{V}_{\text {ADCOFFSET }}$	After calibration, single-ended	-	0.3	-	mV
		After calibration, differential	-4	0.3	4	mV
Thermometer output gradient	TGRAD $_{\text {ADCTH }}$		-	-1.92	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
			-	-6.3	-	ADC Co- des $/{ }^{\circ} \mathrm{C}$
Differential non-linearity (DNL)	DNL ${ }_{\text {ADC }}$	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$, external 2.5 V reference	-1	± 0.7	4	LSB
Integral non-linearity (INL), End point method	$\mathrm{INL}_{\text {ADC }}$	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$, external 2.5 V reference	-	± 1.2	± 3	LSB
Missing codes	$\mathrm{MC}_{\text {ADC }}$	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$, external 2.5 V reference	-	-	3	LSB
Gain error drift	$\mathrm{GAIN}_{\text {ED }}$	1.25 V reference	-	0.01^{2}	0.033^{3}	\%/ ${ }^{\circ} \mathrm{C}$
		2.5 V reference	-	0.01^{2}	$0.03{ }^{3}$	\%/ ${ }^{\circ} \mathrm{C}$
Offset error drift	OFFSET ${ }_{\text {ED }}$	1.25 V reference	-	0.00^{2}	0.063	LSB/ ${ }^{\circ} \mathrm{C}$
		2.5 V reference	-	0.00^{2}	$0.04{ }^{3}$	LSB/ $/{ }^{\circ} \mathrm{C}$
VREF voltage	$V_{\text {REF }}$	1.25 V reference	1.2	1.25	1.3	V
		2.5 V reference	2.4	2.5	2.6	V
VREF voltage drift	VREF_VDRIFT	1.25 V reference	-12.4	2.9	18.2	mV / V
		2.5 V reference, $\mathrm{VDD}>2.5 \mathrm{~V}$	-24.6	5.7	35.2	mV / V
VREF temperature drift	VREF_TDRIFT	1.25 V reference	-132	272	677	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
		2.5 V reference	-231	545	1271	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
VREF current consumption	IVREF	1.25 V reference	-	67	114	$\mu \mathrm{A}$
		2.5 V reference	-	55	82	$\mu \mathrm{A}$
ADC and DAC VREF matching	VREF_MATCH	1.25 V reference	-	99.85	-	\%
		2.5 V reference	-	100.01	-	\%

Note:

1. Includes required contribution from the voltage reference.
2. Typical numbers given by abs(Mean) / (85-25).
3. Max number given by (abs(Mean) + 3x stddev) / (85-25).

The integral non-linearity (INL) and differential non-linearity parameters are explained in the following figures.

Figure 4.27. Integral Non-Linearity (INL)

Figure 4.28. Differential Non-Linearity (DNL)

4.10.1 Typical Performance

Figure 4.29. ADC Frequency Spectrum, VDD $=\mathbf{3 V}$, $\mathrm{Temp}=25^{\circ} \mathrm{C}$

2XVDDVSS Reference

VDD Reference

5VDIFF Reference

Figure 4.30. ADC Integral Linearity Error vs Code, VDD $=\mathbf{3 V}$, $\operatorname{Temp}=\mathbf{2 5}^{\circ} \mathrm{C}$

2XVDDVSS Reference

VDD Reference

Figure 4.31. ADC Differential Linearity Error vs Code, VDD $=\mathbf{3 V}$, Temp $=25^{\circ} \mathrm{C}$

Figure 4.32. ADC Absolute Offset, Common Mode = VDD/2

Figure 4.33. ADC Dynamic Performance vs Temperature for all ADC References, VDD $=3 \mathrm{~V}$

4.11 Digital Analog Converter (DAC)

Table 4.15. DAC

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Output voltage range	$\mathrm{V}_{\text {DACOUT }}$	VDD voltage reference, singleended	0	-	V_{DD}	V
		VDD voltage reference, differential	$-V_{D D}$	-	V_{DD}	V
Output common mode voltage range	$V_{\text {DACCM }}$		0	-	$V_{D D}$	V
Average active current	$\mathrm{I}_{\text {DAC }}$	500 kSamples/s, 12 bit, internal 1.25 V reference, Continuous Mode	-	400^{1}	6501	$\mu \mathrm{A}$
		100 kSamples/s, 12 bit, internal 1.25 V reference, Sample/Hold Mode	-	2001	2501	$\mu \mathrm{A}$
		1 kSamples/s 12 bit, internal 1.25 V reference, Sample/Off Mode	-	17^{1}	25^{1}	$\mu \mathrm{A}$
Sample rate	$S \mathrm{R}_{\text {DAC }}$		-	-	500	ksamples/s
DAC clock frequency	$f_{\text {DAC }}$	Continuous Mode	-	-	1000	kHz
		Sample/Hold Mode	-	-	250	kHz
		Sample/Off Mode	-	-	250	kHz
Clock cycles per conversion	CYC ${ }_{\text {DACCONV }}$		-	2	-	cycles
Conversion time	t Dacconv		2	-	-	$\mu \mathrm{s}$
Settling time	t Dacsettle		-	5	-	$\mu \mathrm{s}$
Signal-to-Noise Ratio (SNR)	$\mathrm{SNR}_{\text {DAC }}$	500 kSamples/s, 12 bit, singleended, internal 1.25 V reference	-	58	-	dB
		500 kSamples/s, 12 bit, singleended, internal 2.5 V reference	-	59	-	dB
		500 kSamples/s, 12 bit, differential, internal 1.25 V reference	-	58	-	dB
		500 kSamples/s, 12 bit, differential, internal 2.5 V reference	-	58	-	dB
		500 kSamples/s, 12 bit, differential, V_{DD} reference	-	59	-	dB

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Signal-to-Noise plus Distortion Ratio (SNDR)	$\mathrm{SNDR}_{\text {DAC }}$	500 kSamples/s, 12 bit, singleended, internal 1.25 V reference	-	57	-	dB
		500 kSamples/s, 12 bit, singleended, internal 2.5 V reference	-	54	-	dB
		500 kSamples/s, 12 bit, differential, internal 1.25 V reference	-	56	-	dB
		500 kSamples/s, 12 bit, differential, internal 2.5 V reference	-	53	-	dB
		500 kSamples/s, 12 bit, differential, V_{DD} reference	-	55	-	dB
Spurious-Free Dynamic Range (SFDR)	$\mathrm{SFDR}_{\text {DAC }}$	500 kSamples/s, 12 bit, singleended, internal 1.25 V reference	-	62	-	dBc
		500 kSamples/s, 12 bit, singleended, internal 2.5 V reference	-	56	-	dBc
		500 kSamples/s, 12 bit, differential, internal 1.25 V reference	-	61	-	dBc
		500 kSamples/s, 12 bit, differential, internal 2.5 V reference	-	55	-	dBc
		500 kSamples/s, 12 bit, differential, V_{DD} reference	-	60	-	dBc
Offset voltage	V ${ }_{\text {DACOFFSET }}$	After calibration, single-ended	-	2	-	mV
		After calibration, differential	-	2	-	mV
Sample-hold mode voltage drift	V ${ }_{\text {DACSHMDRIFT }}$		-	540	-	$\mu \mathrm{V} / \mathrm{ms}$
Differential non-linearity	DNL ${ }_{\text {DAC }}$		-	± 1	-	LSB
Integral non-linearity	$\mathrm{INL}_{\text {DAC }}$		-	± 5	-	LSB
No missing codes	MC ${ }_{\text {DAC }}$		-	12	-	bits
Load current	lotid_DC		-	-	11	mA
VREF voltage	$\mathrm{V}_{\text {REF }}$	1.25 V reference	1.2	1.25	1.3	V
		2.5 V reference	2.4	2.5	2.6	V
VREF voltage drift	VREF_VDRIFT	1.25 V reference	-12.4	2.9	18.2	mV / V
		2.5 V reference, $\mathrm{V} D \mathrm{D}>2.5 \mathrm{~V}$	-24.6	5.7	35.2	mV / V
VREF temperature drift	VREF_TDRIFT	1.25 V reference	-132	272	677	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
		2.5 V reference	-231	545	1271	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
VREF current consumption	IVREF	1.25 V reference	-	67	114	$\mu \mathrm{A}$
		2.5 V reference	-	55	82	$\mu \mathrm{A}$
ADC and DAC VREF matching	VREF_MATCH	1.25 V reference	-	99.85	-	\%
		2.5 V reference	-	100.01	-	\%
Note: 1. Measured with a static input code and no loading on the output. Includes required contribution from the voltage reference.						

4.12 Analog Comparator (ACMP)

Table 4.16. ACMP

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Input voltage range	$\mathrm{V}_{\text {ACMPIN }}$		0	-	$V_{\text {DD }}$	V
ACMP Common Mode voltage range	$V_{\text {ACMPCM }}$		0	-	$V_{\text {DD }}$	V
Active current	$\mathrm{I}_{\text {ACMP }}$	BIASPROG=0b0000, FULLBIAS $=0$ and HALFBIAS $=1$ in ACMPn_CTRL register	-	55	600	nA
		BIASPROG=0b1111, FULLBIAS $=0$ and HALFBIAS $=0$ in ACMPn_CTRL register	-	2.82	12	$\mu \mathrm{A}$
		BIASPROG=0b1111, FULLBIAS $=1$ and HALFBIAS $=0$ in ACMPn_CTRL register	-	250	520	$\mu \mathrm{A}$
Current consumption of internal voltage reference	IACMPREF	Internal voltage reference off. Using external voltage reference	-	0	0.5	$\mu \mathrm{A}$
		Internal voltage reference, LPREF=1	-	0.050	3	$\mu \mathrm{A}$
		Internal voltage reference, LPREF=0	-	6	-	$\mu \mathrm{A}$
Offset voltage	$\mathrm{V}_{\text {ACMPOFFSET }}$	BIASPROG= 0b1010, FULLBIAS $=0$ and HALFBIAS $=0$ in ACMPn_CTRL register	-12	0	12	mV
ACMP hysteresis	$V_{\text {ACMPHYST }}$	Programmable	-	17	-	mV
Capacitive Sense Internal Resistance	RCSRES	CSRESSEL=0b00 in ACMPn_INPUTSEL	-	39	-	$\mathrm{k} \Omega$
		CSRESSEL=0b01 in ACMPn_INPUTSEL	-	71	-	$\mathrm{k} \Omega$
		CSRESSEL=0b10 in ACMPn_INPUTSEL	-	104	-	$\mathrm{k} \Omega$
		CSRESSEL=0b11 in ACMPn_INPUTSEL	-	136	-	$\mathrm{k} \Omega$
Startup time	$\mathrm{t}_{\text {ACMPSTART }}$		-	-	10	$\mu \mathrm{s}$

The total ACMP current is the sum of the contributions from the ACMP and its internal voltage reference as given in the following equation. I ${ }_{\text {ACMPREF }}$ is zero if an external voltage reference is used.
$I_{\text {ACMPTOTAL }}=I_{\text {ACMP }}{ }^{+} I_{\text {ACMPREF }}$

Figure 4.34. ACMP Characteristics, $\mathrm{VDD}=3 \mathrm{~V}, \mathrm{Temp}=25^{\circ} \mathrm{C}$, FULLBIAS $=0$, HALFBIAS $=1$

4.13 Voltage Comparator (VCMP)

Table 4.17. VCMP

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Input voltage range	$\mathrm{V}_{\text {VCMPIN }}$		-	$V_{D D}$	-	V
VCMP Common Mode voltage range	$\mathrm{V}_{\mathrm{VCMPCM}}$		-	$V_{D D}$	-	V
Active current	$I_{\text {VCMP }}$	BIASPROG=0b0000 and HALFBIAS=1 in VCMPn_CTRL register	-	0.3	1	$\mu \mathrm{A}$
		BIASPROG=0b1111 and HALFBIAS=0 in VCMPn_CTRL register. $\mathrm{LPREF}=0$.	-	22	30	$\mu \mathrm{A}$
Startup time reference generator	tvCMPREF	NORMAL	-	10	-	$\mu \mathrm{s}$
Offset voltage	VVCMPOFFSET	Single-ended	-	10	-	mV
		Differential	-	10	-	mV
VCMP hysteresis	$V_{\text {VCMPHYST }}$		-	40	-	mV
Startup time	$t_{\text {VCMPSTART }}$		-	-	10	$\mu \mathrm{s}$

The $V_{D D}$ Trigger Level can be configured by setting the TRIGLEVEL field of the VCMP_CTRL register in accordance with the following equation:
$V_{\text {DD Trigger Level }}=1.667 \mathrm{~V}+0.034 \times$ TRIGLEVEL

Table 4.18. LCD

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Frame rate	flCDFR		30	-	200	Hz
Number of segments supported	NUM ${ }_{\text {SEG }}$		-	4×40	-	seg
LCD supply voltage range	$V_{\text {LCD }}$	Internal boost circuit enabled	2.0	-	3.8	V
		Display disconnected, static mode, framerate 32 Hz , all segments on.	-	250	-	nA
Steady state current consumption.	ILCD	Display disconnected, quadruplex mode, framerate 32 Hz , all segments on, bias mode to ONETHIRD in LCD_DISPCTRL register.	-	550	-	nA
		Internal voltage boost off	-	0	-	$\mu \mathrm{A}$
of internal boost.	llcdboost	Internal voltage boost on, boosting from 2.2 V to 3.0 V .	-	8.4	-	$\mu \mathrm{A}$
Boost Voltage	$\mathrm{V}_{\text {BOOST }}$	VBLEV of LCD_DISPCTRL register to LEVELO	-	3.0	-	V
		VBLEV of LCD_DISPCTRL register to LEVEL1	-	3.08	-	V
		VBLEV of LCD_DISPCTRL register to LEVEL2	-	3.17	-	V
		VBLEV of LCD_DISPCTRL register to LEVEL3	-	3.26	-	V
		VBLEV of LCD_DISPCTRL register to LEVEL4	-	3.34	-	V
		VBLEV of LCD_DISPCTRL register to LEVEL5	-	3.43	-	V
		VBLEV of LCD_DISPCTRL register to LEVEL6	-	3.52	-	V
		VBLEV of LCD_DISPCTRL register to LEVEL7	-	3.6	-	V

The total LCD current is given by the following equation. ILCDBOost is zero if internal boost is off.
$I_{\text {LCDTOTAL }}=I_{\text {LCD }}{ }^{+} I_{\text {LCDBOOST }}$

4.15 I2C

Table 4.19. I2C Standard-mode (Sm)

Parameter	Symbol	Min	Typ	Max	Unit
SCL clock frequency	$\mathrm{f}_{\text {SCL }}$	0	-	100^{1}	kHz
SCL clock low time	t Low	4.7	-	-	$\mu \mathrm{s}$
SCL clock high time	$\mathrm{t}_{\text {HIGH }}$	4.0	-	-	$\mu \mathrm{s}$
SDA set-up time	tsu,DAT	250	-	-	ns
SDA hold time	$\mathrm{t}_{\text {HD, DAT }}$	8	-	$3450{ }^{2,3}$	ns
Repeated START condition set-up time	tsu, STA	4.7	-	-	$\mu \mathrm{s}$
(Repeated) START condition hold time	$\mathrm{t}_{\text {HD, STA }}$	4.0	-	-	$\mu \mathrm{s}$
STOP condition set-up time	tsu,sto	4.0	-	-	$\mu \mathrm{s}$
Bus free time between a STOP and a START condition	$\mathrm{t}_{\text {BUF }}$	4.7	-	-	$\mu \mathrm{s}$
Note: 1. For the minimum HFPERCLK frequency required in Standard-mode, see the I2C chapter in the EFM32G Reference Manual. 2. The maximum SDA hold time ($t_{\text {HD,DAT }}$) needs to be met only when the device does not stretch the low time of SCL ($\mathrm{t}_{\text {LOW }}$). 3. When transmitting data, this number is guaranteed only when I2Cn_CLKDIV < ($3450 * 10^{-9}$ [s] * $\left.\left.\mathrm{f}_{\text {HFPERCLK }}[\mathrm{Hz}]\right)-4\right)$.					

Table 4.20. I2C Fast-mode (Fm)

Parameter	Symbol	Min	Typ	Max	Unit
SCL clock frequency	fSCL	0	-	400^{1}	kHz
SCL clock low time	$\mathrm{t}_{\text {LOW }}$	1.3	-	-	$\mu \mathrm{s}$
SCL clock high time	$\mathrm{t}_{\text {HIGH }}$	0.6	-	-	$\mu \mathrm{s}$
SDA set-up time	$\mathrm{t}_{\text {SU,DAT }}$	100	-	-	ns
SDA hold time	$\mathrm{t}_{\text {HD,DAT }}$	8	-	$900^{2,3}$	ns
Repeated START condition set-up time	$\mathrm{t}_{\text {SU,STA }}$	0.6	-	-	$\mu \mathrm{l}$
(Repeated) START condition hold time	$\mathrm{t}_{\text {HD,STA }}$	0.6	-	-	$\mu \mathrm{s}$
STOP condition set-up time	$\mathrm{t}_{\text {SU,STO }}$	0.6	-	-	$\mu \mathrm{s}$
Bus free time between a STOP and a START condition	$\mathrm{t}_{\text {BUF }}$	1.3	-	-	$\mu \mathrm{s}$

Note:

1. For the minimum HFPERCLK frequency required in Fast-mode, see the I2C chapter in the EFM32G Reference Manual.
2. The maximum SDA hold time ($\mathrm{t}_{\mathrm{HD}, \mathrm{DAT}}$) needs to be met only when the device does not stretch the low time of SCL (t t (ow).
3. When transmitting data, this number is guaranteed only when I2Cn_CLKDIV $<\left(\left(900^{*} 10^{-9}[\mathrm{~s}]{ }^{*} \mathrm{f}_{\text {HFPERCLK }}[\mathrm{Hz}]\right)-4\right)$.

Table 4.21. I2C Fast-mode Plus (Fm+)

Parameter	Symbol	Min	Typ	Max	Unit
SCL clock frequency	$\mathrm{f}_{\text {SCL }}$	0	-	$1000{ }^{1}$	kHz
SCL clock low time	tLow	0.5	-	-	$\mu \mathrm{s}$
SCL clock high time	$\mathrm{t}_{\text {HIGH }}$	0.26	-	-	$\mu \mathrm{s}$
SDA set-up time	tsu,DAT	50	-	-	ns
SDA hold time	$\mathrm{t}_{\text {HD, DAT }}$	8	-	-	ns
Repeated START condition set-up time	tsu, STA	0.26	-	-	$\mu \mathrm{s}$
(Repeated) START condition hold time	$\mathrm{t}_{\text {HD, STA }}$	0.26	-	-	$\mu \mathrm{s}$
STOP condition set-up time	tsu,sto	0.26	-	-	$\mu \mathrm{s}$
Bus free time between a STOP and a START condition	$t_{\text {BUF }}$	0.5	-	-	$\mu \mathrm{s}$
Note: 1. For the minimum HFPERCLK frequency required in Fast-mode Plus, see the I2C chapter in the EFM32G Reference Manual					

4.16 Digital Peripherals

Table 4.22. Digital Peripherals

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
USART current	lusart	USART idle current, clock enabled	-	7.5	-	$\mu \mathrm{A} / \mathrm{MHz}$
UART current	luart	UART idle current, clock enabled	-	5.63	-	$\mu \mathrm{A} / \mathrm{MHz}$
LEUART current	ILEUART	LEUART idle current, clock enabled	-	150	-	nA
I2C current	$\mathrm{I}_{12 \mathrm{C}}$	I2C idle current, clock enabled	-	6.25	-	$\mu \mathrm{A} / \mathrm{MHz}$
TIMER current	$\mathrm{I}_{\text {TIMER }}$	TIMER_0 idle current, clock enabled	-	8.75	-	$\mu \mathrm{A} / \mathrm{MHz}$
LETIMER current	ILETIMER	LETIMER idle current, clock enabled	-	150	-	nA
PCNT current	IPCNT	PCNT idle current, clock enabled	-	100	-	nA
RTC current	$\mathrm{I}_{\text {RTC }}$	RTC idle current, clock enabled	-	100	-	nA
LCD current	lLCD	LCD idle current, clock enabled	-	100	-	nA
AES current	$\mathrm{I}_{\text {AES }}$	AES idle current, clock enabled	-	2.5	-	$\mu \mathrm{A} / \mathrm{MHz}$
GPIO current	IGPIO	GPIO idle current, clock enabled	-	5.31	-	$\mu \mathrm{A} / \mathrm{MHz}$
EBI current	lebi	EBI idle current, clock enabled	-	1.56	-	$\mu \mathrm{A} / \mathrm{MHz}$
PRS current	IPRS	PRS idle current	-	2.81	-	$\mu \mathrm{A} / \mathrm{MHz}$
DMA current	IDMA	Clock enable	-	8.12	-	$\mu \mathrm{A} / \mathrm{MHz}$

Note: Please refer to the application note "AN0002 EFM32 Hardware Design Considerations" forguidelines on designing Printed Circuit Boards (PCB's) for the EFM32G.

5. Pin Definitions

Note: Please refer to the application note "AN0002 EFM32 Hardware Design Considerations" for guidelines on designing Printed Circuit Boards (PCBs) for the EFM32G.

5.1 EFM32G200 \& EFM32G210 (QFN32)

5.1.1 Pinout

The EFM32G200 and EFM32G210 pinout is shown in the following figure and table. Alternate locations are denoted by "\#" followed by the location number (Multiple locations on the same pin are split with "/"). Alternate locations can be configured in the LOCATION bitfield in the *_ROUTE register in the module in question.

Figure 5.1. EFM32G200 \& EFM32G210 Pinout (top view, not to scale)

Table 5.1. Device Pinout

QFN32 Pin\# and Name		Pin Alternate Functionality / Description			
Pin \#	Pin Name	Analog	Timers	Communication	Other
0	VSS	Ground.			
1	PAO		TIMO_CCO \#0/1	12C0_SDA \#0	
2	PA1		TIM0_CC1 \#0/1	12C0_SCL \#0	CMU_CLK1 \#0
3	PA2		TIMO_CC2 \#0/1		CMU_CLK0 \#0
4	IOVDD_1	Digital IO power supply 1.			
5	PC0	ACMPO_CH0	PCNTO_SOIN \#2	US1_TX \#0	
6	PC1	ACMPO_CH1	PCNT0_S1IN \#2	US1_RX \#0	
7	PB7	LFXTAL_P		US1_CLK \#0	
8	PB8	LFXTAL_N		US1_CS \#0	
9	RESETn	Reset input, active low.To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.			
10	PB11	DAC0_OUT0	LETIMO_OUT0 \#1		
11	AVDD_2	Analog power supply 2.			
12	PB13	HFXTAL_P		LEU0_TX \#1	
13	PB14	HFXTAL_N		LEU0_RX \#1	
14	IOVDD_3	Digital IO power supply 3.			
15	AVDD_0	Analog power supply 0.			
16	PD4	ADC0_CH4		LEU0_TX \#0	
17	PD5	ADC0_CH5		LEU0_RX \#0	
18	PD6	ADC0_CH6	LETIMO_OUT0 \#0	I2C0_SDA \#1	
19	PD7	ADC0_CH7	LETIM0_OUT1 \#0	I2C0_SCL \#1	
20	VDD_DREG	Power supply for on-chip voltage regulator.			
21	DECOUPLE	Decouple output for on-chip voltage regulator. An external capacitance of size $C_{\text {DECOUPLE }}$ is required at this pin.			
22	PC13	ACMP1_CH5	TIMO CDTIO \#1/3 TIM1 CC0 \#0 PCNTO_SOIN \#0		
23	PC14	ACMP1_CH6	TIM0_CDTI1 \#1/3 TIM1_CC1 \#0 PCNTO_S1IN \#0		
24	PC15	ACMP1_CH7	$\begin{gathered} \text { TIMO_CDTI2 \#1/3 TIM1_CC2 } \\ \# 0 \end{gathered}$		DBG_SWO \#1
25	PF0		LETIMO_OUT0 \#2		DBG_SWCLK \#0/1
26	PF1		LETIM0_OUT1 \#2		DBG_SWDIO \#0/1
27	PF2				ACMP1_O \#0 DBG_SWO \#0
28	IOVDD_5	Digital IO power supply 5.			
29	PE10		TIM1_CC0 \#1	US0_TX \#0	BOOT_TX
30	PE11		TIM1_CC1 \#1	US0_RX \#0	BOOT_RX

QFN32 Pin\# and Name	Pin Alternate Functionality / Description				
Pin \#	Pin Name	Analog	Timers	Communication	Other
31	PE12		TIM1_CC2 \#1	US0_CLK \#0	
32	PE13			US0_CS \#0	ACMP0_O \#0

5.1.2 Alternate Functionality Pinout

A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in the following table. The table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.

Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout is shown in the column corresponding to LOCATION 0.

Table 5.2. Alternate functionality overview

Alternate	LOCATION				
Functionality	0	1	2	3	Description
ACMPO_CH0	PC0				Analog comparator ACMP0, channel 0.
ACMP0_CH1	PC1				Analog comparator ACMP0, channel 1.
ACMPO_O	PE13				Analog comparator ACMP0, digital output.
ACMP1_CH5	PC13				Analog comparator ACMP1, channel 5.
ACMP1_CH6	PC14				Analog comparator ACMP1, channel 6.
ACMP1_CH7	PC15				Analog comparator ACMP1, channel 7.
ACMP1_O	PF2				Analog comparator ACMP1, digital output.
ADC0_CH4	PD4				Analog to digital converter ADCO, input channel number 4.
ADC0_CH5	PD5				Analog to digital converter ADCO, input channel number 5.
ADC0_CH6	PD6				Analog to digital converter ADC0, input channel number 6.
ADC0_CH7	PD7				Analog to digital converter ADC0, input channel number 7.
BOOT_RX	PE11				Bootloader RX.
BOOT_TX	PE10				Bootloader TX.
CMU_CLKO	PA2				Clock Management Unit, clock output number 0.
CMU_CLK1	PA1				Clock Management Unit, clock output number 1.
DAC0_OUT0	PB11				Digital to Analog Converter DAC0 output channel number 0.
DBG_SWCLK	PF0	PF0			Debug-interface Serial Wire clock input. Note that this function is enabled to pin out of reset, and has a built-in pull down.
DBG_SWDIO	PF1	PF1			Debug-interface Serial Wire data input / output. Note that this function is enabled to pin out of reset, and has a built-in pull up.
DBG_SWO	PF2	PC15			Debug-interface Serial Wire viewer Output. Note that this function is not enabled after reset, and must be enabled by software to be used.
HFXTAL_N	PB14				High Frequency Crystal negative pin. Also used as external optional clock input pin.
HFXTAL_P	PB13				High Frequency Crystal positive pin.
12C0_SCL	PA1	PD7			I2C0 Serial Clock Line input / output.
I2C0_SDA	PAO	PD6			I2C0 Serial Data input / output.
LETIMO_OUT0	PD6	PB11	PF0		Low Energy Timer LETIM0, output channel 0.

Alternate	LOCATION				
Functionality	0	1	2	3	Description
LETIM0_OUT1	PD7		PF1		Low Energy Timer LETIM0, output channel 1.
LEU0_RX	PD5	PB14			LEUART0 Receive input.
LEU0_TX	PD4	PB13			LEUART0 Transmit output. Also used as receive input in half duplex communication.
LFXTAL_N	PB8				Low Frequency Crystal (typically 32.768 kHz) negative pin. Also used as an optional external clock input pin.
LFXTAL_P	PB7				Low Frequency Crystal (typically 32.768 kHz) positive pin.
PCNTO_SOIN	PC13		PC0		Pulse Counter PCNT0 input number 0.
PCNT0_S1IN	PC14		PC1		Pulse Counter PCNT0 input number 1.
TIMO_CC0	PAO	PAO			Timer 0 Capture Compare input / output channel 0.
TIM0_CC1	PA1	PA1			Timer 0 Capture Compare input/ output channel 1.
TIM0_CC2	PA2	PA2			Timer 0 Capture Compare input / output channel 2.
TIMO_CDTIO		PC13		PC13	Timer 0 Complimentary Deat Time Insertion channel 0.
TIMO_CDTI1		PC14		PC14	Timer 0 Complimentary Deat Time Insertion channel 1.
TIMO_CDTI2		PC15		PC15	Timer 0 Complimentary Deat Time Insertion channel 2.
TIM1_CC0	PC13	PE10			Timer 1 Capture Compare input / output channel 0.
TIM1_CC1	PC14	PE11			Timer 1 Capture Compare input / output channel 1.
TIM1_CC2	PC15	PE12			Timer 1 Capture Compare input / output channel 2.
USO_CLK	PE12				USART0 clock input / output.
USO_CS	PE13				USART0 chip select input / output.
US0_RX	PE11				USARTO Asynchronous Receive. USARTO Synchronous mode Master Input / Slave Output (MISO).
USO_TX	PE10				USARTO Asynchronous Transmit.Also used as receive input in half duplex communication. USART0 Synchronous mode Master Output / Slave Input (MOSI).
US1_CLK	PB7				USART1 clock input / output.
US1_CS	PB8				USART1 chip select input / output.
US1_RX	PC1				USART1 Asynchronous Receive. USART1 Synchronous mode Master Input / Slave Output (MISO).
US1_TX	PC0				USART1 Asynchronous Transmit.Also used as receive input in half duplex communication. USART1 Synchronous mode Master Output / Slave Input (MOSI).

5.1.3 GPIO Pinout Overview

The specific GPIO pins available in EFM32G200 and EFM32G210 is shown in the following table. Each GPIO port is organized as 16bit ports indicated by letters A through F, and the individual pin on this port is indicated by a number from 15 down to 0 .

Table 5.3. GPIO Pinout

Port	Pin 15	Pin 14	Pin 13	Pin 12	Pin 11	Pin 10	Pin 9	Pin 8	Pin 7	Pin 6	Pin 5	Pin 4	Pin 3	Pin 2	Pin 1	Pin 0
Port A	-	-	-	-	-	-	-	-	-	-	-	-	-	PA2	PA1	PA0
Port B	-	PB14	PB13	-	PB11	-	-	PB8	PB7	-	-	-	-	-	-	-
Port C	PC15	PC14	PC13	-	-	-	-	-	-	-	-	-	-	-	PC1	PC0
Port D	-	-	-	-	-	-	-	-	PD7	PD6	PD5	PD4	-	-	-	-
Port E	-	-	PE13	PE12	PE11	PE10	-	-	-	-	-	-	-	-	-	-
Port F	-	-	-	-	-	-	-	-	-	-	-	-	-	PF2	PF1	PF0

5.2 EFM32G222 (TQFP48)

5.2.1 Pinout

The EFM32G222 pinout is shown in the following figure and table. Alternate locations are denoted by "\#" followed by the location number (Multiple locations on the same pin are split with "/"). Alternate locations can be configured in the LOCATION bitfield in the *_ROUTE register in the module in question.

Figure 5.2. EFM32G222 Pinout (top view, not to scale)

Table 5.4. Device Pinout

TQFP48 Pin\# and Name		Pin Alternate Functionality / Description			
Pin \#	Pin Name	Analog	Timers	Communication	Other
1	PA0		TIMO_CC0 \#0/1	I2C0_SDA \#0	
2	PA1		TIM0_CC1 \#0/1	I2C0_SCL \#0	CMU_CLK1 \#0
3	PA2		TIM0_CC2 \#0/1		CMU_CLK0 \#0
4	IOVDD_0	Digital IO power supply 0.			
5	VSS	Ground.			

TQFP48 Pin\# and Name		Pin Alternate Functionality / Description			
Pin \#	Pin Name	Analog	Timers	Communication	Other
6	PC0	ACMPO_CH0	PCNTO_SOIN \#2	US1_TX \#0	
7	PC1	ACMPO_CH1	PCNT0_S1IN \#2	US1_RX \#0	
8	PC2	ACMP0_CH2			
9	PC3	ACMPO_CH3			
10	PC4	ACMPO_CH4	LETIMO_OUTO \#3 PCNT1_SOIN \#0		
11	PB7	LFXTAL_P		US1_CLK \#0	
12	PB8	LFXTAL_N		US1_CS \#0	
13	PA8		TIM2_CCO \#0		
14	PA9		TIM2_CC1 \#0		
15	PA10		TIM2_CC2 \#0		
16	RESETn	Reset input, active low.To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.			
17	PB11	DACO_OUT0	LETIMO_OUT0 \#1		
18	VSS	Ground.			
19	AVDD_1	Analog power supply 1.			
20	PB13	HFXTAL_P		LEU0_TX \#1	
21	PB14	HFXTAL_N		LEU0_RX \#1	
22	IOVDD_3	Digital IO power supply 3.			
23	AVDD_0	Analog power supply 0.			
24	PD4	ADC0_CH4		LEU0_TX \#0	
25	PD5	ADC0_CH5		LEU0_RX \#0	
26	PD6	ADC0_CH6	LETIMO_OUT0 \#0	12C0_SDA \#1	
27	PD7	ADC0_CH7	LETIM0_OUT1 \#0	I2C0_SCL \#1	
28	VDD_DREG	Power supply for on-chip voltage regulator.			
29	DECOUPLE	Decouple output for on-chip voltage regulator. An external capacitance of size $C_{\text {DECOUPLE }}$ is required at this pin.			
30	PC8	ACMP1_CH0	TIM2_CC0 \#2	US0_CS \#2	
31	PC9	ACMP1_CH1	TIM2_CC1 \#2	US0_CLK \#2	
32	PC10	ACMP1_CH2	TIM2_CC2 \#2	USO_RX \#2	
33	PC11	ACMP1_CH3		US0_TX \#2	
34	PC13	ACMP1_CH5	TIM0_CDTIO \#1/3 TIM1_CC0 \#0 PCNTO_SOIN \#0		
35	PC14	ACMP1_CH6	TIM0 CDTI1 \#1/3 TIM1_CC1 \#0 PCNT0_S1IN \#0		
36	PC15	ACMP1_CH7	TIM0_CDTI2 \#1/3 TIM1_CC2 \#0		DBG_SWO \#1
37	PF0		LETIMO_OUT0 \#2		DBG_SWCLK \#0/1

TQFP48 Pin\# and Name		Pin Alternate Functionality / Description			
Pin \#	Pin Name	Analog	Timers	Communication	Other
38	PF1		LETIM0_OUT1 \#2		DBG_SWDIO \#0/1
39	PF2				ACMP1_O \#0 DBG_SWO \#0
40	PF3		TIMO_CDTIO \#2		
41	PF4		TIM0_CDTI1 \#2		
42	PF5		TIMO_CDTI2 \#2		
43	IOVDD_5	Digital IO power supply 5.			
44	VSS	Ground.			
45	PE10		TIM1_CC0 \#1	US0_TX \#0	BOOT_TX
46	PE11		TIM1_CC1 \#1	USO_RX \#0	BOOT_RX
47	PE12		TIM1_CC2 \#1	USO_CLK \#0	
48	PE13			US0_CS \#0	ACMP0_O \#0

5.2.2 Alternate Functionality Pinout

A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in the following table. The table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.

Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout is shown in the column corresponding to LOCATION 0.

Table 5.5. Alternate functionality overview

Alternate	LOCATION				
Functionality	0	1	2	3	Description
ACMPO_CH0	PC0				Analog comparator ACMP0, channel 0.
ACMP0_CH1	PC1				Analog comparator ACMP0, channel 1.
ACMPO_CH2	PC2				Analog comparator ACMP0, channel 2.
ACMPO_CH3	PC3				Analog comparator ACMP0, channel 3.
ACMP0_CH4	PC4				Analog comparator ACMP0, channel 4.
ACMPO_O	PE13				Analog comparator ACMP0, digital output.
ACMP1_CH0	PC8				Analog comparator ACMP1, channel 0.
ACMP1_CH1	PC9				Analog comparator ACMP1, channel 1.
ACMP1_CH2	PC10				Analog comparator ACMP1, channel 2.
ACMP1_CH3	PC11				Analog comparator ACMP1, channel 3.
ACMP1_CH5	PC13				Analog comparator ACMP1, channel 5.
ACMP1_CH6	PC14				Analog comparator ACMP1, channel 6.
ACMP1_CH7	PC15				Analog comparator ACMP1, channel 7.
ACMP1_O	PF2				Analog comparator ACMP1, digital output.
ADC0_CH4	PD4				Analog to digital converter ADC0, input channel number 4.
ADC0_CH5	PD5				Analog to digital converter ADC0, input channel number 5.
ADC0_CH6	PD6				Analog to digital converter ADC0, input channel number 6.
ADC0_CH7	PD7				Analog to digital converter ADC0, input channel number 7.
BOOT_RX	PE11				Bootloader RX.
BOOT_TX	PE10				Bootloader TX.
CMU_CLK0	PA2				Clock Management Unit, clock output number 0.
CMU_CLK1	PA1				Clock Management Unit, clock output number 1.
DAC0_OUT0	PB11				Digital to Analog Converter DAC0 output channel number 0.
DBG_SWCLK	PF0	PF0			Debug-interface Serial Wire clock input. Note that this function is enabled to pin out of reset, and has a built-in pull down.
DBG_SWDIO	PF1	PF1			Debug-interface Serial Wire data input / output. Note that this function is enabled to pin out of reset, and has a built-in pull up.

Alternate	LOCATION				
Functionality	0	1	2	3	Description
DBG_SWO	PF2	PC15			Debug-interface Serial Wire viewer Output. Note that this function is not enabled after reset, and must be enabled by software to be used.
HFXTAL_N	PB14				High Frequency Crystal negative pin. Also used as external optional clock input pin.
HFXTAL_P	PB13				High Frequency Crystal positive pin.
I2C0_SCL	PA1	PD7			I2C0 Serial Clock Line input / output.
I2C0_SDA	PAO	PD6			I2C0 Serial Data input / output.
LETIMO_OUTO	PD6	PB11	PF0	PC4	Low Energy Timer LETIM0, output channel 0.
LETIM0_OUT1	PD7		PF1		Low Energy Timer LETIM0, output channel 1.
LEU0_RX	PD5	PB14			LEUART0 Receive input.
LEU0_TX	PD4	PB13			LEUART0 Transmit output. Also used as receive input in half duplex communication.
LFXTAL_N	PB8				Low Frequency Crystal (typically 32.768 kHz) negative pin. Also used as an optional external clock input pin.
LFXTAL_P	PB7				Low Frequency Crystal (typically 32.768 kHz) positive pin.
PCNTO_SOIN	PC13		PC0		Pulse Counter PCNT0 input number 0.
PCNT0_S1IN	PC14		PC1		Pulse Counter PCNT0 input number 1.
PCNT1_S0IN	PC4				Pulse Counter PCNT1 input number 0.
TIM0_CC0	PAO	PAO			Timer 0 Capture Compare input / output channel 0.
TIM0_CC1	PA1	PA1			Timer 0 Capture Compare input / output channel 1.
TIMO_CC2	PA2	PA2			Timer 0 Capture Compare input / output channel 2.
TIMO_CDTIO		PC13	PF3	PC13	Timer 0 Complimentary Deat Time Insertion channel 0.
TIMO_CDTI1		PC14	PF4	PC14	Timer 0 Complimentary Deat Time Insertion channel 1.
TIM0_CDTI2		PC15	PF5	PC15	Timer 0 Complimentary Deat Time Insertion channel 2.
TIM1_CC0	PC13	PE10			Timer 1 Capture Compare input / output channel 0.
TIM1_CC1	PC14	PE11			Timer 1 Capture Compare input / output channel 1.
TIM1_CC2	PC15	PE12			Timer 1 Capture Compare input / output channel 2.
TIM2_CC0	PA8		PC8		Timer 2 Capture Compare input / output channel 0.
TIM2_CC1	PA9		PC9		Timer 2 Capture Compare input / output channel 1.
TIM2_CC2	PA10		PC10		Timer 2 Capture Compare input / output channel 2.
US0_CLK	PE12		PC9		USART0 clock input / output.
USO_CS	PE13		PC8		USART0 chip select input / output.
US0_RX	PE11		PC10		USARTO Asynchronous Receive. USARTO Synchronous mode Master Input / Slave Output (MISO).

Alternate	LOCATION				
Functionality	0	1	2	3	Description
USO_TX	PE10		PC11		USART0 Asynchronous Transmit.Also used as receive input in half duplex communication. USART0 Synchronous mode Master Output / Slave Input (MOSI).
US1_CLK	PB7				USART1 clock input / output.
US1_CS	PB8				USART1 chip select input / output.
US1_RX	PC1				USART1 Asynchronous Receive. USART1 Synchronous mode Master Input / Slave Output (MISO).
US1_TX	PC0				USART1 Asynchronous Transmit.Also used as receive input in half duplex communication. USART1 Synchronous mode Master Output / Slave Input (MOSI).

5.2.3 GPIO Pinout Overview

The specific GPIO pins available in EFM32G222 is shown in the following table. Each GPIO port is organized as 16-bit ports indicated by letters A through F, and the individual pin on this port is indicated by a number from 15 down to 0 .

Table 5.6. GPIO Pinout

Port	$\begin{aligned} & \text { Pin } \\ & 15 \end{aligned}$	$\begin{aligned} & \text { Pin } \\ & 14 \end{aligned}$	$\begin{gathered} \text { Pin } \\ 13 \end{gathered}$	$\begin{aligned} & \text { Pin } \\ & 12 \end{aligned}$	$\begin{aligned} & \text { Pin } \\ & 11 \end{aligned}$	$\begin{gathered} \text { Pin } \\ 10 \end{gathered}$	Pin 9	Pin 8	Pin 7	Pin 6	Pin 5	Pin 4	Pin 3	Pin 2	Pin 1	Pin 0
Port A	-	-	-	-	-	PA10	PA9	PA8	-	-	-	-	-	PA2	PA1	PAO
Port B	-	PB14	PB13	-	PB11	-	-	PB8	PB7	-	-	-	-	-	-	-
Port C	PC15	PC14	PC13	-	PC11	PC10	PC9	PC8	-	-	-	PC4	PC3	PC2	PC1	PC0
Port D	-	-	-	-	-	-	-	-	PD7	PD6	PD5	PD4	-	-	-	-
Port E	-	-	PE13	PE12	PE11	PE10	-	-	-	-	-	-	-	-	-	-
Port F	-	-	-	-	-	-	-	-	-	-	PF5	PF4	PF3	PF2	PF1	PF0

5.3 EFM32G230 (QFN64)

5.3.1 Pinout

The EFM32G230 pinout is shown in the following figure and table. Alternate locations are denoted by "\#" followed by the location number (Multiple locations on the same pin are split with "/"). Alternate locations can be configured in the LOCATION bitfield in the *_ROUTE register in the module in question.

Figure 5.3. EFM32G230 Pinout (top view, not to scale)

Table 5.7. Device Pinout

QFN64 Pin\# and Name	Pin Alternate Functionality / Description								
Pin \#	Pin Name	Analog	Timers					Communication	Other
0	VSS	Ground.							
1	PA0		TIM0_CC0 \#0/1	I2C0_SDA \#0					
2	PA1		TIM0_CC1 \#0/1	I2C0_SCL \#0	CMU_CLK1 \#0				
3	PA2		TIM0_CC2 \#0/1		CMU_CLK0 \#0				
4	PA3		TIM0_CDTIO \#0						
5	PA4		TIM0_CDTI1 \#0						

QFN64 Pin\# and Name		Pin Alternate Functionality / Description			
Pin \#	Pin Name	Analog	Timers	Communication	Other
6	PA5		TIMO_CDTI2 \#0	LEU1_TX \#1	
6	PA6			LEU1_RX \#1	
8	IOVDD_0	Digital IO power supply 0.			
9	PC0		PCNTO_SOIN \#1	US1_TX \#0	
10	PC1		PCNT0_S1IN \#1	US1_RX \#0	
11	PC2			US2_TX \#0	
12	PC3			US2_RX \#0	
13	PC4	ACMP0_CH4	LETIMO_OUTO \#3 PCNT1_SOIN \#0	US2_CLK \#0	
14	PC5	ACMP0_CH5	LETIM0_OUT1 \#3 PCNT1_S1IN \#0	US2_CS \#0	
15	PB7	LFXTAL_P		US1_CLK \#0	
16	PB8	LFXTAL_N		US1_CS \#0	
17	PA8		TIM2_CCO \#0		
18	PA9		TIM2_CC1 \#0		
19	PA10		TIM2_CC2 \#0		
20	RESETn	Reset input, active low.To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.			
21	PB11	DAC0_OUT0	LETIMO_OUT0 \#1		
22	PB12	DAC0_OUT1	LETIM0_OUT1 \#1		
23	AVDD_1	Analog power supply 1.			
24	PB13	HFXTAL_P		LEU0_TX \#1	
25	PB14	HFXTAL_N		LEU0_RX \#1	
26	IOVDD_3	Digital IO power supply 3.			
27	AVDD_0	Analog power supply 0.			
28	PDO	ADC0_CH0	PCNT2_SOIN \#0	US1_TX \#1	
29	PD1	ADC0_CH1	$\begin{gathered} \text { TIMO_CC0 \#3 PCNT2_S1IN } \\ \# 0 \end{gathered}$	US1_RX \#1	
30	PD2	ADC0_CH2	TIM0_CC1 \#3	US1_CLK \#1	
31	PD3	ADC0_CH3	TIM0_CC2 \#3	US1_CS \#1	
32	PD4	ADC0_CH4		LEU0_TX \#0	
33	PD5	ADC0_CH5		LEU0_RX \#0	
34	PD6	ADC0_CH6	LETIMO_OUTO \#0	12C0_SDA \#1	
35	PD7	ADC0_CH7	LETIM0_OUT1 \#0	12C0_SCL \#1	
36	PD8				CMU_CLK1 \#1
37	PC6	ACMP0_CH6		LEU1_TX \#0 I2C0_SDA \#2	
38	PC7	ACMP0_CH7		LEU1_RX \#0 I2C0_SCL \#2	
39	VDD_DREG	Power supply for on-chip voltage regulator.			

QFN64 Pin\# and Name		Pin Alternate Functionality / Description			
Pin \#	Pin Name	Analog	Timers	Communication	Other
40	DECOUPLE	Decouple outp pin.	ut for on-chip voltage regulator.	ternal capacitance	$C_{\text {DECOUPLE }}$ is required at this
41	PC8	ACMP1_CH0	TIM2_CCO \#2	US0_CS \#2	
42	PC9	ACMP1_CH1	TIM2_CC1 \#2	US0_CLK \#2	
43	PC10	ACMP1_CH2	TIM2_CC2 \#2	US0_RX \#2	
44	PC11	ACMP1_CH3		US0_TX \#2	
45	PC12	ACMP1_CH4			CMU_CLK0 \#1
46	PC13	ACMP1_CH5	TIMO_CDTIO \#1/3 TIM1_CC0 \#0 PCNTO_SOIN \#0		
47	PC14	ACMP1_CH6	TIM0 CDTI1 \#1/3 TIM1_CC1 \#0 PCNT0_S1IN \#0		
48	PC15	ACMP1_CH7	$\begin{gathered} \text { TIMO_CDTI2 \#1/3 TIM1_CC2 } \\ \# 0 \end{gathered}$		DBG_SWO \#1
49	PF0		LETIMO_OUT0 \#2		DBG_SWCLK \#0/1
50	PF1		LETIM0_OUT1 \#2		DBG_SWDIO \#0/1
51	PF2				ACMP1_O \#0 DBG_SWO \#0
52	PF3		TIMO_CDTIO \#2		
53	PF4		TIM0_CDTI1 \#2		
54	PF5		TIM0_CDTI2 \#2		
55	IOVDD_5	Digital IO powe	r supply 5.		
56	PE8		PCNT2_SOIN \#1		
57	PE9		PCNT2_S1IN \#1		
58	PE10		TIM1_CC0 \#1	US0_TX \#0	BOOT_TX
59	PE11		TIM1_CC1 \#1	US0_RX \#0	BOOT_RX
60	PE12		TIM1_CC2 \#1	USO_CLK \#0	
61	PE13			USO_CS \#0	ACMP0_O \#0
62	PE14			LEU0_TX \#2	
63	PE15			LEU0_RX \#2	
64	PA15				

5.3.2 Alternate Functionality Pinout

A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in the following table. The table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.

Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout is shown in the column corresponding to LOCATION 0.

Table 5.8. Alternate functionality overview

Alternate	LOCATION				
Functionality	0	1	2	3	Description
ACMPO_CH0	PCO				Analog comparator ACMP0, channel 0.
ACMPO_CH1	PC1				Analog comparator ACMP0, channel 1.
ACMPO_CH2	PC2				Analog comparator ACMP0, channel 2.
ACMPO_CH3	PC3				Analog comparator ACMP0, channel 3.
ACMP0_CH4	PC4				Analog comparator ACMP0, channel 4.
ACMPO_CH5	PC5				Analog comparator ACMP0, channel 5.
ACMP0_CH6	PC6				Analog comparator ACMP0, channel 6.
ACMPO_CH7	PC7				Analog comparator ACMP0, channel 7.
ACMP0_O	PE13				Analog comparator ACMP0, digital output.
ACMP1_CH0	PC8				Analog comparator ACMP1, channel 0.
ACMP1_CH1	PC9				Analog comparator ACMP2, channel 1.
ACMP1_CH2	PC10				Analog comparator ACMP3, channel 2.
ACMP1_CH3	PC11				Analog comparator ACMP4, channel 3.
ACMP1_CH4	PC12				Analog comparator ACMP1, channel 4.
ACMP1_CH5	PC13				Analog comparator ACMP1, channel 5.
ACMP1_CH6	PC14				Analog comparator ACMP1, channel 6.
ACMP1_CH7	PC15				Analog comparator ACMP1, channel 7.
ACMP1_O	PF2				Analog comparator ACMP1, digital output.
ADC0_CH0	PD0				Analog to digital converter ADCO, input channel number 0.
ADC0_CH1	PD1				Analog to digital converter ADCO, input channel number 1.
ADC0_CH2	PD2				Analog to digital converter ADCO, input channel number 2.
ADC0_CH3	PD3				Analog to digital converter ADCO, input channel number 3.
ADC0_CH4	PD4				Analog to digital converter ADCO, input channel number 4.
ADC0_CH5	PD5				Analog to digital converter ADC0, input channel number 5.
ADC0_CH6	PD6				Analog to digital converter ADCO, input channel number 6.
ADC0_CH7	PD7				Analog to digital converter ADCO, input channel number 7.
BOOT_RX	PE11				Bootloader RX.
BOOT_TX	PE10				Bootloader TX.
CMU_CLK0	PA2	PC12			Clock Management Unit, clock output number 0.
CMU_CLK1	PA1	PD8			Clock Management Unit, clock output number 1.

Alternate	LOCATION				
Functionality	0	1	2	3	Description
DAC0_OUT0	PB11				Digital to Analog Converter DAC0 output channel number 0.
DAC0_OUT1	PB12				Digital to Analog Converter DAC0 output channel number 1.
DBG_SWCLK	PF0	PF0			Debug-interface Serial Wire clock input. Note that this function is enabled to pin out of reset, and has a built-in pull down.
DBG_SWDIO	PF1	PF1			Debug-interface Serial Wire data input / output. Note that this function is enabled to pin out of reset, and has a built-in pull up.
DBG_SWO	PF2	PC15			Debug-interface Serial Wire viewer Output. Note that this function is not enabled after reset, and must be enabled by software to be used.
HFXTAL_N	PB14				High Frequency Crystal negative pin. Also used as external optional clock input pin.
HFXTAL_P	PB13				High Frequency Crystal positive pin.
I2C0_SCL	PA1	PD7	PC7		I2C0 Serial Clock Line input / output.
I2C0_SDA	PAO	PD6	PC6		I2C0 Serial Data input / output.
LETIMO_OUT0	PD6	PB11	PF0	PC4	Low Energy Timer LETIM0, output channel 0.
LETIM0_OUT1	PD7	PB12	PF1	PC5	Low Energy Timer LETIM0, output channel 1.
LEU0_RX	PD5	PB14	PE15		LEUARTO Receive input.
LEU0_TX	PD4	PB13	PE14		LEUARTO Transmit output. Also used as receive input in half duplex communication.
LEU1_RX	PC7	PA6			LEUART1 Receive input.
LEU1_TX	PC6	PA5			LEUART1 Transmit output. Also used as receive input in half duplex communication.
LFXTAL_N	PB8				Low Frequency Crystal (typically 32.768 kHz) negative pin. Also used as an optional external clock input pin.
LFXTAL_P	PB7				Low Frequency Crystal (typically 32.768 kHz) positive pin.
PCNTO_SOIN	PC13		PC0		Pulse Counter PCNT0 input number 0.
PCNT0_S1IN	PC14		PC1		Pulse Counter PCNT0 input number 1.
PCNT1_S0IN	PC4				Pulse Counter PCNT1 input number 0.
PCNT1_S1IN	PC5				Pulse Counter PCNT1 input number 1.
PCNT2_SOIN	PD0	PE8			Pulse Counter PCNT2 input number 0.
PCNT2_S1IN	PD1	PE9			Pulse Counter PCNT2 input number 1.
TIMO_CC0	PAO	PAO		PD1	Timer 0 Capture Compare input / output channel 0.
TIM0_CC1	PA1	PA1		PD2	Timer 0 Capture Compare input / output channel 1.
TIMO_CC2	PA2	PA2		PD3	Timer 0 Capture Compare input / output channel 2.
TIMO_CDTIO	PA3	PC13	PF3	PC13	Timer 0 Complimentary Deat Time Insertion channel 0.
TIM0_CDTI1	PA4	PC14	PF4	PC14	Timer 0 Complimentary Deat Time Insertion channel 1.
TIM0_CDTI2	PA5	PC15	PF5	PC15	Timer 0 Complimentary Deat Time Insertion channel 2.

Alternate	LOCATION				
Functionality	0	1	2	3	Description
TIM1_CC0	PC13	PE10			Timer 1 Capture Compare input/ output channel 0.
TIM1_CC1	PC14	PE11			Timer 1 Capture Compare input/ output channel 1.
TIM1_CC2	PC15	PE12			Timer 1 Capture Compare input/ output channel 2.
TIM2_CC0	PA8		PC8		Timer 2 Capture Compare input / output channel 0.
TIM2_CC1	PA9		PC9		Timer 2 Capture Compare input / output channel 1.
TIM2_CC2	PA10		PC10		Timer 2 Capture Compare input / output channel 2.
USO_CLK	PE12		PC9		USART0 clock input / output.
USO_CS	PE13		PC8		USART0 chip select input / output.
USO_RX	PE11		PC10		USARTO Asynchronous Receive. USARTO Synchronous mode Master Input / Slave Output (MISO).
USO_TX	PE10		PC11		USARTO Asynchronous Transmit.Also used as receive input in half duplex communication. USART0 Synchronous mode Master Output / Slave Input (MOSI).
US1_CLK	PB7	PD2			USART1 clock input / output.
US1_CS	PB8	PD3			USART1 chip select input / output.
US1_RX	PC1	PD1			USART1 Asynchronous Receive. USART1 Synchronous mode Master Input / Slave Output (MISO).
US1_TX	PC0	PD0			USART1 Asynchronous Transmit.Also used as receive input in half duplex communication. USART1 Synchronous mode Master Output / Slave Input (MOSI).
US2_CLK	PC4				USART2 clock input / output.
US2_CS	PC5				USART2 chip select input / output.
US2_RX	PC3				USART2 Asynchronous Receive. USART2 Synchronous mode Master Input / Slave Output (MISO).
US2_TX	PC2				USART2 Asynchronous Transmit.Also used as receive input in half duplex communication. USART2 Synchronous mode Master Output / Slave Input (MOSI).

5.3.3 GPIO Pinout Overview

The specific GPIO pins available in EFM32G230 is shown in the following table. Each GPIO port is organized as 16-bit ports indicated by letters A through F, and the individual pin on this port is indicated by a number from 15 down to 0 .

Table 5.9. GPIO Pinout

Port	$\begin{gathered} \text { Pin } \\ 15 \end{gathered}$	$\begin{gathered} \text { Pin } \\ 14 \end{gathered}$	$\begin{gathered} \text { Pin } \\ 13 \end{gathered}$	$\begin{gathered} \text { Pin } \\ 12 \end{gathered}$	$\begin{gathered} \text { Pin } \\ 11 \end{gathered}$	$\begin{gathered} \text { Pin } \\ 10 \end{gathered}$	Pin 9	Pin 8	Pin 7	Pin 6	Pin 5	Pin 4	Pin 3	Pin 2	Pin 1	Pin 0
Port A	PA15	-	-	-	-	PA10	PA8	PA8	-	PA6	PA5	PA4	PA3	PA2	PA1	PA0
Port B	-	PB14	PB13	PB12	PB11	-	-	PB8	PB7	-	-	-	-	-	-	-
Port C	PC15	PC14	PC13	PC12	PC11	PC10	PC9	PC8	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0
Port D	-	-	-	-	-	-	-	PD8	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PDO
Port E	PE15	PE14	PE13	PE12	PE11	PE10	PE9	PE8	-	-	-	-	-	-	-	-
Port F	-	-	-	-	-	-	-	-	-	-	PF5	PF4	PF3	PF2	PF1	PF0

5.4 EFM32G232 (TQFP64)

5.4.1 Pinout

The EFM32G232 pinout is shown in the following figure and table. Alternate locations are denoted by "\#" followed by the location number (Multiple locations on the same pin are split with "/"). Alternate locations can be configured in the LOCATION bitfield in the *_ROUTE register in the module in question.

Figure 5.4. EFM32G232 Pinout (top view, not to scale)

Table 5.10. Device Pinout

TQFP64 Pin\# and Name		Pin Alternate Functionality / Description Pin \# Pin Name			
1	Pnalog	Timers	Communication	Other	
2	PA1		TIM0_CC0 \#0/1	I2C0_SDA \#0	
3	PA2		TIM0_CC1 \#0/1	I2C0_SCL \#0	CMU_CLK1 \#0
4	PA3		TIM0_CC2 \#0/1		CMU_CLK0 \#0
5	PA4		TIM0_CDTI0 \#0		

TQFP64 Pin\# and Name		Pin Alternate Functionality / Description			
Pin \#	Pin Name	Analog	Timers	Communication	Other
6	PA5		TIMO_CDTI2 \#0	LEU1_TX \#1	
7	IOVDD_0	Digital IO power supply 0.			
8	VSS	Ground.			
9	PC0	ACMPO_CH0	PCNTO_SOIN \#1	US1_TX \#0	
10	PC1	ACMP0_CH1	PCNTO_S1IN \#1	US1_RX \#0	
11	PC2	ACMP0_CH2		US1_CLK \#1	
12	PC3	ACMP0_CH3		US1_CS \#1	
13	PC4	ACMP0_CH4	LETIMO OUTO \#3 PCNT1_SOIN \#0	US2_CLK \#0	
14	PC5	ACMP0_CH5	LETIMO_OUT1 \#3 PCNT1_S1IN \#0	US2_CS \#0	
15	PB7	LFXTAL_P		US1_CLK \#0	
16	PB8	LFXTAL_N		US1_CS \#0	
17	PA8		TIM2_CCO \#0		
18	PA9		TIM2_CC1 \#0		
19	PA10		TIM2_CC2 \#0		
20	RESETn	Reset input, active low.To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.			
21	PB11	DAC0_OUT0	LETIMO_OUT0 \#1		
22	VSS	Ground.			
23	AVDD_1	Analog power supply 1.			
24	PB13	HFXTAL_P		LEU0_TX \#1	
25	PB14	HFXTAL_N		LEU0_RX \#1	
26	IOVDD_3	Digital IO power supply 3.			
27	AVDD_0	Analog power supply 0 .			
28	PDO	ADCO_CH0	PCNT2_SOIN \#0	US1_TX \#1	
29	PD1	ADC0_CH1	TIM0_CC0 \#3 PCNT2_S1IN \#0	US1_RX \#1	
30	PD2	ADC0_CH2	TIM0_CC1 \#3	US1_CLK \#1	
31	PD3	ADC0_CH3	TIM0_CC2 \#3	US1_CS \#1	
32	PD4	ADC0_CH4		LEU0_TX \#0	
33	PD5	ADCO_CH5		LEU0_RX \#0	
34	PD6	ADC0_CH6	LETIMO_OUTO \#0	I2C0_SDA \#1	
35	PD7	ADC0_CH7	LETIMO_OUT1 \#0	I2C0_SCL \#1	
36	PD8				CMU_CLK1 \#1
37	PC6	ACMP0_CH6		LEU1_TX \#0 I2C0_SDA \#2	
38	PC7	ACMP0_CH7		LEU1_RX \#0 I2C0_SCL \#2	

TQFP64 Pin\# and Name		Pin Alternate Functionality / Description			
Pin \#	Pin Name	Analog	Timers	Communication	Other
39	VDD_DREG	Power supply for on-chip voltage regulator.			
40	DECOUPLE	Decouple output for on-chip voltage regulator. An external capacitance of size $C_{\text {DECOUPLE }}$ is required at this pin.			
41	PC8	ACMP1_CH0	TIM2_CCO \#2	US0_CS \#2	
42	PC9	ACMP1_CH1	TIM2_CC1 \#2	USO_CLK \#2	
43	PC10	ACMP1_CH2	TIM2_CC2 \#2	US0_RX \#2	
44	PC11	ACMP1_CH3		US0_TX \#2	
45	PC12	ACMP1_CH4			CMU_CLK0 \#1
46	PC13	ACMP1_CH5	TIMO_CDTIO \#1/3 TIM1_CC0 \#0 PCNTO_SOIN \#0		
47	PC14	ACMP1_CH6	TIM0_CDTI1 \#1/3 TIM1_CC1 \#0 PCNTO_S1IN \#0		
48	PC15	ACMP1_CH7	$\begin{gathered} \text { TIMO_CDTI2 \#1/3 TIM1_CC2 } \\ \# 0 \end{gathered}$		DBG_SWO \#1
49	PF0		LETIMO_OUTO \#2		DBG_SWCLK \#0/1
50	PF1		LETIM0_OUT1 \#2		DBG_SWDIO \#0/1
51	PF2				ACMP1_O \#0 DBG_SWO \#0
52	PF3		TIMO_CDTIO \#2		
53	PF4		TIMO_CDTI1 \#2		
54	PF5		TIMO_CDTI2 \#2		
55	IOVDD_5	Digital IO power supply 5.			
56	VSS	Ground.			
57	PE8		PCNT2_SOIN \#1		
58	PE9		PCNT2_S1IN \#1		
59	PE10		TIM1_CC0 \#1	US0_TX \#0	BOOT_TX
60	PE11		TIM1_CC1 \#1	US0_RX \#0	BOOT_RX
61	PE12		TIM1_CC2 \#1	USO_CLK \#0	
62	PE13			US0_CS \#0	ACMP0_O \#0
63	PE14			LEU0_TX \#2	
64	PE15			LEU0_RX \#2	

5.4.2 Alternate Functionality Pinout

A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in the following table. The table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.

Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout is shown in the column corresponding to LOCATION 0.

Table 5.11. Alternate functionality overview

Alternate	LOCATION				
Functionality	0	1	2	3	Description
ACMPO_CH4	PC0				Analog comparator ACMP0, channel 0.
ACMPO_CH5	PC1				Analog comparator ACMP0, channel 1.
ACMPO_CH6	PC2				Analog comparator ACMP0, channel 2.
ACMP0_CH7	PC3				Analog comparator ACMP0, channel 3.
ACMPO_O	PE13				Analog comparator ACMP0, digital output.
ACMP1_CH0	PC8				Analog comparator ACMP1, channel 0.
ACMP1_CH1	PC9				Analog comparator ACMP1, channel 1.
ACMP1_CH2	PC10				Analog comparator ACMP1, channel 2.
ACMP1_CH3	PC11				Analog comparator ACMP1, channel 3.
ACMP1_O	PF2				Analog comparator ACMP1, digital output.
ADCO_CH0	PD0				Analog to digital converter ADC0, input channel number 0.
ADC0_CH1	PD1				Analog to digital converter ADC0, input channel number 1.
ADCO_CH2	PD2				Analog to digital converter ADCO, input channel number 2.
ADC0_CH3	PD3				Analog to digital converter ADCO, input channel number 3.
ADC0_CH4	PD4				Analog to digital converter ADC0, input channel number 4.
ADC0_CH5	PD5				Analog to digital converter ADC0, input channel number 5.
ADC0_CH6	PD6				Analog to digital converter ADC0, input channel number 6.
ADC0_CH7	PD7				Analog to digital converter ADC0, input channel number 7.
BOOT_RX	PE11				Bootloader RX.
BOOT_TX	PE10				Bootloader TX.
CMU_CLK0	PA2	PC12			Clock Management Unit, clock output number 0.
CMU_CLK1	PA1	PD8			Clock Management Unit, clock output number 1.
DAC0_OUT0	PB11				Digital to Analog Converter DAC0 output channel number 0.
DBG_SWCLK	PF0	PF0			Debug-interface Serial Wire clock input. Note that this function is enabled to pin out of reset, and has a built-in pull down.
DBG_SWDIO	PF1	PF1			Debug-interface Serial Wire data input / output. Note that this function is enabled to pin out of reset, and has a built-in pull up.

Alternate	LOCATION				
Functionality	0	1	2	3	Description
DBG_SWO	PF2	PC15			Debug-interface Serial Wire viewer Output. Note that this function is not enabled after reset, and must be enabled by software to be used.
HFXTAL_N	PB14				High Frequency Crystal negative pin. Also used as external optional clock input pin.
HFXTAL_P	PB13				High Frequency Crystal positive pin.
12C0_SCL	PA1	PD7	PC7		I2C0 Serial Clock Line input / output.
I2C0_SDA	PAO	PD6	PC6		I2C0 Serial Data input / output.
LETIMO_OUTO	PD6	PB11	PF0	PC4	Low Energy Timer LETIM0, output channel 0.
LETIM0_OUT1	PD7		PF1	PC5	Low Energy Timer LETIM0, output channel 1.
LEU0_RX	PD5	PB14	PE15		LEUARTO Receive input.
LEU0_TX	PD4	PB13	PE14		LEUART0 Transmit output. Also used as receive input in half duplex communication.
LEU1_RX	PC7				LEUART1 Receive input.
LEU1_TX	PC6	PA5			LEUART1 Transmit output. Also used as receive input in half duplex communication.
LFXTAL_N	PB8				Low Frequency Crystal (typically 32.768 kHz) negative pin. Also used as an optional external clock input pin.
LFXTAL_P	PB7				Low Frequency Crystal (typically 32.768 kHz) positive pin.
PCNTO_SOIN	PC13		PC0		Pulse Counter PCNT0 input number 0.
PCNT0_S1IN	PC14		PC1		Pulse Counter PCNT0 input number 1.
PCNT1_S0IN	PC4				Pulse Counter PCNT1 input number 0.
PCNT1_S1IN	PC5				Pulse Counter PCNT1 input number 1.
PCNT2_SOIN	PD0	PE8			Pulse Counter PCNT2 input number 0.
PCNT2_S1IN	PD1	PE9			Pulse Counter PCNT2 input number 1.
TIMO_CC0	PA0	PA0		PD1	Timer 0 Capture Compare input / output channel 0.
TIM0_CC1	PA1	PA1		PD2	Timer 0 Capture Compare input / output channel 1.
TIMO_CC2	PA2	PA2		PD3	Timer 0 Capture Compare input / output channel 2.
TIMO_CDTIO	PA3	PC13	PF3	PC13	Timer 0 Complimentary Deat Time Insertion channel 0.
TIMO_CDTI1	PA4	PC14	PF4	PC14	Timer 0 Complimentary Deat Time Insertion channel 1.
TIMO_CDTI2	PA5	PC15	PF5	PC15	Timer 0 Complimentary Deat Time Insertion channel 2.
TIM1_CC0	PC13	PE10			Timer 1 Capture Compare input / output channel 0.
TIM1_CC1	PC14	PE11			Timer 1 Capture Compare input / output channel 1.
TIM1_CC2	PC15	PE12			Timer 1 Capture Compare input / output channel 2.
TIM2_CC0	PA8		PC8		Timer 2 Capture Compare input / output channel 0.
TIM2_CC1	PA9		PC9		Timer 2 Capture Compare input / output channel 1.
TIM2_CC2	PA10		PC10		Timer 2 Capture Compare input / output channel 2.
USO_CLK	PE12		PC9		USART0 clock input / output.

Alternate	LOCATION				
Functionality	0	1	2	3	Description
USO_CS	PE13		PC8		USARTO chip select input / output.
USO_RX	PE11		PC10		USARTO Asynchronous Receive. USARTO Synchronous mode Master Input / Slave Output (MISO).
USO_TX	PE10		PC11		USART0 Asynchronous Transmit.Also used as receive input in half duplex communication. USART0 Synchronous mode Master Output / Slave Input (MOSI).
US1_CLK	PB7	PD2			USART1 clock input / output.
US1_CS	PB8	PD3			USART1 chip select input / output.
US1_RX	PC1	PD1			USART1 Asynchronous Receive. USART1 Synchronous mode Master Input / Slave Output (MISO).
US1_TX	PC0	PD0			USART1 Asynchronous Transmit.Also used as receive input in half duplex communication. USART1 Synchronous mode Master Output / Slave Input (MOSI).
US2_CLK	PC4				USART2 clock input / output.
US2_CS	PC5				USART2 chip select input / output.
US2_RX	PC3				USART2 Asynchronous Receive. USART2 Synchronous mode Master Input / Slave Output (MISO).
US2_TX	PC2				USART2 Asynchronous Transmit.Also used as receive input in half duplex communication. USART2 Synchronous mode Master Output / Slave Input (MOSI).

5.4.3 GPIO Pinout Overview

The specific GPIO pins available in EFM32G2322 is shown in the following table. Each GPIO port is organized as 16-bit ports indicated by letters A through F, and the individual pin on this port is indicated by a number from 15 down to 0 .

Table 5.12. GPIO Pinout

Port	Pin 15	Pin 14	Pin 13	Pin 12	Pin 11	Pin 10	Pin 9	Pin 8	Pin 7	Pin 6	Pin 5	Pin 4	Pin 3	Pin 2	Pin 1	Pin 0
Port A	-	-	-	-	-	PA10	PA9	PA8	-	-	PA5	PA4	PA3	PA2	PA1	PA0
Port B	-	PB14	PB13	-	PB11	-	-	PB8	PB7	-	-	-	-	-	-	-
Port C	PC15	PC14	PC13	PC12	PC11	PC10	PC9	PC8	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0
Port D	-	-	-	-	-	-	-	PD8	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
Port E	PE15	PE14	PE13	PE12	PE11	PE10	PE9	PE8	-	-	-	-	-	-	-	-
Port F	-	-	-	-	-	-	-	-	-	-	PF5	PF4	PF3	PF2	PF1	PF0

5.5 EFM32G280 (LQFP100)

5.5.1 Pinout

The EFM32G280 pinout is shown in the following figure and table. Alternate locations are denoted by "\#" followed by the location number (Multiple locations on the same pin are split with "/"). Alternate locations can be configured in the LOCATION bitfield in the *_ROUTE register in the module in question.

Figure 5.5. EFM32G280 Pinout (top view, not to scale)

Table 5.13. Device Pinout

LQFP100 Pin\# and Name	Pin Alternate Functionality / Description					
Pin \#	Pin Name	Analog	EBI	Timers	Communication	Other
1	PA0		EBI_AD09 \#0	TIM0_CC0 \#0/1	I2C0_SDA \#0	
2	PA1		EBI_AD10 \#0	TIM0_CC1 \#0/1	I2C0_SCL \#0	CMU_CLK1 \#0
3	PA2		EBI_AD11 \#0	TIM0_CC2 \#0/1		CMU_CLK0 \#0
4	PA3		EBI_AD12 \#0	TIM0_CDTI0 \#0	U0_TX \#2	
5	PA4		EBI_AD13 \#0	TIM0_CDTI1 \#0	U0_RX \#2	

LQFP100 Pin\# and Name		Pin Alternate Functionality / Description				
Pin \#	Pin Name	Analog	EBI	Timers	Communication	Other
6	PA5		EBI_AD14 \#0	TIM0_CDTI2 \#0	LEU1_TX \#1	
7	PA6		EBI_AD15 \#0		LEU1_RX \#1	
8	IOVDD_0	Digital IO power supply 0 .				
9	PB0			TIM1_CC0 \#2		
10	PB1			TIM1_CC1 \#2		
11	PB2			TIM1_CC2 \#2		
12	PB3			PCNT1_SOIN \#1	US2_TX \#1	
13	PB4			PCNT1_S1IN \#1	US2_RX \#1	
14	PB5				US2_CLK \#1	
15	PB6				US2_CS \#1	
16	VSS	Ground.				
17	IOVDD_1	Digital IO power supply 1.				
18	PC0	$\begin{gathered} \text { ACMPO_C } \\ \mathrm{HO} \end{gathered}$		PCNTO_SOIN \#2	US1_TX \#0	
19	PC1	$\begin{gathered} \text { ACMPO_C } \\ \mathrm{H} 1 \end{gathered}$		PCNT0_S1IN \#2	US1_RX \#0	
20	PC2	$\begin{gathered} \text { ACMPO_C } \\ \mathrm{H}_{2} \end{gathered}$			US2_TX \#0	
21	PC3	$\begin{gathered} \text { ACMPO_C } \\ \mathrm{H} 3 \end{gathered}$			US2_RX \#0	
22	PC4	$\begin{gathered} \text { ACMPO_C } \\ \mathrm{H} 4 \end{gathered}$		LETIMO_OUTO \#3 PCNT1_S0IN \#0	US2_CLK \#0	
23	PC5	$\begin{gathered} \text { ACMPO_C } \\ \mathrm{H} 5 \end{gathered}$		LETIMO OUT1 \#3 PCNT1_S1IN \#0	US2_CS \#0	
24	PB7	LFXTAL_P			US1_CLK \#0	
25	PB8	LFXTAL_N			US1_CS \#0	
26	PA7					
27	PA8			TIM2_CCO \#0		
28	PA9			TIM2_CC1 \#0		
29	PA10			TIM2_CC2 \#0		
30	PA11					
31	IOVDD_2	Digital IO power supply 2.				
32	VSS	Ground.				
33	PA12			TIM2_CCO \#1		
34	PA13			TIM2_CC1 \#1		
35	PA14			TIM2_CC2 \#1		
36	RESETn	Reset input, active low.To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.				

LQFP100 Pin\# and Name		Pin Alternate Functionality / Description				
Pin \#	Pin Name	Analog	EBI	Timers	Communication	Other
37	PB9					
38	PB10					
39	PB11	$\begin{array}{\|c} \text { DACO_OU } \\ \text { T0 } \end{array}$		LETIMO_OUT0 \#1		
40	PB12	$\begin{array}{\|c} \text { DACO_OU } \\ \mathrm{T1} \end{array}$		LETIM0_OUT1 \#1		
41	AVDD_1	Analog power supply 1.				
42	PB13	$\underset{\mathrm{P}}{\mathrm{HFXTAL}_{-}}$			LEU0_TX \#1	
43	PB14	$\frac{H_{N}}{\mathrm{NFXTAL}_{-}}$			LEU0_RX \#1	
44	IOVDD_3	Digital IO power supply 3.				
45	AVDD_0	Analog power supply 0.				
46	PD0	$\underset{0}{\text { ADCO_CH }}$		PCNT2_SOIN \#0	US1_TX \#1	
47	PD1	$\underset{1}{\mathrm{ADCO} C H}$		$\begin{gathered} \text { TIM0_CC0 \#3 } \\ \text { PCNT2_S1IN \#0 } \end{gathered}$	US1_RX \#1	
48	PD2	$\underset{2}{\mathrm{ADCO}} \mathrm{CH}$		TIM0_CC1 \#3	US1_CLK \#1	
49	PD3	$\underset{3}{\mathrm{ADCO} C H}$		TIM0_CC2 \#3	US1_CS \#1	
50	PD4	$\underset{4}{\mathrm{ADCO}} \mathrm{CH}$			LEU0_TX \#0	
51	PD5	$\underset{5}{\mathrm{ADCO}} \mathrm{CH}$			LEU0_RX \#0	
52	PD6	$\underset{6}{\text { ADCO_CH }}$		LETIMO_OUT0 \#0	12C0_SDA \#1	
53	PD7	$\underset{7}{\mathrm{ADCO}} \mathrm{CH}$		LETIM0_OUT1 \#0	12C0_SCL \#1	
54	PD8					CMU_CLK1 \#1
55	PC6	$\underset{\mathrm{H6}}{\mathrm{ACMPO}}$			$\begin{aligned} & \text { LEU1_TX \#0 } \\ & \text { I2C0_SDA \#2 } \end{aligned}$	
56	PC7	$\begin{gathered} \text { ACMPO_C } \\ \mathrm{H7} \end{gathered}$			$\begin{aligned} & \text { LEU1_RX \#0 } \\ & \text { I2C0_SCL \#2 } \end{aligned}$	
57	$\mathrm{VDD}_{\overline{\mathrm{G}}} \mathrm{DRE}$	Power supply for on-chip voltage regulator.				
58	VSS	Ground.				
59	$\begin{gathered} \text { DECOU- } \\ \text { PLE } \end{gathered}$	Decouple output for on-chip voltage regulator. An external capacitance of size $C_{\text {DECOUPLE }}$ is required at this pin				
60	PE0			PCNTO_SOIN \#1	U0_TX \#1	
61	PE1			PCNTO_S1IN \#1	U0_RX \#1	
62	PE2					ACMPO_O \#1

LQFP100 Pin\# and Name		Pin Alternate Functionality / Description				
Pin \#	Pin Name	Analog	EBI	Timers	Communication	Other
63	PE3					ACMP1_O \#1
64	PE4				US0_CS \#1	
65	PE5				US0_CLK \#1	
66	PE6				US0_RX \#1	
67	PE7				US0_TX \#1	
68	PC8	$\begin{gathered} \text { ACMP1_C } \\ \mathrm{H0} \end{gathered}$		TIM2_CC0 \#2	US0_CS \#2	
69	PC9	$\begin{gathered} \text { ACMP1_C } \\ \mathrm{H} 1 \end{gathered}$		TIM2_CC1 \#2	US0_CLK \#2	
70	PC10	$\begin{gathered} \text { ACMP1_C } \\ \mathrm{H} 2 \end{gathered}$		TIM2_CC2 \#2	US0_RX \#2	
71	PC11	$\underset{\mathrm{H}_{3}}{\mathrm{ACMP} 1 _C}$			US0_TX \#2	
72	PC12	$\underset{\mathrm{H} 4}{\mathrm{ACMP1} \mathrm{_C}}$				CMU_CLK0 \#1
73	PC13	$\underset{\mathrm{H} 5}{\mathrm{ACMP} 1 _C}$		$\begin{aligned} & \text { TIM0_CDTIO \#1/3 } \\ & \text { TIM1_CC0 \#0 } \\ & \text { PCNT0_SOIN \#0 } \end{aligned}$		
74	PC14	$\begin{gathered} \text { ACMP1_C } \\ \mathrm{H} 6 \end{gathered}$		$\begin{aligned} & \text { TIM0_CDTI1 \#1/3 } \\ & \text { TIM1_CC1 \#0 } \\ & \text { PCNT0_S1IN \#0 } \end{aligned}$	U0_TX \#3	
75	PC15	$\begin{gathered} \text { ACMP1_C } \\ \mathrm{H} 7 \end{gathered}$		$\begin{gathered} \text { TIMO_CDTI2 \#1/3 } \\ \text { TIM1_CC2 \#0 } \end{gathered}$	U0_RX \#3	DBG_SWO \#1
76	PF0			LETIMO_OUT0 \#2		DBG_SWCLK \#0/1
77	PF1			LETIM0_OUT1 \#2		DBG_SWDIO \#0/1
78	PF2		EBI_ARDY \#0			ACMP1_O \#0 DBG_SWO \#0
79	PF3		EBI_ALE \#0	TIMO_CDTIO \#2		
80	PF4		EBI_WEn \#0	TIMO_CDTI1 \#2		
81	PF5		EBI_REn \#0	TIMO_CDTI2 \#2		
82	IOVDD_5	Digital IO po	supply 5.			
83	VSS	Ground.				
84	PF6			TIM0_CCO \#2	U0_TX \#0	
85	PF7			TIM0_CC1 \#2	U0_RX \#0	
86	PF8			TIM0_CC2 \#2		
87	PF9					
88	PD9		EBI_CSO \#0			
89	PD10		EBI_CS1 \#0			
90	PD11		EBI_CS2 \#0			
91	PD12		EBI_CS3 \#0			

LQFP100 Pin\# and Name		Pin Alternate Functionality / Description				
Pin \#	Pin Name	Analog	EBI	Timers	Communication	Other
92	PE8		EBI_AD00 \#0	PCNT2_SOIN \#1		
93	PE9		EBI_AD01 \#0	PCNT2_S1IN \#1		
94	PE10		EBI_AD02 \#0	TIM1_CC0 \#1	US0_TX \#0	BOOT_TX
95	PE11		EBI_AD03 \#0	TIM1_CC1 \#1	US0_RX \#0	BOOT_RX
96	PE12		EBI_AD04 \#0	TIM1_CC2 \#1	USO_CLK \#0	
97	PE13		EBI_AD05 \#0		USO_CS \#0	ACMPO_O \#0
98	PE14		EBI_AD06 \#0		LEU0_TX \#2	
99	PE15		EBI_AD07 \#0		LEU0_RX \#2	
100	PA15		EBI_AD08 \#0			

5.5.2 Alternate Functionality Pinout

A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in the following table. The table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.

Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout is shown in the column corresponding to LOCATION 0.

Table 5.14. Alternate functionality overview

Alternate	LOCATION				
Functionality	0	1	2	3	Description
ACMPO_CH0	PCO				Analog comparator ACMP0, channel 0.
ACMPO_CH1	PC1				Analog comparator ACMP0, channel 1.
ACMPO_CH2	PC2				Analog comparator ACMP0, channel 2.
ACMPO_CH3	PC3				Analog comparator ACMP0, channel 3.
ACMP0_CH4	PC4				Analog comparator ACMP0, channel 4.
ACMPO_CH5	PC5				Analog comparator ACMP0, channel 5.
ACMP0_CH6	PC6				Analog comparator ACMP0, channel 6.
ACMPO_CH7	PC7				Analog comparator ACMP0, channel 7.
ACMP0_O	PE13	PE2			Analog comparator ACMP0, digital output.
ACMP1_CH0	PC8				Analog comparator ACMP1, channel 0.
ACMP1_CH1	PC9				Analog comparator ACMP1, channel 1.
ACMP1_CH2	PC10				Analog comparator ACMP1, channel 2.
ACMP1_CH3	PC11				Analog comparator ACMP1, channel 3.
ACMP1_CH4	PC12				Analog comparator ACMP1, channel 4.
ACMP1_CH5	PC13				Analog comparator ACMP1, channel 5.
ACMP1_CH6	PC14				Analog comparator ACMP1, channel 6.
ACMP1_CH7	PC15				Analog comparator ACMP1, channel 7.
ACMP1_O	PF2	PE3			Analog comparator ACMP1, digital output.
ADC0_CH0	PD0				Analog to digital converter ADCO, input channel number 0.
ADC0_CH1	PD1				Analog to digital converter ADCO, input channel number 1.
ADC0_CH2	PD2				Analog to digital converter ADCO, input channel number 2.
ADC0_CH3	PD3				Analog to digital converter ADCO, input channel number 3.
ADC0_CH4	PD4				Analog to digital converter ADCO, input channel number 4.
ADC0_CH5	PD5				Analog to digital converter ADC0, input channel number 5.
ADC0_CH6	PD6				Analog to digital converter ADCO, input channel number 6.
ADC0_CH7	PD7				Analog to digital converter ADCO, input channel number 7.
BOOT_RX	PE11				Bootloader RX.
BOOT_TX	PE10				Bootloader TX.
CMU_CLK0	PA2	PC12			Clock Management Unit, clock output number 0.
CMU_CLK1	PA1	PD8			Clock Management Unit, clock output number 1.

Alternate	LOCATION				
Functionality	0	1	2	3	Description
DAC0_OUT0	PB11				Digital to Analog Converter DAC0 output channel number 0.
DAC0_OUT1	PB12				Digital to Analog Converter DAC0 output channel number 1.
DBG_SWCLK	PF0	PF0			Debug-interface Serial Wire clock input. Note that this function is enabled to pin out of reset, and has a built-in pull down.
DBG_SWDIO	PF1	PF1			Debug-interface Serial Wire data input / output. Note that this function is enabled to pin out of reset, and has a built-in pull up.
DBG_SWO	PF2	PC15			Debug-interface Serial Wire viewer Output. Note that this function is not enabled after reset, and must be enabled by software to be used.
EBI_AD00	PE8				External Bus Interface (EBI) address and data input / output pin 00.
EBI_AD01	PE9				External Bus Interface (EBI) address and data input / output pin 01.
EBI_AD02	PE10				External Bus Interface (EBI) address and data input / output pin 02.
EBI_AD03	PE11				External Bus Interface (EBI) address and data input / output pin 03.
EBI_AD04	PE12				External Bus Interface (EBI) address and data input / output pin 04.
EBI_AD05	PE13				External Bus Interface (EBI) address and data input / output pin 05.
EBI_AD06	PE14				External Bus Interface (EBI) address and data input / output pin 06.
EBI_AD07	PE15				External Bus Interface (EBI) address and data input / output pin 07.
EBI_AD08	PA15				External Bus Interface (EBI) address and data input / output pin 08.
EBI_AD09	PAO				External Bus Interface (EBI) address and data input / output pin 09.
EBI_AD10	PA1				External Bus Interface (EBI) address and data input / output pin 10.
EBI_AD11	PA2				External Bus Interface (EBI) address and data input / output pin 11.
EBI_AD12	PA3				External Bus Interface (EBI) address and data input / output pin 12.
EBI_AD13	PA4				External Bus Interface (EBI) address and data input / output pin 13.
EBI_AD14	PA5				External Bus Interface (EBI) address and data input / output pin 14.
EBI_AD15	PA6				External Bus Interface (EBI) address and data input / output pin 15.
EBI_ALE	PF3				External Bus Interface (EBI) Address Latch Enable output.

Alternate	LOCATION				
Functionality	0	1	2	3	Description
EBI_ARDY	PF2				External Bus Interface (EBI) Hardware Ready Control input.
EBI_CS0	PD9				External Bus Interface (EBI) Chip Select output 0.
EBI_CS1	PD10				External Bus Interface (EBI) Chip Select output 1.
EBI_CS2	PD11				External Bus Interface (EBI) Chip Select output 2.
EBI_CS3	PD12				External Bus Interface (EBI) Chip Select output 3.
EBI_REn	PF5				External Bus Interface (EBI) Read Enable output.
EBI_WEn	PF4				External Bus Interface (EBI) Write Enable output.
HFXTAL_N	PB14				High Frequency Crystal negative pin. Also used as external optional clock input pin.
HFXTAL_P	PB13				High Frequency Crystal positive pin.
I2C0_SCL	PA1	PD7	PC7		I2C0 Serial Clock Line input / output.
12C0_SDA	PAO	PD6	PC6		I2C0 Serial Data input / output.
LETIMO_OUTO	PD6	PB11	PF0	PC4	Low Energy Timer LETIM0, output channel 0.
LETIM0_OUT1	PD7	PB12	PF1	PC5	Low Energy Timer LETIM0, output channel 1.
LEU0_RX	PD5	PB14	PE15		LEUART0 Receive input.
LEU0_TX	PD4	PB13	PE14		LEUART0 Transmit output. Also used as receive input in half duplex communication.
LEU1_RX	PC7	PA6			LEUART1 Receive input.
LEU1_TX	PC6	PA5			LEUART1 Transmit output. Also used as receive input in half duplex communication.
LFXTAL_N	PB8				Low Frequency Crystal (typically 32.768 kHz) negative pin. Also used as an optional external clock input pin.
LFXTAL_P	PB7				Low Frequency Crystal (typically 32.768 kHz) positive pin.
PCNTO_SOIN	PC13	PE0	PC0		Pulse Counter PCNT0 input number 0.
PCNT0_S1IN	PC14	PE1	PC1		Pulse Counter PCNT0 input number 1.
PCNT1_SOIN	PC4	PB3			Pulse Counter PCNT1 input number 0.
PCNT1_S1IN	PC5	PB4			Pulse Counter PCNT1 input number 1.
PCNT2_SOIN	PD0	PE8			Pulse Counter PCNT2 input number 0.
PCNT2_S1IN	PD1	PE9			Pulse Counter PCNT2 input number 1.
TIMO_CCO	PAO	PAO	PF6	PD1	Timer 0 Capture Compare input / output channel 0.
TIM0_CC1	PA1	PA1	PF7	PD2	Timer 0 Capture Compare input / output channel 1.
TIM0_CC2	PA2	PA2	PF8	PD3	Timer 0 Capture Compare input / output channel 2.
TIMO_CDTIO	PA3	PC13	PF3	PC13	Timer 0 Complimentary Deat Time Insertion channel 0.
TIMO_CDTI1	PA4	PC14	PF4	PC14	Timer 0 Complimentary Deat Time Insertion channel 1.
TIMO_CDTI2	PA5	PC15	PF5	PC15	Timer 0 Complimentary Deat Time Insertion channel 2.
TIM1_CC0	PC13	PE10	PB0		Timer 1 Capture Compare input / output channel 0.
TIM1_CC1	PC14	PE11	PB1		Timer 1 Capture Compare input / output channel 1.
TIM1_CC2	PC15	PE12	PB2		Timer 1 Capture Compare input / output channel 2.

Alternate	LOCATION				
Functionality	0	1	2	3	Description
TIM2_CC0	PA8	PA12	PC8		Timer 2 Capture Compare input / output channel 0.
TIM2_CC1	PA9	PA13	PC9		Timer 2 Capture Compare input / output channel 1.
TIM2_CC2	PA10	PA14	PC10		Timer 2 Capture Compare input / output channel 2.
U0_RX	PF7	PE1	PA4	PC15	UART0 Receive input.
U0_TX	PF6	PE0	PA3	PC14	UARTO Transmit output. Also used as receive input in half duplex communication.
USO_CLK	PE12	PE5	PC9		USART0 clock input / output.
USO_CS	PE13	PE4	PC8		USARTO chip select input / output.
USO_RX	PE11	PE6	PC10		USARTO Asynchronous Receive. USARTO Synchronous mode Master Input / Slave Output (MISO).
USO_TX	PE10	PE7	PC11		USART0 Asynchronous Transmit.Also used as receive input in half duplex communication. USART0 Synchronous mode Master Output / Slave Input (MOSI).
US1_CLK	PB7	PD2			USART1 clock input / output.
US1_CS	PB8	PD3			USART1 chip select input / output.
US1_RX	PC1	PD1			USART1 Asynchronous Receive. USART1 Synchronous mode Master Input / Slave Output (MISO).
US1_TX	PC0	PD0			USART1 Asynchronous Transmit.Also used as receive input in half duplex communication. USART1 Synchronous mode Master Output / Slave Input (MOSI).
US2_CLK	PC4	PB5			USART2 clock input / output.
US2_CS	PC5	PB6			USART2 chip select input / output.
US2_RX	PC3	PB4			USART2 Asynchronous Receive. USART2 Synchronous mode Master Input / Slave Output (MISO).
US2_TX	PC2	PB3			USART2 Asynchronous Transmit.Also used as receive input in half duplex communication. USART2 Synchronous mode Master Output / Slave Input (MOSI).

5.5.3 GPIO Pinout Overview

The specific GPIO pins available in EFM32G280 is shown in the following table. Each GPIO port is organized as 16-bit ports indicated by letters A through F, and the individual pin on this port is indicated by a number from 15 down to 0 .

Table 5.15. GPIO Pinout

Port	Pin 15	Pin 14	Pin 13	Pin 12	Pin 11	Pin 10	Pin 9	Pin 8	Pin 7	Pin 6	Pin 5	Pin 4	Pin 3	Pin 2	Pin 1	Pin 0
Port A	PA15	PA14	PA13	PA12	PA11	PA10	PA9	PA8	PA7	PA6	PA5	PA4	PA3	PA2	PA1	PA0
Port B	-	PB14	PB13	PB12	PB11	PB10	PB9	PB8	PB7	PB6	PB5	PB4	PB3	PB2	PB1	PB0
Port C	PC15	PC14	PC13	PC12	PC11	PC10	PC9	PC8	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0
Port D	-	-	-	PD12	PD11	PD10	PD9	PD8	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
Port E	PE15	PE14	PE13	PE12	PE11	PE10	PE9	PE8	PE7	PE6	PE5	PE4	PE3	PE2	PE1	PE0
Port F	-	-	-	-	-	-	PF9	PF8	PF7	PF6	PF5	PF4	PF3	PF2	PF1	PF0

5.6 EFM32G290 (BGA112)

5.6.1 Pinout

The EFM32G290 pinout is shown in the following figure and table. Alternate locations are denoted by "\#" followed by the location number (Multiple locations on the same pin are split with "/"). Alternate locations can be configured in the LOCATION bitfield in the *_ROUTE register in the module in question.

Figure 5.6. EFM32G280 Pinout (top view, not to scale)

Table 5.16. Device Pinout

BGA112 Pin\# and Name	Pin Alternate Functionality / Description					
Pin \#	Pin Name	Analog	EBI	Timers	Communication	Other
A1	PE15		EBI_AD07 \#0		LEU0_RX \#2	
A2	PE14		EBI_AD06 \#0		LEU0_TX \#2	
A3	PE12		EBI_AD04 \#0	TIM1_CC2 \#1	US0_CLK \#0	
A4	PE9		EBI_AD01 \#0	PCNT2_S1IN \#1		
A5	PD10		EBI_CS1 \#0			

BGA112 Pin\# and Name		Pin Alternate Functionality / Description				
Pin \#	Pin Name	Analog	EBI	Timers	Communication	Other
A6	PF7			TIM0_CC1 \#2	U0_RX \#0	
A7	PF5		EBI_REn \#0	TIMO_CDTI2 \#2		
A8	PF4		EBI_WEn \#0	TIMO_CDTI1 \#2		
A9	PE4				US0_CS \#1	
A10	PC14	$\begin{gathered} \text { ACMP1_C } \\ \mathrm{H} 6 \end{gathered}$		$\begin{aligned} & \text { TIM0_CDTI1 \#1/3 } \\ & \text { TIM1_CC1 \#0 } \\ & \text { PCNT0_S1IN \#0 } \end{aligned}$	U0_TX \#3	
A11	PC15	$\underset{\mathrm{H} 7}{\mathrm{ACMP} 1 _C}$		$\begin{gathered} \text { TIMO_CDTI2 \#1/3 } \\ \text { TIM1_CC2 \#0 } \end{gathered}$	U0_RX \#3	DBG_SWO \#1
B1	PA15		EBI_AD08 \#0			
B2	PE13		EBI_AD05 \#0		US0_CS \#0	ACMP0_O \#0
B3	PE11		EBI_AD03 \#0	TIM1_CC1 \#1	US0_RX \#0	BOOT_RX
B4	PE8		EBI_AD00 \#0	PCNT2_SOIN \#1		
B5	PD11		EBI_CS2 \#0			
B6	PF8			TIM0_CC2 \#2		
B7	PF6			TIMO_CC0 \#2	U0_TX \#0	
B8	PF3		EBI_ALE \#0	TIMO_CDTIO \#2		
B9	PE5				US0_CLK \#1	
B10	PC12	$\underset{\mathrm{H} 4}{\mathrm{ACMP} 1 _\mathrm{C}}$				CMU_CLK0 \#1
B11	PC13	$\begin{gathered} \text { ACMP1_C } \\ \mathrm{H} 5 \end{gathered}$		$\begin{aligned} & \text { TIMO_CDTIO \#1/3 } \\ & \text { TIM1_CC0 \#0 } \\ & \text { PCNT0_SOIN \#0 } \end{aligned}$		
C1	PA1		EBI_AD10 \#0	TIM0_CC1 \#0/1	12C0_SCL \#0	CMU_CLK1 \#0
C2	PA0		EBI_AD09 \#0	TIM0_CC0 \#0/1	12C0_SDA \#0	
C3	PE10		EBI_AD02 \#0	TIM1_CC0 \#1	USO_TX \#0	BOOT_TX
C4	PD13					
C5	PD12		EBI_CS3 \#0			
C6	PF9					
C7	VSS	Ground.				
C8	PF2		EBI_ARDY \#0			ACMP1_O \#0 DBG_SWO \#0
C9	PE6				US0_RX \#1	
C10	PC10	$\underset{\mathrm{H}_{2}}{\text { ACMP1_C }}$		TIM2_CC2 \#2	US0_RX \#2	
C11	PC11	$\underset{\mathrm{H}_{3}}{\mathrm{ACMP} 1 _\mathrm{C}}$			US0_TX \#2	
D1	PA3		EBI_AD12 \#0	TIMO_CDTIO \#0	U0_TX \#2	
D2	PA2		EBI_AD11 \#0	TIMO_CC2 \#0/1		CMU_CLK0 \#0

BGA112 Pin\# and Name		Pin Alternate Functionality / Description				
Pin \#	Pin Name	Analog	EBI	Timers	Communication	Other
D3	PB15					
D4	VSS	Ground.				
D5	IOVDD_6	Digital IO power supply 6.				
D6	PD9	$\begin{gathered} \text { LCD_SEG } \\ 28 \end{gathered}$	EBI_CSO \#0			
D7	IOVDD_5	Digital IO power supply 5.				
D8	PF1			LETIM0_OUT1 \#2		DBG_SWDIO \#0/1
D9	PE7				US0_TX \#1	
D10	PC8	$\begin{gathered} \text { ACMP1_C } \\ \mathrm{H} 0 \end{gathered}$		TIM2_CC0 \#2	US0_CS \#2	
D11	PC9	$\underset{\mathrm{H} 1}{\text { ACMP1_C }}$		TIM2_CC1 \#2	USO_CLK \#2	
E1	PA6		EBI_AD15 \#0		LEU1_RX \#1	
E2	PA5		EBI_AD14 \#0	TIM0_CDTI2 \#0	LEU1_TX \#1	
E3	PA4		EBI_AD13 \#0	TIM0_CDTI1 \#0	U0_RX \#2	
E4	PB0			TIM1_CC0 \#2		
E8	PF0			LETIMO_OUTO \#2		DBG_SWCLK \#0/1
E9	PEO			PCNTO_SOIN \#1	U0_TX \#1	
E10	PE1			PCNT0_S1IN \#1	U0_RX \#1	
E11	PE3					ACMP1_O \#1
F1	PB1			TIM1_CC1 \#2		
F2	PB2			TIM1_CC2 \#2		
F3	PB3			PCNT1_SOIN \#1	US2_TX \#1	
F4	PB4			PCNT1_S1IN \#1	US2_RX \#1	
F8	$\mathrm{VDD}_{\overline{\mathrm{G}}} \mathrm{DRE}$	Power supply for on-chip voltage regulator.				
F9	$\underset{\mathrm{G}}{\text { VSS_ }^{2}}$	Ground for on-chip voltage regulator.				
F10	PE2					ACMP0_O \#1
F11	$\begin{gathered} \text { DECOU- } \\ \text { PLE } \end{gathered}$	Decouple output for on-chip voltage regulator. An external capacitance of size $\mathrm{C}_{\text {DECOUPLE }}$ is required at this pin.				
G1	PB5				US2_CLK \#1	
G2	PB6				US2_CS \#1	
G3	VSS	Ground.				
G4	IOVDD_0	Digital IO power supply 0.				
G8	IOVDD_4	Digital IO power supply 4.				
G9	VSS	Ground.				

BGA112 Pin\# and Name		Pin Alternate Functionality / Description				
Pin \#	Pin Name	Analog	EBI	Timers	Communication	Other
G10	PC6	$\begin{gathered} \text { ACMPO_C } \\ \mathrm{H} 6 \end{gathered}$			$\begin{aligned} & \text { LEU1_TX \#0 } \\ & \text { I2C0_SDA \#2 } \end{aligned}$	
G11	PC7	$\begin{gathered} \text { ACMPO_C } \\ \mathrm{H} 7 \end{gathered}$			$\begin{aligned} & \text { LEU1_RX \#0 } \\ & \text { I2C0_SCL \#2 } \end{aligned}$	
H1	PC0	$\begin{gathered} \text { ACMPO_C } \\ \mathrm{HO} \end{gathered}$		PCNTO_SOIN \#2	US1_TX \#0	
H2	PC2	$\begin{gathered} \text { ACMPO_C } \\ \mathrm{H} 2 \end{gathered}$			US2_TX \#0	
H3	PD14				12C0_SDA \#3	
H4	PA7					
H5	PA8			TIM2_CCO \#0		
H6	VSS	Ground.				
H7	IOVDD_3	Digital IO power supply 3.				
H8	PD8					CMU_CLK1 \#1
H9	PD5	$\underset{5}{\mathrm{ADCO}} \mathrm{CH}$			LEU0_RX \#0	
H10	PD6	$\underset{6}{\mathrm{ADCO}}{ }_{6}$		LETIMO_OUTO \#0	12C0_SDA \#1	
H11	PD7	$\underset{7}{\text { ADCO_CH }}$		LETIM0_OUT1 \#0	12C0_SCL \#1	
J1	PC1	$\begin{gathered} \text { ACMPO_C } \\ \mathrm{H} 1 \end{gathered}$		PCNT0_S1IN \#2	US1_RX \#0	
J2	PC3	$\begin{gathered} \text { ACMPO_C } \\ \text { H3 } \end{gathered}$			US2_RX \#0	
J3	PD15				12C0_SCL \#3	
J4	PA12			TIM2_CC0 \#1		
J5	PA9			TIM2_CC1 \#0		
J6	PA10			TIM2_CC2 \#0		
J7	PB9					
J8	PB10					
J9	PD2	$\underset{2}{\mathrm{ADCO} C H}$		TIM0_CC1 \#3	US1_CLK \#1	
J10	PD3	$\begin{gathered} \mathrm{ADCO} \\ 3 \end{gathered}$		TIM0_CC2 \#3	US1_CS \#1	
J11	PD4	$\underset{4}{\mathrm{ADCO}} \mathrm{CH}$			LEU0_TX \#0	
K1	PB7	LFXTAL_P			US1_CLK \#0	
K2	PC4	$\begin{gathered} \text { ACMPO_C } \\ \mathrm{H} 4 \end{gathered}$		LETIMO_OUTO \#3 PCNT1_SOIN \#0	US2_CLK \#0	
K3	PA13			TIM2_CC1 \#1		
K4	VSS	Ground.				

BGA112 Pin\# and Name		Pin Alternate Functionality / Description				
Pin \#	Pin Name	Analog	EBI	Timers	Communication	Other
K5	PA11					
K6	RESETn	Reset input, active low.To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.				
K7	AVSS_1	Analog ground 1.				
K8	AVDD_2	Analog power supply 2.				
K9	AVDD_1	Analog power supply 1.				
K10	AVSS_0	Analog ground 0 .				
K11	PD1	$\mathrm{ADCO}_{1} \mathrm{CH}$		TIMO CCO \#3 PCNT2_S1IN \#0	US1_RX \#1	
L1	PB8	LFXTAL_N			US1_CS \#0	
L2	PC5	$\begin{gathered} \text { ACMPO_C } \\ \mathrm{H} 5 \end{gathered}$		LETIM0_OUT1 \#3 PCNT1_S1IN \#0	US2_CS \#0	
L3	PA14			TIM2_CC2 \#1		
L4	IOVDD_1	Digital IO power supply 1.				
L5	PB11	$\begin{gathered} \text { DACO_OU } \\ \text { T0 } \end{gathered}$		LETIMO_OUT0 \#1		
L6	PB12	$\frac{\mathrm{DACO}}{\mathrm{T1}}$		LETIM0_OUT1 \#1		
L7	AVSS_2	Analog ground 2.				
L8	PB13	$\underset{\mathrm{P}}{\mathrm{HFXTAL}}$			LEU0_TX \#1	
L9	PB14	$\underset{N}{\text { HFXTAL_ }}$			LEU0_RX \#1	
L10	AVDD_0	Analog power supply 0.				
L11	PD0	$\underset{0}{\mathrm{ADCO} C H}$		PCNT2_SOIN \#0	US1_TX \#1	

5.6.2 Alternate Functionality Pinout

A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in the following table. The table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.

Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout is shown in the column corresponding to LOCATION 0.

Table 5.17. Alternate functionality overview

Alternate	LOCATION				
Functionality	0	1	2	3	Description
ACMPO_CH0	PC0				Analog comparator ACMP0, channel 0.
ACMPO_CH1	PC1				Analog comparator ACMP0, channel 1.
ACMPO_CH2	PC2				Analog comparator ACMP0, channel 2.
ACMPO_CH3	PC3				Analog comparator ACMP0, channel 3.
ACMPO_CH4	PC4				Analog comparator ACMP0, channel 4.
ACMPO_CH5	PC5				Analog comparator ACMP0, channel 5.
ACMPO_CH6	PC6				Analog comparator ACMP0, channel 6.
ACMP0_CH7	PC7				Analog comparator ACMP0, channel 7.
ACMPO_O	PE13	PE2			Analog comparator ACMP0, digital output.
ACMP1_CH0	PC8				Analog comparator ACMP1, channel 0.
ACMP1_CH1	PC9				Analog comparator ACMP1, channel 1.
ACMP1_CH2	PC10				Analog comparator ACMP1, channel 2.
ACMP1_CH3	PC11				Analog comparator ACMP1, channel 3.
ACMP1_CH4	PC12				Analog comparator ACMP1, channel 4.
ACMP1_CH5	PC13				Analog comparator ACMP1, channel 5.
ACMP1_CH6	PC14				Analog comparator ACMP1, channel 6.
ACMP1_CH7	PC15				Analog comparator ACMP1, channel 7.
ACMP1_O	PF2	PE3			Analog comparator ACMP1, digital output.
ADCO_CH0	PD0				Analog to digital converter ADCO, input channel number 0 .
ADC0_CH1	PD1				Analog to digital converter ADC0, input channel number 1.
ADC0_CH2	PD2				Analog to digital converter ADC0, input channel number 2.
ADC0_CH3	PD3				Analog to digital converter ADC0, input channel number 3.
ADC0_CH4	PD4				Analog to digital converter ADC0, input channel number 4.
ADC0_CH5	PD5				Analog to digital converter ADC0, input channel number 5.
ADC0_CH6	PD6				Analog to digital converter ADCO, input channel number 6.
ADC0_CH7	PD7				Analog to digital converter ADCO, input channel number 7 .
BOOT_RX	PE11				Bootloader RX.
BOOT_TX	PE10				Bootloader TX.
CMU_CLK0	PA2	PC12			Clock Management Unit, clock output number 0.
CMU_CLK1	PA1	PD8			Clock Management Unit, clock output number 1.

Alternate	LOCATION				
Functionality	0	1	2	3	Description
DAC0_OUT0	PB11				Digital to Analog Converter DAC0 output channel number 0.
DAC0_OUT1	PB12				Digital to Analog Converter DAC0 output channel number 1.
DBG_SWCLK	PF0	PF0			Debug-interface Serial Wire clock input. Note that this function is enabled to pin out of reset, and has a built-in pull down.
DBG_SWDIO	PF1	PF1			Debug-interface Serial Wire data input / output. Note that this function is enabled to pin out of reset, and has a built-in pull up.
DBG_SWO	PF2	PC15			Debug-interface Serial Wire viewer Output. Note that this function is not enabled after reset, and must be enabled by software to be used.
EBI_AD00	PE8				External Bus Interface (EBI) address and data input / output pin 00.
EBI_AD01	PE9				External Bus Interface (EBI) address and data input / output pin 01.
EBI_AD02	PE10				External Bus Interface (EBI) address and data input / output pin 02.
EBI_AD03	PE11				External Bus Interface (EBI) address and data input / output pin 03.
EBI_AD04	PE12				External Bus Interface (EBI) address and data input / output pin 04.
EBI_AD05	PE13				External Bus Interface (EBI) address and data input / output pin 05.
EBI_AD06	PE14				External Bus Interface (EBI) address and data input / output pin 06.
EBI_AD07	PE15				External Bus Interface (EBI) address and data input / output pin 07.
EBI_AD08	PA15				External Bus Interface (EBI) address and data input / output pin 08.
EBI_AD09	PAO				External Bus Interface (EBI) address and data input / output pin 09.
EBI_AD10	PA1				External Bus Interface (EBI) address and data input / output pin 10.
EBI_AD11	PA2				External Bus Interface (EBI) address and data input / output pin 11.
EBI_AD12	PA3				External Bus Interface (EBI) address and data input / output pin 12.
EBI_AD13	PA4				External Bus Interface (EBI) address and data input / output pin 13.
EBI_AD14	PA5				External Bus Interface (EBI) address and data input / output pin 14.
EBI_AD15	PA6				External Bus Interface (EBI) address and data input / output pin 15.
EBI_ALE	PF3				External Bus Interface (EBI) Address Latch Enable output.

Alternate	LOCATION				
Functionality	0	1	2	3	Description
EBI_ARDY	PF2				External Bus Interface (EBI) Hardware Ready Control input.
EBI_CS0	PD9				External Bus Interface (EBI) Chip Select output 0.
EBI_CS1	PD10				External Bus Interface (EBI) Chip Select output 1.
EBI_CS2	PD11				External Bus Interface (EBI) Chip Select output 2.
EBI_CS3	PD12				External Bus Interface (EBI) Chip Select output 3.
EBI_REn	PF5				External Bus Interface (EBI) Read Enable output.
EBI_WEn	PF4				External Bus Interface (EBI) Write Enable output.
HFXTAL_N	PB14				High Frequency Crystal negative pin. Also used as external optional clock input pin.
HFXTAL_P	PB13				High Frequency Crystal positive pin.
12CO_SCL	PA1	PD7	PC7	PD15	I2C0 Serial Clock Line input / output.
I2C0_SDA	PAO	PD6	PC6	PD14	I2C0 Serial Data input / output.
LETIMO_OUTO	PD6	PB11	PF0	PC4	Low Energy Timer LETIM0, output channel 0.
LETIM0_OUT1	PD7	PB12	PF1	PC5	Low Energy Timer LETIM0, output channel 1.
LEU0_RX	PD5	PB14	PE15		LEUART0 Receive input.
LEU0_TX	PD4	PB13	PE14		LEUART0 Transmit output. Also used as receive input in half duplex communication.
LEU1_RX	PC7	PA6			LEUART1 Receive input.
LEU1_TX	PC6	PA5			LEUART1 Transmit output. Also used as receive input in half duplex communication.
LFXTAL_N	PB8				Low Frequency Crystal (typically 32.768 kHz) negative pin. Also used as an optional external clock input pin.
LFXTAL_P	PB7				Low Frequency Crystal (typically 32.768 kHz) positive pin.
PCNTO_SOIN	PC13	PE0	PC0		Pulse Counter PCNT0 input number 0.
PCNT0_S1IN	PC14	PE1	PC1		Pulse Counter PCNT0 input number 1.
PCNT1_SOIN	PC4	PB3			Pulse Counter PCNT1 input number 0.
PCNT1_S1IN	PC5	PB4			Pulse Counter PCNT1 input number 1.
PCNT2_SOIN	PD0	PE8			Pulse Counter PCNT2 input number 0.
PCNT2_S1IN	PD1	PE9			Pulse Counter PCNT2 input number 1.
TIMO_CCO	PAO	PA0	PF6	PD1	Timer 0 Capture Compare input / output channel 0.
TIM0_CC1	PA1	PA1	PF7	PD2	Timer 0 Capture Compare input / output channel 1.
TIM0_CC2	PA2	PA2	PF8	PD3	Timer 0 Capture Compare input / output channel 2.
TIMO_CDTIO	PA3	PC13	PF3	PC13	Timer 0 Complimentary Deat Time Insertion channel 0.
TIMO_CDTI1	PA4	PC14	PF4	PC14	Timer 0 Complimentary Deat Time Insertion channel 1.
TIMO_CDTI2	PA5	PC15	PF5	PC15	Timer 0 Complimentary Deat Time Insertion channel 2.
TIM1_CC0	PC13	PE10	PB0		Timer 1 Capture Compare input / output channel 0.
TIM1_CC1	PC14	PE11	PB1		Timer 1 Capture Compare input / output channel 1.
TIM1_CC2	PC15	PE12	PB2		Timer 1 Capture Compare input / output channel 2.

Alternate	LOCATION				
Functionality	0	1	2	3	Description
TIM2_CC0	PA8	PA12	PC8		Timer 2 Capture Compare input / output channel 0.
TIM2_CC1	PA9	PA13	PC9		Timer 2 Capture Compare input / output channel 1.
TIM2_CC2	PA10	PA14	PC10		Timer 2 Capture Compare input / output channel 2.
U0_RX	PF7	PE1	PA4	PC15	UART0 Receive input.
U0_TX	PF6	PE0	PA3	PC14	UARTO Transmit output. Also used as receive input in half duplex communication.
USO_CLK	PE12	PE5	PC9		USART0 clock input / output.
USO_CS	PE13	PE4	PC8		USARTO chip select input / output.
USO_RX	PE11	PE6	PC10		USARTO Asynchronous Receive. USARTO Synchronous mode Master Input / Slave Output (MISO).
USO_TX	PE10	PE7	PC11		USART0 Asynchronous Transmit.Also used as receive input in half duplex communication. USART0 Synchronous mode Master Output / Slave Input (MOSI).
US1_CLK	PB7	PD2			USART1 clock input / output.
US1_CS	PB8	PD3			USART1 chip select input / output.
US1_RX	PC1	PD1			USART1 Asynchronous Receive. USART1 Synchronous mode Master Input / Slave Output (MISO).
US1_TX	PC0	PD0			USART1 Asynchronous Transmit.Also used as receive input in half duplex communication. USART1 Synchronous mode Master Output / Slave Input (MOSI).
US2_CLK	PC4	PB5			USART2 clock input / output.
US2_CS	PC5	PB6			USART2 chip select input / output.
US2_RX	PC3	PB4			USART2 Asynchronous Receive. USART2 Synchronous mode Master Input / Slave Output (MISO).
US2_TX	PC2	PB3			USART2 Asynchronous Transmit.Also used as receive input in half duplex communication. USART2 Synchronous mode Master Output / Slave Input (MOSI).

5.6.3 GPIO Pinout Overview

The specific GPIO pins available in EFM32G290 is shown in the following table. Each GPIO port is organized as 16-bit ports indicated by letters A through F, and the individual pin on this port is indicated by a number from 15 down to 0 .

Table 5.18. GPIO Pinout

Port	Pin 15	Pin 14	Pin 13	Pin 12	Pin 11	Pin 10	Pin 9	Pin 8	Pin 7	Pin 6	Pin 5	Pin 4	Pin 3	Pin 2	Pin 1	Pin 0
Port A	PA15	PA14	PA13	PA12	PA11	PA10	PA9	PA8	PA7	PA6	PA5	PA4	PA3	PA2	PA1	PA0
Port B	PB15	PB14	PB13	PB12	PB11	PB10	PB9	PB8	PB7	PB6	PB5	PB4	PB3	PB2	PB1	PB0
Port C	PC15	PC14	PC13	PC12	PC11	PC10	PC9	PC8	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0
Port D	PD15	PD14	PD13	PD12	PD11	PD10	PD9	PD8	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
Port E	PE15	PE14	PE13	PE12	PE11	PE10	PE9	PE8	PE7	PE6	PE5	PE4	PE3	PE2	PE1	PE0
Port F	-	-	-	-	-	-	PF9	PF8	PF7	PF6	PF5	PF4	PF3	PF2	PF1	PF0

5.7 EFM32G840 (QFN64)

5.7.1 Pinout

The EFM32G840 pinout is shown in the following figure and table. Alternate locations are denoted by "\#" followed by the location number (Multiple locations on the same pin are split with "/"). Alternate locations can be configured in the LOCATION bitfield in the *_ROUTE register in the module in question.

Figure 5.7. EFM32G840 Pinout (top view, not to scale)

Table 5.19. Device Pinout

QFN64 Pin\# and Name	Pin Alternate Functionality / Description				
Pin \#	Pin Name	Analog	Timers	Communication	Other
0	VSS	Ground.			
1	PA0	LCD_SEG13	TIM0_CC0 \#0/1	I2C0_SDA \#0	
2	PA1	LCD_SEG14	TIM0_CC1 \#0/1	I2C0_SCL \#0	CMU_CLK1 \#0
3	PA2	LCD_SEG15	TIM0_CC2 \#0/1		CMU_CLK0 \#0
4	PA3	LCD_SEG16	TIM0_CDTI0 \#0		
5	PA4	LCD_SEG17	TIM0_CDTI1 \#0		

QFN64 Pin\# and Name		Pin Alternate Functionality / Description			
Pin \#	Pin Name	Analog	Timers	Communication	Other
6	PA5	LCD_SEG18	TIMO_CDTI2 \#0	LEU1_TX \#1	
6	PA6	LCD_SEG19		LEU1_RX \#1	
8	IOVDD_0	Digital IO power supply 0 .			
9	PB3	LCD_SEG20	PCNT1_S0IN \#1	US2_TX \#1	
10	PB4	LCD_SEG21	PCNT1_S1IN \#1	US2_RX \#1	
11	PB5	LCD_SEG22		US2_CLK \#1	
12	PB6	LCD_SEG23		US2_CS \#1	
13	PC4	ACMP0_CH4	LETIMO_OUTO \#3 PCNT1_SOIN \#0	US2_CLK \#0	
14	PC5	ACMP0_CH5	LETIMO_OUT1 \#3 PCNT1_S1IN \#0	US2_CS \#0	
15	PB7	LFXTAL_P		US1_CLK \#0	
16	PB8	LFXTAL_N		US1_CS \#0	
17	PA12	$\underset{\mathrm{P}}{\text { LCD_BCAP_ }}$	TIM2_CC0 \#1		
18	PA13	$\underset{N}{\text { LCD_BCAP_ }}$	TIM2_CC1 \#1		
19	PA14	LCD_BEXT	TIM2_CC2 \#1		
20	RESETn	Reset input, active low.To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.			
21	PB11	DAC0_OUT0	LETIMO_OUT0 \#1		
22	PB12	DAC0_OUT1	LETIM0_OUT1 \#1		
23	AVDD_1	Analog power supply 1.			
24	PB13	HFXTAL_P		LEU0_TX \#1	
25	PB14	HFXTAL_N		LEU0_RX \#1	
26	IOVDD_3	Digital IO power supply 3.			
27	AVDD_0	Analog power supply 0.			
28	PDO	ADCO_CH0	PCNT2_SOIN \#0	US1_TX \#1	
29	PD1	ADC0_CH1	$\begin{gathered} \text { TIM0_CCO \#3 PCNT2_S1IN } \\ \# 0 \end{gathered}$	US1_RX \#1	
30	PD2	ADC0_CH2	TIM0_CC1 \#3	US1_CLK \#1	
31	PD3	ADC0_CH3	TIMO_CC2 \#3	US1_CS \#1	
32	PD4	ADC0_CH4		LEU0_TX \#0	
33	PD5	ADC0_CH5		LEU0_RX \#0	
34	PD6	ADC0_CH6	LETIMO_OUTO \#0	I2C0_SDA \#1	
35	PD7	ADC0_CH7	LETIM0_OUT1 \#0	I2C0_SCL \#1	
36	PD8				CMU_CLK1 \#1
37	PC6	ACMP0_CH6		LEU1_TX \#0 I2C0_SDA \#2	

QFN64 Pin\# and Name		Pin Alternate Functionality / Description			
Pin \#	Pin Name	Analog	Timers	Communication	Other
38	PC7	ACMP0_CH7		LEU1_RX \#0 I2C0_SCL \#2	
39	VDD_DREG	Power supply f	on-chip voltage regulator.		
40	DECOUPLE	Decouple outp pin.	ut for on-chip voltage regulator.	An external capacitance of siz	$C_{\text {DECOUPLE }}$ is required at this
41	PE4	LCD_COM0		US0_CS \#1	
42	PE5	LCD_COM1		US0_CLK \#1	
43	PE6	LCD_COM2		US0_RX \#1	
44	PE7	LCD_COM3		US0_TX \#1	
45	PC12	ACMP1_CH4			CMU_CLK0 \#1
46	PC13	ACMP1_CH5	TIM0_CDTIO \#1/3 TIM1_CC0 \#0 PCNTO_SOIN \#0		
47	PC14	ACMP1_CH6	TIM0_CDTI1 \#1/3 TIM1_CC1 \#0 PCNTO_S1IN \#0		
48	PC15	ACMP1_CH7	$\begin{gathered} \text { TIMO_CDTI2 \#1/3 TIM1_CC2 } \\ \# 0 \end{gathered}$		DBG_SWO \#1
49	PF0		LETIMO_OUTO \#2		DBG_SWCLK \#0/1
50	PF1		LETIM0_OUT1 \#2		DBG_SWDIO \#0/1
51	PF2	LCD_SEG0			ACMP1_O \#0 DBG_SWO \#0
52	PF3	LCD_SEG1	TIMO_CDTIO \#2		
53	PF4	LCD_SEG2	TIM0_CDTI1 \#2		
54	PF5	LCD_SEG3	TIMO_CDTI2 \#2		
55	IOVDD_5	Digital IO powe	r supply 5.		
56	PE8	LCD_SEG4	PCNT2_SOIN \#1		
57	PE9	LCD_SEG5	PCNT2_S1IN \#1		
58	PE10	LCD_SEG6	TIM1_CC0 \#1	USO_TX \#0	BOOT_TX
59	PE11	LCD_SEG7	TIM1_CC1 \#1	USO_RX \#0	BOOT_RX
60	PE12	LCD_SEG8	TIM1_CC2 \#1	USO_CLK \#0	
61	PE13	LCD_SEG9		USO_CS \#0	ACMP0_O \#0
62	PE14	LCD_SEG10		LEU0_TX \#2	
63	PE15	LCD_SEG11		LEU0_RX \#2	
64	PA15	LCD_SEG12			

5.7.2 Alternate Functionality Pinout

A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in the following table. The table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.

Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout is shown in the column corresponding to LOCATION 0.

Table 5.20. Alternate functionality overview

Alternate	LOCATION				
Functionality	0	1	2	3	Description
ACMPO_CH4	PC4				Analog comparator ACMP0, channel 4.
ACMPO_CH5	PC5				Analog comparator ACMP0, channel 5.
ACMPO_CH6	PC6				Analog comparator ACMP0, channel 6.
ACMP0_CH7	PC7				Analog comparator ACMP0, channel 7.
ACMPO_O	PE13				Analog comparator ACMP0, digital output.
ACMP1_CH4	PC12				Analog comparator ACMP1, channel 4.
ACMP1_CH5	PC13				Analog comparator ACMP1, channel 5.
ACMP1_CH6	PC14				Analog comparator ACMP1, channel 6.
ACMP1_CH7	PC15				Analog comparator ACMP1, channel 7.
ACMP1_O	PF2				Analog comparator ACMP1, digital output.
ADCO_CH0	PD0				Analog to digital converter ADCO, input channel number 0.
ADC0_CH1	PD1				Analog to digital converter ADC0, input channel number 1.
ADCO_CH2	PD2				Analog to digital converter ADCO, input channel number 2.
ADC0_CH3	PD3				Analog to digital converter ADCO, input channel number 3.
ADC0_CH4	PD4				Analog to digital converter ADC0, input channel number 4.
ADC0_CH5	PD5				Analog to digital converter ADC0, input channel number 5.
ADC0_CH6	PD6				Analog to digital converter ADC0, input channel number 6.
ADC0_CH7	PD7				Analog to digital converter ADC0, input channel number 7.
BOOT_RX	PE11				Bootloader RX.
BOOT_TX	PE10				Bootloader TX.
CMU_CLK0	PA2	PC12			Clock Management Unit, clock output number 0.
CMU_CLK1	PA1	PD8			Clock Management Unit, clock output number 1.
DAC0_OUT0	PB11				Digital to Analog Converter DAC0 output channel number 0.
DAC0_OUT1	PB12				Digital to Analog Converter DAC0 output channel number 1.
DBG_SWCLK	PF0	PF0			Debug-interface Serial Wire clock input. Note that this function is enabled to pin out of reset, and has a built-in pull down.
DBG_SWDIO	PF1	PF1			Debug-interface Serial Wire data input / output. Note that this function is enabled to pin out of reset, and has a built-in pull up.

Alternate	LOCATION				
Functionality	0	1	2	3	Description
DBG_SWO	PF2	PC15			Debug-interface Serial Wire viewer Output. Note that this function is not enabled after reset, and must be enabled by software to be used.
HFXTAL_N	PB14				High Frequency Crystal negative pin. Also used as external optional clock input pin.
HFXTAL_P	PB13				High Frequency Crystal positive pin.
I2C0_SCL	PA1	PD7	PC7		I2C0 Serial Clock Line input / output.
I2C0_SDA	PAO	PD6	PC6		I2C0 Serial Data input / output.
LCD_BCAP_N	PA13				LCD voltage booster (optional), boost capacitor, negative pin. If using the LCD voltage booster, connect a 22 nF capacitor between LCD_BCAP_N and LCD_BCAP_P.
LCD_BCAP_P	PA12				LCD voltage booster (optional), boost capacitor, positive pin. If using the LCD voltage booster, connect a 22 nF capacitor between LCD_BCAP_N and LCD_BCAP_P.
LCD_BEXT	PA14				LCD voltage booster (optional), boost output. If using the LCD voltage booster, connect a 1 uF capacitor between this pin and VSS. An external LCD voltage may also be applied to this pin if the booster is not enabled. If AVDD is used directly as the LCD supply voltage, this pin may be left unconnected or used as a GPIO.
LCD_COM0	PE4				LCD driver common line number 0.
LCD_COM1	PE5				LCD driver common line number 1.
LCD_COM2	PE6				LCD driver common line number 2.
LCD_COM3	PE7				LCD driver common line number 3.
LCD_SEG0	PF2				LCD segment line 0 . Segments $0,1,2$ and 3 are controlled by SEGENO.
LCD_SEG1	PF3				LCD segment line 1 . Segments $0,1,2$ and 3 are controlled by SEGENO.
LCD_SEG2	PF4				LCD segment line 2 . Segments $0,1,2$ and 3 are controlled by SEGENO.
LCD_SEG3	PF5				LCD segment line 3 . Segments $0,1,2$ and 3 are controlled by SEGENO.
LCD_SEG4	PE8				LCD segment line 4 . Segments $4,5,6$ and 7 are controlled by SEGEN1.
LCD_SEG5	PE9				LCD segment line 5 . Segments 4, 5, 6 and 7 are controlled by SEGEN1.
LCD_SEG6	PE10				LCD segment line 6 . Segments 4, 5, 6 and 7 are controlled by SEGEN1.
LCD_SEG7	PE11				LCD segment line 7 . Segments $4,5,6$ and 7 are controlled by SEGEN1.
LCD_SEG8	PE12				LCD segment line 8 . Segments 8, 9, 10 and 11 are controlled by SEGEN2.

Alternate	LOCATION				
Functionality	0	1	2	3	Description
LCD_SEG9	PE13				LCD segment line 9 . Segments $8,9,10$ and 11 are controlled by SEGEN2.
LCD_SEG10	PE14				LCD segment line 10 . Segments $8,9,10$ and 11 are controlled by SEGEN2.
LCD_SEG11	PE15				LCD segment line 11 . Segments $8,9,10$ and 11 are controlled by SEGEN2.
LCD_SEG12	PA15				LCD segment line 12 . Segments $12,13,14$ and 15 are controlled by SEGEN3.
LCD_SEG13	PAO				LCD segment line 13 . Segments $12,13,14$ and 15 are controlled by SEGEN3.
LCD_SEG14	PA1				LCD segment line 14 . Segments $12,13,14$ and 15 are controlled by SEGEN3.
LCD_SEG15	PA2				LCD segment line 15 . Segments $12,13,14$ and 15 are controlled by SEGEN3.
LCD_SEG16	PA3				LCD segment line 16 . Segments $16,17,18$ and 19 are controlled by SEGEN4.
LCD_SEG17	PA4				LCD segment line 17 . Segments $16,17,18$ and 19 are controlled by SEGEN4.
LCD_SEG18	PA5				LCD segment line 18 . Segments 16, 17, 18 and 19 are controlled by SEGEN4.
LCD_SEG19	PA6				LCD segment line 19 . Segments 16, 17, 18 and 19 are controlled by SEGEN4.
LCD_SEG20	PB3				LCD segment line 20 . Segments 20, 21, 22 and 23 are controlled by SEGEN5.
LCD_SEG21	PB4				LCD segment line 21 . Segments 20, 21, 22 and 23 are controlled by SEGEN5.
LCD_SEG22	PB5				LCD segment line 22 . Segments $20,21,22$ and 23 are controlled by SEGEN5.
LCD_SEG23	PB6				LCD segment line 23 . Segments 20, 21, 22 and 23 are controlled by SEGEN5.
LETIMO_OUTO	PD6	PB11	PF0	PC4	Low Energy Timer LETIM0, output channel 0.
LETIM0_OUT1	PD7	PB12	PF1	PC5	Low Energy Timer LETIM0, output channel 1.
LEU0_RX	PD5	PB14	PE15		LEUART0 Receive input.
LEU0_TX	PD4	PB13	PE14		LEUARTO Transmit output. Also used as receive input in half duplex communication.
LEU1_RX	PC7	PA6			LEUART1 Receive input.
LEU1_TX	PC6	PA5			LEUART1 Transmit output. Also used as receive input in half duplex communication.
LFXTAL_N	PB8				Low Frequency Crystal (typically 32.768 kHz) negative pin. Also used as an optional external clock input pin.
LFXTAL_P	PB7				Low Frequency Crystal (typically 32.768 kHz) positive pin.
PCNTO_SOIN	PC13				Pulse Counter PCNT0 input number 0.
PCNT0_S1IN	PC14				Pulse Counter PCNT0 input number 1.

Alternate	LOCATION				
Functionality	0	1	2	3	Description
PCNT1_S0IN	PC4	PB3			Pulse Counter PCNT1 input number 0.
PCNT1_S1IN	PC5	PB4			Pulse Counter PCNT1 input number 1.
PCNT2_SOIN	PD0	PE8			Pulse Counter PCNT2 input number 0.
PCNT2_S1IN	PD1	PE9			Pulse Counter PCNT2 input number 1.
TIMO_CC0	PA0	PA0		PD1	Timer 0 Capture Compare input / output channel 0.
TIM0_CC1	PA1	PA1		PD2	Timer 0 Capture Compare input / output channel 1.
TIM0_CC2	PA2	PA2		PD3	Timer 0 Capture Compare input / output channel 2.
TIMO_CDTIO	PA3	PC13	PF3	PC13	Timer 0 Complimentary Deat Time Insertion channel 0.
TIMO_CDTI1	PA4	PC14	PF4	PC14	Timer 0 Complimentary Deat Time Insertion channel 1.
TIMO_CDTI2	PA5	PC15	PF5	PC15	Timer 0 Complimentary Deat Time Insertion channel 2.
TIM1_CC0	PC13	PE10			Timer 1 Capture Compare input / output channel 0.
TIM1_CC1	PC14	PE11			Timer 1 Capture Compare input / output channel 1.
TIM1_CC2	PC15	PE12			Timer 1 Capture Compare input / output channel 2.
TIM2_CC0		PA12			Timer 2 Capture Compare input / output channel 0.
TIM2_CC1		PA13			Timer 2 Capture Compare input / output channel 1.
TIM2_CC2		PA14			Timer 2 Capture Compare input / output channel 2.
USO_CLK	PE12	PE5			USART0 clock input / output.
USO_CS	PE13	PE4			USART0 chip select input / output.
US0_RX	PE11	PE6			USARTO Asynchronous Receive. USARTO Synchronous mode Master Input / Slave Output (MISO).
US0_TX	PE10	PE7			USART0 Asynchronous Transmit.Also used as receive input in half duplex communication. USARTO Synchronous mode Master Output / Slave Input (MOSI).
US1_CLK	PB7	PD2			USART1 clock input / output.
US1_CS	PB8	PD3			USART1 chip select input / output.
US1_RX		PD1			USART1 Asynchronous Receive. USART1 Synchronous mode Master Input / Slave Output (MISO).
US1_TX		PD0			USART1 Asynchronous Transmit.Also used as receive input in half duplex communication. USART1 Synchronous mode Master Output / Slave Input (MOSI).
US2_CLK	PC4	PB5			USART2 clock input / output.
US2_CS	PC5	PB6			USART2 chip select input / output.
US2_RX		PB4			USART2 Asynchronous Receive. USART2 Synchronous mode Master Input / Slave Output (MISO).

Alternate	LOCATION				
Functionality	0	1	2	3	Description

5.7.3 GPIO Pinout Overview

The specific GPIO pins available in EFM32G840 is shown in the following table. Each GPIO port is organized as 16-bit ports indicated by letters A through F, and the individual pin on this port is indicated by a number from 15 down to 0 .

Table 5.21. GPIO Pinout

Port	$\begin{aligned} & \text { Pin } \\ & 15 \end{aligned}$	$\begin{aligned} & \text { Pin } \\ & 14 \end{aligned}$	$\begin{gathered} \text { Pin } \\ 13 \end{gathered}$	$\begin{gathered} \text { Pin } \\ 12 \end{gathered}$	$\begin{aligned} & \text { Pin } \\ & 11 \end{aligned}$	$\begin{gathered} \text { Pin } \\ 10 \end{gathered}$	Pin 9	Pin 8	Pin 7	Pin 6	Pin 5	Pin 4	Pin 3	Pin 2	Pin 1	Pin 0
Port A	PA15	PA14	PA13	PA12	-	-	-	-	-	PA6	PA5	PA4	PA3	PA2	PA1	PAO
Port B	-	PB14	PB13	PB12	PB11	-	-	PB8	PB7	PB6	PB5	PB4	PB3	-	-	-
Port C	PC15	PC14	PC13	PC12	-	-	-	-	PC7	PC6	PC5	PC4	-	-	-	-
Port D	-	-	-	-	-	-	-	PD8	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
Port E	PE15	PE14	PE13	PE12	PE11	PE10	PE9	PE8	PE7	PE6	PE5	PE4	-	-	-	-
Port F	-	-	-	-	-	-	-	-	-	-	PF5	PF4	PF3	PF2	PF1	PF0

5.8 EFM32G842 (TQFP64)

5.8.1 Pinout

The EFM32G842 pinout is shown in the following figure and table. Alternate locations are denoted by "\#" followed by the location number (Multiple locations on the same pin are split with "/"). Alternate locations can be configured in the LOCATION bitfield in the *_ROUTE register in the module in question.

Figure 5.8. EFM32G842 Pinout (top view, not to scale)

Table 5.22. Device Pinout

TQFP64 Pin\# and Name		Pin Alternate Functionality / Description			
Pin \#	Pin Name	Analog	Timers	Communication	Other
1	PA0	LCD_SEG13	TIM0_CC0 \#0/1	I2C0_SDA \#0	
2	PA1	LCD_SEG14	TIM0_CC1 \#0/1	I2C0_SCL \#0	CMU_CLK1 \#0
3	PA2	LCD_SEG15	TIM0_CC2 \#0/1		CMU_CLK0 \#0
4	PA3	LCD_SEG16	TIM0_CDTI0 \#0		
5	PA4	LCD_SEG17	TIM0_CDTI1 \#0		

TQFP64 Pin\# and Name		Pin Alternate Functionality / Description			
Pin \#	Pin Name	Analog	Timers	Communication	Other
6	PA5	LCD_SEG18	TIMO_CDTI2 \#0	LEU1_TX \#1	
7	IOVDD_0	Digital IO power supply 0.			
8	VSS	Ground.			
9	PB3	LCD_SEG20	PCNT1_S0IN \#1	US2_TX \#1	
10	PB4	LCD_SEG21	PCNT1_S1IN \#1	US2_RX \#1	
11	PB5	LCD_SEG22		US2_CLK \#1	
12	PB6	LCD_SEG23		US2_CS \#1	
13	PC4	ACMP0_CH4	LETIMO OUTO \#3 PCNT1_SOIN \#0	US2_CLK \#0	
14	PC5	ACMP0_CH5	LETIMO_OUT1 \#3 PCNT1_S1IN \#0	US2_CS \#0	
15	PB7	LFXTAL_P		US1_CLK \#0	
16	PB8	LFXTAL_N		US1_CS \#0	
17	PA12	$\underset{\mathrm{P}}{\mathrm{LCD}} \underset{-}{\text { BCAP_ }}$	TIM2_CC0 \#1		
18	PA13	$\underset{\mathrm{N}}{\text { LCD_BCAP_ }}$	TIM2_CC1 \#1		
19	PA14	LCD_BEXT	TIM2_CC2 \#1		
20	RESETn	Reset input, active low.To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.			
21	PB11	DAC0_OUT0	LETIM0_OUT0 \#1		
22	VSS	Ground.			
23	AVDD_1	Analog power supply 1.			
24	PB13	HFXTAL_P		LEU0_TX \#1	
25	PB14	HFXTAL_N		LEU0_RX \#1	
26	IOVDD_3	Digital IO power supply 3.			
27	AVDD_0	Analog power supply 0.			
28	PD0	ADC0_CH0	PCNT2_SOIN \#0	US1_TX \#1	
29	PD1	ADC0_CH1	$\begin{gathered} \text { TIM0_CC0 \#3 PCNT2_S1IN } \\ \# 0 \end{gathered}$	US1_RX \#1	
30	PD2	ADC0_CH2	TIM0_CC1 \#3	US1_CLK \#1	
31	PD3	ADC0_CH3	TIM0_CC2 \#3	US1_CS \#1	
32	PD4	ADC0_CH4		LEU0_TX \#0	
33	PD5	ADC0_CH5		LEU0_RX \#0	
34	PD6	ADC0_CH6	LETIMO_OUT0 \#0	I2C0_SDA \#1	
35	PD7	ADC0_CH7	LETIM0_OUT1 \#0	12C0_SCL \#1	
36	PD8				CMU_CLK1 \#1
37	PC6	ACMP0_CH6		LEU1_TX \#0 I2C0_SDA \#2	

TQFP64 Pin\# and Name		Pin Alternate Functionality / Description			
Pin \#	Pin Name	Analog	Timers	Communication	Other
38	PC7	ACMP0_CH7		LEU1_RX \#0 I2C0_SCL \#2	
39	VDD_DREG	Power supply for on-chip voltage regulator.			
40	DECOUPLE	Decouple output for on-chip voltage regulator. An external capacitance of size $\mathrm{C}_{\text {DECOUPLE }}$ is required at this pin.			
41	PE4	LCD_COM0		US0_CS \#1	
42	PE5	LCD_COM1		US0_CLK \#1	
43	PE6	LCD_COM2		US0_RX \#1	
44	PE7	LCD_COM3		US0_TX \#1	
45	PC12	ACMP1_CH4			CMU_CLK0 \#1
46	PC13	ACMP1_CH5	TIMO_CDTIO \#1/3 TIM1_CC0 \#0 PCNTO_SOIN \#0		
47	PC14	ACMP1_CH6	TIM0_CDTI1 \#1/3 TIM1_CC1 \#0 PCNT0_S1IN \#0		
48	PC15	ACMP1_CH7	$\begin{array}{\|c} \text { TIM0_CDTI2 \#1/3 TIM1_CC2 } \\ \# 0 \end{array}$		DBG_SWO \#1
49	PF0		LETIMO_OUT0 \#2		DBG_SWCLK \#0/1
50	PF1		LETIMO_OUT1 \#2		DBG_SWDIO \#0/1
51	PF2	LCD_SEG0			ACMP1_O \#0 DBG_SWO \#0
52	PF3	LCD_SEG1	TIMO_CDTIO \#2		
53	PF4	LCD_SEG2	TIMO_CDTI1 \#2		
54	PF5	LCD_SEG3	TIMO_CDTI2 \#2		
55	IOVDD_5	Digital IO power supply 5.			
56	VSS	Ground.			
57	PE8	LCD_SEG4	PCNT2_SOIN \#1		
58	PE9	LCD_SEG5	PCNT2_S1IN \#1		
59	PE10	LCD_SEG6	TIM1_CC0 \#1	USO_TX \#0	BOOT_TX
60	PE11	LCD_SEG7	TIM1_CC1 \#1	USO_RX \#0	BOOT_RX
61	PE12	LCD_SEG8	TIM1_CC2 \#1	US0_CLK \#0	
62	PE13	LCD_SEG9		USO_CS \#0	ACMP0_O \#0
63	PE14	LCD_SEG10		LEU0_TX \#2	
64	PE15	LCD_SEG11		LEU0_RX \#2	

5.8.2 Alternate Functionality Pinout

A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in the following table. The table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.

Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout is shown in the column corresponding to LOCATION 0.

Table 5.23. Alternate functionality overview

Alternate	LOCATION				
Functionality	0	1	2	3	Description
ACMPO_CH4	PC4				Analog comparator ACMP0, channel 4.
ACMPO_CH5	PC5				Analog comparator ACMP0, channel 5.
ACMPO_CH6	PC6				Analog comparator ACMP0, channel 6.
ACMP0_CH7	PC7				Analog comparator ACMP0, channel 7.
ACMPO_O	PE13				Analog comparator ACMP0, digital output.
ACMP1_CH4	PC12				Analog comparator ACMP1, channel 4.
ACMP1_CH5	PC13				Analog comparator ACMP1, channel 5.
ACMP1_CH6	PC14				Analog comparator ACMP1, channel 6.
ACMP1_CH7	PC15				Analog comparator ACMP1, channel 7.
ACMP1_O	PF2				Analog comparator ACMP1, digital output.
ADCO_CH0	PD0				Analog to digital converter ADC0, input channel number 0.
ADC0_CH1	PD1				Analog to digital converter ADC0, input channel number 1.
ADCO_CH2	PD2				Analog to digital converter ADCO, input channel number 2.
ADC0_CH3	PD3				Analog to digital converter ADCO, input channel number 3.
ADC0_CH4	PD4				Analog to digital converter ADC0, input channel number 4.
ADC0_CH5	PD5				Analog to digital converter ADC0, input channel number 5.
ADC0_CH6	PD6				Analog to digital converter ADC0, input channel number 6.
ADC0_CH7	PD7				Analog to digital converter ADC0, input channel number 7.
BOOT_RX	PE11				Bootloader RX.
BOOT_TX	PE10				Bootloader TX.
CMU_CLK0	PA2	PC12			Clock Management Unit, clock output number 0.
CMU_CLK1	PA1	PD8			Clock Management Unit, clock output number 1.
DAC0_OUT0	PB11				Digital to Analog Converter DAC0 output channel number 0.
DBG_SWCLK	PF0	PF0			Debug-interface Serial Wire clock input. Note that this function is enabled to pin out of reset, and has a built-in pull down.
DBG_SWDIO	PF1	PF1			Debug-interface Serial Wire data input / output. Note that this function is enabled to pin out of reset, and has a built-in pull up.

Alternate	LOCATION				
Functionality	0	1	2	3	Description
DBG_SWO	PF2	PC15			Debug-interface Serial Wire viewer Output. Note that this function is not enabled after reset, and must be enabled by software to be used.
HFXTAL_N	PB14				High Frequency Crystal negative pin. Also used as external optional clock input pin.
HFXTAL_P	PB13				High Frequency Crystal positive pin.
I2C0_SCL	PA1	PD7	PC7		I2C0 Serial Clock Line input / output.
I2C0_SDA	PAO	PD6	PC6		I2C0 Serial Data input / output.
LCD_BCAP_N	PA13				LCD voltage booster (optional), boost capacitor, negative pin. If using the LCD voltage booster, connect a 22 nF capacitor between LCD_BCAP_N and LCD_BCAP_P.
LCD_BCAP_P	PA12				LCD voltage booster (optional), boost capacitor, positive pin. If using the LCD voltage booster, connect a 22 nF capacitor between LCD_BCAP_N and LCD_BCAP_P.
LCD_BEXT	PA14				LCD voltage booster (optional), boost output. If using the LCD voltage booster, connect a 1 uF capacitor between this pin and VSS. An external LCD voltage may also be applied to this pin if the booster is not enabled. If AVDD is used directly as the LCD supply voltage, this pin may be left unconnected or used as a GPIO.
LCD_COM0	PE4				LCD driver common line number 0.
LCD_COM1	PE5				LCD driver common line number 1.
LCD_COM2	PE6				LCD driver common line number 2.
LCD_COM3	PE7				LCD driver common line number 3.
LCD_SEG0	PF2				LCD segment line 0 . Segments $0,1,2$ and 3 are controlled by SEGENO.
LCD_SEG1	PF3				LCD segment line 1 . Segments $0,1,2$ and 3 are controlled by SEGENO.
LCD_SEG2	PF4				LCD segment line 2 . Segments $0,1,2$ and 3 are controlled by SEGENO.
LCD_SEG3	PF5				LCD segment line 3 . Segments $0,1,2$ and 3 are controlled by SEGENO.
LCD_SEG4	PE8				LCD segment line 4 . Segments $4,5,6$ and 7 are controlled by SEGEN1.
LCD_SEG5	PE9				LCD segment line 5 . Segments 4, 5, 6 and 7 are controlled by SEGEN1.
LCD_SEG6	PE10				LCD segment line 6 . Segments 4, 5, 6 and 7 are controlled by SEGEN1.
LCD_SEG7	PE11				LCD segment line 7 . Segments $4,5,6$ and 7 are controlled by SEGEN1.
LCD_SEG8	PE12				LCD segment line 8 . Segments 8, 9, 10 and 11 are controlled by SEGEN2.

Alternate	LOCATION				
Functionality	0	1	2	3	Description
LCD_SEG9	PE13				LCD segment line 9 . Segments $8,9,10$ and 11 are controlled by SEGEN2.
LCD_SEG10	PE14				LCD segment line 10 . Segments $8,9,10$ and 11 are controlled by SEGEN2.
LCD_SEG11	PE15				LCD segment line 11 . Segments $8,9,10$ and 11 are controlled by SEGEN2.
LCD_SEG13	PA0				LCD segment line 13 . Segments $12,13,14$ and 15 are controlled by SEGEN3.
LCD_SEG14	PA1				LCD segment line 14 . Segments $12,13,14$ and 15 are controlled by SEGEN3.
LCD_SEG15	PA2				LCD segment line 15 . Segments $12,13,14$ and 15 are controlled by SEGEN3.
LCD_SEG16	PA3				LCD segment line 16 . Segments 16, 17, 18 and 19 are controlled by SEGEN4.
LCD_SEG17	PA4				LCD segment line 17 . Segments 16, 17, 18 and 19 are controlled by SEGEN4.
LCD_SEG18	PA5				LCD segment line 18 . Segments $16,17,18$ and 19 are controlled by SEGEN4.
LCD_SEG20	PB3				LCD segment line 20 . Segments 20, 21, 22 and 23 are controlled by SEGEN5.
LCD_SEG21	PB4				LCD segment line 21 . Segments $20,21,22$ and 23 are controlled by SEGEN5.
LCD_SEG22	PB5				LCD segment line 22 . Segments 20, 21, 22 and 23 are controlled by SEGEN5.
LCD_SEG23	PB6				LCD segment line 23 . Segments 20, 21, 22 and 23 are controlled by SEGEN5.
LETIMO_OUTO	PD6	PB11	PF0	PC4	Low Energy Timer LETIM0, output channel 0.
LETIMO_OUT1	PD7		PF1	PC5	Low Energy Timer LETIM0, output channel 1.
LEU0_RX	PD5	PB14	PE15		LEUART0 Receive input.
LEU0_TX	PD4	PB13	PE14		LEUART0 Transmit output. Also used as receive input in half duplex communication.
LEU1_RX	PC7				LEUART1 Receive input.
LEU1_TX	PC6	PA5			LEUART1 Transmit output. Also used as receive input in half duplex communication.
LFXTAL_N	PB8				Low Frequency Crystal (typically 32.768 kHz) negative pin. AIso used as an optional external clock input pin.
LFXTAL_P	PB7				Low Frequency Crystal (typically 32.768 kHz) positive pin.
PCNTO_SOIN	PC13				Pulse Counter PCNT0 input number 0.
PCNT0_S1IN	PC14				Pulse Counter PCNT0 input number 1.
PCNT1_SOIN	PC4	PB3			Pulse Counter PCNT1 input number 0.
PCNT1_S1IN	PC5	PB4			Pulse Counter PCNT1 input number 1.
PCNT2_SOIN	PD0	PE8			Pulse Counter PCNT2 input number 0.
PCNT2_S1IN	PD1	PE9			Pulse Counter PCNT2 input number 1.

Alternate	LOCATION				
Functionality	0	1	2	3	Description
TIMO_CC0	PA0	PA0		PD1	Timer 0 Capture Compare input / output channel 0.
TIM0_CC1	PA1	PA1		PD2	Timer 0 Capture Compare input/ output channel 1.
TIMO_CC2	PA2	PA2		PD3	Timer 0 Capture Compare input / output channel 2.
TIMO_CDTIO	PA3	PC13	PF3	PC13	Timer 0 Complimentary Deat Time Insertion channel 0.
TIMO_CDTI1	PA4	PC14	PF4	PC14	Timer 0 Complimentary Deat Time Insertion channel 1.
TIMO_CDTI2	PA5	PC15	PF5	PC15	Timer 0 Complimentary Deat Time Insertion channel 2.
TIM1_CC0	PC13	PE10			Timer 1 Capture Compare input / output channel 0.
TIM1_CC1	PC14	PE11			Timer 1 Capture Compare input/ output channel 1.
TIM1_CC2	PC15	PE12			Timer 1 Capture Compare input / output channel 2.
TIM2_CC0		PA12			Timer 2 Capture Compare input / output channel 0.
TIM2_CC1		PA13			Timer 2 Capture Compare input/ output channel 1.
TIM2_CC2		PA14			Timer 2 Capture Compare input / output channel 2.
USO_CLK	PE12	PE5			USART0 clock input / output.
USO_CS	PE13	PE4			USART0 chip select input / output.
US0_RX	PE11	PE6			USARTO Asynchronous Receive. USART0 Synchronous mode Master Input / Slave Output (MISO).
USO_TX	PE10	PE7			USARTO Asynchronous Transmit.Also used as receive input in half duplex communication. USART0 Synchronous mode Master Output / Slave Input (MOSI).
US1_CLK	PB7	PD2			USART1 clock input / output.
US1_CS	PB8	PD3			USART1 chip select input / output.
US1_RX		PD1			USART1 Asynchronous Receive. USART1 Synchronous mode Master Input / Slave Output (MISO).
US1_TX		PD0			USART1 Asynchronous Transmit.Also used as receive input in half duplex communication. USART1 Synchronous mode Master Output / Slave Input (MOSI).
US2_CLK	PC4	PB5			USART2 clock input / output.
US2_CS	PC5	PB6			USART2 chip select input / output.
US2_RX		PB4			USART2 Asynchronous Receive. USART2 Synchronous mode Master Input / Slave Output (MISO).
US2_TX		PB3			USART2 Asynchronous Transmit.Also used as receive input in half duplex communication. USART2 Synchronous mode Master Output / Slave Input (MOSI).

5.8.3 GPIO Pinout Overview

The specific GPIO pins available in EFM32G842 is shown in the following table. Each GPIO port is organized as 16-bit ports indicated by letters A through F, and the individual pin on this port is indicated by a number from 15 down to 0 .

Table 5.24. GPIO Pinout

Port	$\begin{gathered} \text { Pin } \\ 15 \end{gathered}$	$\begin{gathered} \text { Pin } \\ 14 \end{gathered}$	$\begin{gathered} \text { Pin } \\ 13 \end{gathered}$	$\begin{gathered} \text { Pin } \\ 12 \end{gathered}$	$\begin{gathered} \text { Pin } \\ 11 \end{gathered}$	$\begin{gathered} \text { Pin } \\ 10 \end{gathered}$	Pin 9	Pin 8	Pin 7	Pin 6	Pin 5	Pin 4	Pin 3	Pin 2	Pin 1	Pin 0
Port A	-	PA14	PA13	PA12	-	-	-	-	-	-	PA5	PA4	PA3	PA2	PA1	PA0
Port B	-	PB14	PB13	-	PB11	-	-	PB8	PB7	PB6	PB5	PB4	PB3	-	-	-
Port C	PC15	PC14	PC13	PC12	-	-	-	-	PC7	PC6	PC5	PC4	-	-	-	-
Port D	-	-	-	-	-	-	-	PD8	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
Port E	PE15	PE14	PE13	PE12	PE11	PE10	PE9	PE8	PE7	PE6	PE5	PE4	-	-	-	-
Port F	-	-	-	-	-	-	-	-	-	-	PF5	PF4	PF3	PF2	PF1	PF0

5.9 EFM32G880 (LQFP100)

5.9.1 Pinout

The EFM32G880 pinout is shown in the following figure and table. Alternate locations are denoted by "\#" followed by the location number (Multiple locations on the same pin are split with "/"). Alternate locations can be configured in the LOCATION bitfield in the *_ROUTE register in the module in question.

Figure 5.9. EFM32G880 Pinout (top view, not to scale)

Table 5.25. Device Pinout

LQFP100 Pin\# and Name	Pin Alternate Functionality / Description					
Pin \#	Pin Name	Analog	EBI	Timers	Communication	Other
1	PA0	LCD_SEG 13	EBI_AD09 \#0	TIM0_CC0 \#0/1	I2C0_SDA \#0	
2	PA1	LCD_SEG 14	EBI_AD10 \#0	TIM0_CC1 \#0/1	I2C0_SCL \#0	CMU_CLK1 \#0
3	PA2	LCD_SEG 15	EBI_AD11 \#0	TIM0_CC2 \#0/1		CMU_CLK0 \#0

LQFP100 Pin\# and Name		Pin Alternate Functionality / Description				
Pin \#	Pin Name	Analog	EBI	Timers	Communication	Other
4	PA3	$\underset{16}{\text { LCD_SEG }}$	EBI_AD12 \#0	TIMO_CDTIO \#0	U0_TX \#2	
5	PA4	$\text { LCD_SEG }_{17}$	EBI_AD13 \#0	TIM0_CDTI1 \#0	U0_RX \#2	
6	PA5	$\begin{gathered} \text { LCD_SEG } \\ 18 \end{gathered}$	EBI_AD14 \#0	TIM0_CDTI2 \#0	LEU1_TX \#1	
7	PA6	$\underset{19}{\text { LCD_SEG }}$	EBI_AD15 \#0		LEU1_RX \#1	
8	IOVDD_0	Digital IO power supply 0.				
9	PB0	$\begin{gathered} \text { LCD_SEG } \\ 32 \end{gathered}$		TIM1_CC0 \#2		
10	PB1	$\begin{gathered} \text { LCD_SEG } \\ 33 \end{gathered}$		TIM1_CC1 \#2		
11	PB2	$\begin{gathered} \text { LCD_SEG } \\ 34 \end{gathered}$		TIM1_CC2 \#2		
12	PB3	$\underset{20}{\text { LCD_SEG }}$		PCNT1_S0IN \#1	US2_TX \#1	
13	PB4	$\underset{21}{\text { LCD_SEG }}$		PCNT1_S1IN \#1	US2_RX \#1	
14	PB5	$\begin{gathered} \text { LCD_SEG } \\ 22 \end{gathered}$			US2_CLK \#1	
15	PB6	$\begin{gathered} \text { LCD_SEG } \\ 23 \end{gathered}$			US2_CS \#1	
16	VSS	Ground.				
17	IOVDD_1	Digital IO power supply 1.				
18	PC0	$\begin{gathered} \text { ACMPO_C } \\ \mathrm{HO} \end{gathered}$		PCNTO_SOIN \#2	US1_TX \#0	
19	PC1	$\begin{gathered} \text { ACMPO_C } \\ \mathrm{H} 1 \end{gathered}$		PCNT0_S1IN \#2	US1_RX \#0	
20	PC2	$\begin{gathered} \text { ACMPO_C } \\ \mathrm{H} 2 \end{gathered}$			US2_TX \#0	
21	PC3	$\begin{gathered} \text { ACMPO_C } \\ \mathrm{H} 3 \end{gathered}$			US2_RX \#0	
22	PC4	$\begin{gathered} \text { ACMPO_C } \\ \mathrm{H} 4 \end{gathered}$		LETIMO_OUT0 \#3 PCNT1_S0IN \#0	US2_CLK \#0	
23	PC5	$\begin{gathered} \text { ACMPO_C } \\ \mathrm{H} 5 \end{gathered}$		LETIM0_OUT1 \#3 PCNT1_S1IN \#0	US2_CS \#0	
24	PB7	LFXTAL_P			US1_CLK \#0	
25	PB8	LFXTAL_N			US1_CS \#0	
26	PA7	$\underset{35}{\text { LCD_SEG }}$				
27	PA8	$\begin{gathered} \text { LCD_SEG } \\ 36 \end{gathered}$		TIM2_CC0 \#0		

LQFP100 Pin\# and Name		Pin Alternate Functionality / Description				
Pin \#	Pin Name	Analog	EBI	Timers	Communication	Other
28	PA9	$\begin{gathered} \text { LCD_SEG } \\ 37 \end{gathered}$		TIM2_CC1 \#0		
29	PA10	$\begin{gathered} \text { LCD_SEG } \\ 38 \end{gathered}$		TIM2_CC2 \#0		
30	PA11	$\begin{gathered} \text { LCD_SEG } \\ 39 \end{gathered}$				
31	IOVDD_2	Digital IO power supply 2.				
32	VSS	Ground.				
33	PA12	$\begin{gathered} \text { LCD_BCA } \\ \text { P_P } \end{gathered}$		TIM2_CC0 \#1		
34	PA13	$\begin{gathered} \text { LCD_BCA } \\ \text { P_N } \end{gathered}$		TIM2_CC1 \#1		
35	PA14	$\operatorname{LCD}_{\overline{\mathrm{T}}} \mathrm{BEX}$		TIM2_CC2 \#1		
36	RESETn	Reset input, active low.To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.				
37	PB9					
38	PB10					
39	PB11	$\underset{\text { T0 }}{\text { DACO_OU }}$		LETIMO_OUT0 \#1		
40	PB12	$\underset{\mathrm{T}_{1}}{\text { DACO_OU }}$		LETIM0_OUT1 \#1		
41	AVDD_1	Analog power supply 1.				
42	PB13	$\underset{\mathrm{P}}{\mathrm{HFXTAL}_{-}}$			LEU0_TX \#1	
43	PB14	$\begin{gathered} \mathrm{HFXTAL}_{-} \\ \mathrm{N} \end{gathered}$			LEU0_RX \#1	
44	IOVDD_3	Digital IO power supply 3.				
45	AVDD_0	Analog power supply 0.				
46	PD0	$\begin{gathered} \text { ADCO_CH } \\ 0 \end{gathered}$		PCNT2_SOIN \#0	US1_TX \#1	
47	PD1	$\underset{1}{\mathrm{ADCO}} \mathrm{CH}$		$\begin{gathered} \text { TIM0_CC0 \#3 } \\ \text { PCNT2_S1IN \#0 } \end{gathered}$	US1_RX \#1	
48	PD2	$\underset{2}{\mathrm{ADCO} C H}$		TIM0_CC1 \#3	US1_CLK \#1	
49	PD3	$\underset{3}{\mathrm{ADCO}} \mathrm{CH}$		TIM0_CC2 \#3	US1_CS \#1	
50	PD4	$\underset{4}{\mathrm{ADCO}} \mathrm{CH}$			LEU0_TX \#0	
51	PD5	$\underset{5}{\mathrm{ADCO}}{ }_{5}$			LEU0_RX \#0	
52	PD6	$\begin{gathered} \text { ADCO_CH } \\ 6 \end{gathered}$		LETIMO_OUTO \#0	12C0_SDA \#1	

LQFP100 Pin\# and Name		Pin Alternate Functionality / Description				
Pin \#	Pin Name	Analog	EBI	Timers	Communication	Other
53	PD7	$\underset{7}{\mathrm{ADCO}} \mathrm{CH}$		LETIM0_OUT1 \#0	I2C0_SCL \#1	
54	PD8					CMU_CLK1 \#1
55	PC6	$\begin{gathered} \text { ACMPO_C } \\ \mathrm{H6} \end{gathered}$			$\begin{aligned} & \text { LEU1_TX \#0 } \\ & \text { I2C0_SDA \#2 } \end{aligned}$	
56	PC7	$\begin{gathered} \text { ACMPO_C } \\ \mathrm{H7} \end{gathered}$			LEU1_RX \#0 I2C0_SCL \#2	
57	$\mathrm{VDD}_{\overline{\mathrm{G}}} \mathrm{DRE}$	Power supply for on-chip voltage regulator.				
58	VSS	Ground.				
59	$\begin{aligned} & \text { DECOU- } \\ & \text { PLE } \end{aligned}$	Decouple output for on-chip voltage regulator. An external capacitance of size $\mathrm{C}_{\text {DECOUPLE }}$ is required at this pin.				
60	PEO			PCNTO_SOIN \#1	U0_TX \#1	
61	PE1			PCNT0_S1IN \#1	U0_RX \#1	
62	PE2					ACMP0_O \#1
63	PE3					ACMP1_O \#1
64	PE4	$\mathrm{LCD}_{0} \mathrm{COM}$			US0_CS \#1	
65	PE5	$\text { LCD_COM }_{1}$			US0_CLK \#1	
66	PE6	$\underset{2}{\mathrm{LCD}} \underset{2}{ }$			US0_RX \#1	
67	PE7	$\mathrm{LCD}_{3} \mathrm{COM}$			US0_TX \#1	
68	PC8	$\begin{gathered} \text { ACMP1_C } \\ \mathrm{H0} \end{gathered}$		TIM2_CC0 \#2	US0_CS \#2	
69	PC9	$\begin{gathered} \text { ACMP1_C } \\ \mathrm{H} 1 \end{gathered}$		TIM2_CC1 \#2	US0_CLK \#2	
70	PC10	$\begin{gathered} \text { ACMP1_C } \\ \mathrm{H} 2 \end{gathered}$		TIM2_CC2 \#2	US0_RX \#2	
71	PC11	$\underset{\mathrm{H}_{3}}{\mathrm{ACMP} 1 _\mathrm{C}}$			US0_TX \#2	
72	PC12	$\begin{gathered} \text { ACMP1_C } \\ \mathrm{H} 4 \end{gathered}$				CMU_CLK0 \#1
73	PC13	$\underset{\mathrm{H} 5}{\mathrm{ACMP} 1 _C}$		$\begin{gathered} \text { TIMO_CDTIO \#1/3 } \\ \text { TIM1_CC0 \#0 } \\ \text { PCNT0_SOIN \#0 } \\ \hline \end{gathered}$		
74	PC14	$\begin{gathered} \text { ACMP1_C } \\ \mathrm{H6} \end{gathered}$		$\begin{gathered} \text { TIM0_CDTI1 \#1/3 } \\ \text { TIM1_CC1 \#0 } \\ \text { PCNT0_S1IN \#0 } \end{gathered}$	U0_TX \#3	
75	PC15	$\begin{gathered} \text { ACMP1_C } \\ \mathrm{H} 7 \end{gathered}$		$\begin{gathered} \text { TIMO_CDTI2 \#1/3 } \\ \text { TIM1_CC2 \#0 } \end{gathered}$	U0_RX \#3	DBG_SWO \#1
76	PF0			LETIM0_OUT0 \#2		DBG_SWCLK \#0/1

LQFP100 Pin\# and Name		Pin Alternate Functionality / Description				
Pin \#	Pin Name	Analog	EBI	Timers	Communication	Other
77	PF1			LETIM0_OUT1 \#2		DBG_SWDIO \#0/1
78	PF2	$\underset{0}{\text { LCD_SEG }}$	EBI_ARDY \#0			ACMP1_O \#0 DBG_SWO \#0
79	PF3	$\text { LCD_S }_{1} \mathrm{SEG}$	EBI_ALE \#0	TIMO_CDTIO \#2		
80	PF4	$\text { LCD_S }_{2} \text { SEG }$	EBI_WEn \#0	TIM0_CDTI1 \#2		
81	PF5	$\text { LCD_S }_{3} \text { SEG }$	EBI_REn \#0	TIMO_CDTI2 \#2		
82	IOVDD_5	Digital IO power supply 5.				
83	VSS	Ground.				
84	PF6	$\underset{24}{\text { LCD_SEG }}$		TIM0_CC0 \#2	U0_TX \#0	
85	PF7	$\underset{25}{\text { LCD_SEG }}$		TIM0_CC1 \#2	U0_RX \#0	
86	PF8	$\underset{26}{\text { LCD_SEG }}$		TIM0_CC2 \#2		
87	PF9	$\underset{27}{\text { LCD_SEG }}$				
88	PD9	$\begin{gathered} \text { LCD_SEG } \\ 28 \end{gathered}$	EBI_CS0 \#0			
89	PD10	$\underset{29}{\text { LCD_SEG }}$	EBI_CS1 \#0			
90	PD11	$\begin{gathered} \text { LCD_SEG } \\ 30 \end{gathered}$	EBI_CS2 \#0			
91	PD12	$\underset{31}{\text { LCD_SEG }}$	EBI_CS3 \#0			
92	PE8	$\operatorname{LCD}_{4} \mathrm{SEG}$	EBI_AD00 \#0	PCNT2_SOIN \#1		
93	PE9	$\text { LCD_S }_{5} \text { SEG }$	EBI_AD01 \#0	PCNT2_S1IN \#1		
94	PE10	$\operatorname{LCD}_{6} \text { SEG }$	EBI_AD02 \#0	TIM1_CC0 \#1	US0_TX \#0	BOOT_TX
95	PE11	$\text { LCD_5 }_{7} \mathrm{SEG}$	EBI_AD03 \#0	TIM1_CC1 \#1	US0_RX \#0	BOOT_RX
96	PE12	$\text { LCD_8 }_{8} \mathrm{SEG}$	EBI_AD04 \#0	TIM1_CC2 \#1	USO_CLK \#0	
97	PE13	$\text { LCD_S }_{9} \text { SEG }$	EBI_AD05 \#0		USO_CS \#0	ACMPO_O \#0
98	PE14	$\underset{10}{\text { LCD_SEG }}$	EBI_AD06 \#0		LEU0_TX \#2	
99	PE15	$\text { LCD_S }_{11} \mathrm{SEG}$	EBI_AD07 \#0		LEU0_RX \#2	

LQFP100 Pin\# and Name	Pin Alternate Functionality / Description					
Pin \#	Pin Name	Analog	EBI	Timers	Communication	Other
100	PA15	LCD_SEG 12	EBI_AD08 \#0			

5.9.2 Alternate Functionality Pinout

A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in the following table. The table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.

Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout is shown in the column corresponding to LOCATION 0.

Table 5.26. Alternate functionality overview

Alternate	LOCATION				
Functionality	0	1	2	3	Description
ACMPO_CH0	PC0				Analog comparator ACMP0, channel 0.
ACMP0_CH1	PC1				Analog comparator ACMP0, channel 1.
ACMPO_CH2	PC2				Analog comparator ACMP0, channel 2.
ACMPO_CH3	PC3				Analog comparator ACMP0, channel 3.
ACMPO_CH4	PC4				Analog comparator ACMP0, channel 4.
ACMP0_CH5	PC5				Analog comparator ACMP0, channel 5.
ACMP0_CH6	PC6				Analog comparator ACMP0, channel 6.
ACMP0_CH7	PC7				Analog comparator ACMP0, channel 7.
ACMP0_O	PE13	PE2			Analog comparator ACMP0, digital output.
ACMP1_CH0	PC8				Analog comparator ACMP1, channel 0.
ACMP1_CH1	PC9				Analog comparator ACMP1, channel 1.
ACMP1_CH2	PC10				Analog comparator ACMP1, channel 2.
ACMP1_CH3	PC11				Analog comparator ACMP1, channel 3.
ACMP1_CH4	PC12				Analog comparator ACMP1, channel 4.
ACMP1_CH5	PC13				Analog comparator ACMP1, channel 5.
ACMP1_CH6	PC14				Analog comparator ACMP1, channel 6.
ACMP1_CH7	PC15				Analog comparator ACMP1, channel 7.
ACMP1_O	PF2	PE3			Analog comparator ACMP1, digital output.
ADC0_CH0	PD0				Analog to digital converter ADCO, input channel number 0.
ADC0_CH1	PD1				Analog to digital converter ADC0, input channel number 1.
ADC0_CH2	PD2				Analog to digital converter ADC0, input channel number 2.
ADC0_CH3	PD3				Analog to digital converter ADCO, input channel number 3.
ADC0_CH4	PD4				Analog to digital converter ADC0, input channel number 4.
ADC0_CH5	PD5				Analog to digital converter ADC0, input channel number 5.
ADC0_CH6	PD6				Analog to digital converter ADC0, input channel number 6.
ADC0_CH7	PD7				Analog to digital converter ADCO, input channel number 7.
BOOT_RX	PE11				Bootloader RX.
BOOT_TX	PE10				Bootloader TX.
CMU_CLK0	PA2	PC12			Clock Management Unit, clock output number 0.
CMU_CLK1	PA1	PD8			Clock Management Unit, clock output number 1.

Alternate	LOCATION				
Functionality	0	1	2	3	Description
DAC0_OUT0	PB11				Digital to Analog Converter DAC0 output channel number 0.
DAC0_OUT1	PB12				Digital to Analog Converter DAC0 output channel number 1.
DBG_SWCLK	PF0	PF0			Debug-interface Serial Wire clock input. Note that this function is enabled to pin out of reset, and has a built-in pull down.
DBG_SWDIO	PF1	PF1			Debug-interface Serial Wire data input / output. Note that this function is enabled to pin out of reset, and has a built-in pull up.
DBG_SWO	PF2	PC15			Debug-interface Serial Wire viewer Output. Note that this function is not enabled after reset, and must be enabled by software to be used.
EBI_AD00	PE8				External Bus Interface (EBI) address and data input / output pin 00.
EBI_AD01	PE9				External Bus Interface (EBI) address and data input / output pin 01.
EBI_AD02	PE10				External Bus Interface (EBI) address and data input / output pin 02.
EBI_AD03	PE11				External Bus Interface (EBI) address and data input / output pin 03.
EBI_AD04	PE12				External Bus Interface (EBI) address and data input / output pin 04.
EBI_AD05	PE13				External Bus Interface (EBI) address and data input / output pin 05.
EBI_AD06	PE14				External Bus Interface (EBI) address and data input / output pin 06.
EBI_AD07	PE15				External Bus Interface (EBI) address and data input / output pin 07.
EBI_AD08	PA15				External Bus Interface (EBI) address and data input / output pin 08.
EBI_AD09	PAO				External Bus Interface (EBI) address and data input / output pin 09.
EBI_AD10	PA1				External Bus Interface (EBI) address and data input / output pin 10.
EBI_AD11	PA2				External Bus Interface (EBI) address and data input / output pin 11.
EBI_AD12	PA3				External Bus Interface (EBI) address and data input / output pin 12.
EBI_AD13	PA4				External Bus Interface (EBI) address and data input / output pin 13.
EBI_AD14	PA5				External Bus Interface (EBI) address and data input / output pin 14.
EBI_AD15	PA6				External Bus Interface (EBI) address and data input / output pin 15.
EBI_ALE	PF3				External Bus Interface (EBI) Address Latch Enable output.

Alternate	LOCATION				
Functionality	0	1	2	3	Description
EBI_ARDY	PF2				External Bus Interface (EBI) Hardware Ready Control input.
EBI_CSO	PD9				External Bus Interface (EBI) Chip Select output 0.
EBI_CS1	PD10				External Bus Interface (EBI) Chip Select output 1.
EBI_CS2	PD11				External Bus Interface (EBI) Chip Select output 2.
EBI_CS3	PD12				External Bus Interface (EBI) Chip Select output 3.
EBI_REn	PF5				External Bus Interface (EBI) Read Enable output.
EBI_WEn	PF4				External Bus Interface (EBI) Write Enable output.
HFXTAL_N	PB14				High Frequency Crystal negative pin. Also used as external optional clock input pin.
HFXTAL_P	PB13				High Frequency Crystal positive pin.
12C0_SCL	PA1	PD7	PC7		I2C0 Serial Clock Line input / output.
I2C0_SDA	PA0	PD6	PC6		I2C0 Serial Data input / output.
LCD_BCAP_N	PA13				LCD voltage booster (optional), boost capacitor, negative pin. If using the LCD voltage booster, connect a 22 nF capacitor between LCD_BCAP_N and LCD_BCAP_P.
LCD_BCAP_P	PA12				LCD voltage booster (optional), boost capacitor, positive pin. If using the LCD voltage booster, connect a 22 nF capacitor between LCD_BCAP_N and LCD_BCAP_P.
LCD_BEXT	PA14				LCD voltage booster (optional), boost output. If using the LCD voltage booster, connect a 1 uF capacitor between this pin and VSS. An external LCD voltage may also be applied to this pin if the booster is not enabled. If $A V D D$ is used directly as the LCD supply voltage, this pin may be left unconnected or used as a GPIO.
LCD_COM0	PE4				LCD driver common line number 0 .
LCD_COM1	PE5				LCD driver common line number 1.
LCD_COM2	PE6				LCD driver common line number 2.
LCD_COM3	PE7				LCD driver common line number 3.
LCD_SEG0	PF2				LCD segment line 0 . Segments $0,1,2$ and 3 are controlled by SEGENO.
LCD_SEG1	PF3				LCD segment line 1 . Segments $0,1,2$ and 3 are controlled by SEGENO.
LCD_SEG2	PF4				LCD segment line 2 . Segments $0,1,2$ and 3 are controlled by SEGENO.
LCD_SEG3	PF5				LCD segment line 3 . Segments $0,1,2$ and 3 are controlled by SEGENO.
LCD_SEG4	PE8				LCD segment line 4 . Segments 4,5,6 and 7 are controlled by SEGEN1.
LCD_SEG5	PE9				LCD segment line 5 . Segments 4, 5, 6 and 7 are controlled by SEGEN1.
LCD_SEG6	PE10				LCD segment line 6 . Segments 4, 5, 6 and 7 are controlled by SEGEN1.

Alternate	LOCATION				
Functionality	0	1	2	3	Description
LCD_SEG7	PE11				LCD segment line 7 . Segments $4,5,6$ and 7 are controlled by SEGEN1.
LCD_SEG8	PE12				LCD segment line 8 . Segments 8, 9, 10 and 11 are controlled by SEGEN2.
LCD_SEG9	PE13				LCD segment line 9. Segments 8, 9, 10 and 11 are controlled by SEGEN2.
LCD_SEG10	PE14				LCD segment line 10 . Segments $8,9,10$ and 11 are controlled by SEGEN2.
LCD_SEG11	PE15				LCD segment line 11 . Segments $8,9,10$ and 11 are controlled by SEGEN2.
LCD_SEG12	PA15				LCD segment line 12 . Segments $12,13,14$ and 15 are controlled by SEGEN3.
LCD_SEG13	PA0				LCD segment line 13 . Segments $12,13,14$ and 15 are controlled by SEGEN3.
LCD_SEG14	PA1				LCD segment line 14 . Segments $12,13,14$ and 15 are controlled by SEGEN3.
LCD_SEG15	PA2				LCD segment line 15 . Segments $12,13,14$ and 15 are controlled by SEGEN3.
LCD_SEG16	PA3				LCD segment line 16 . Segments $16,17,18$ and 19 are controlled by SEGEN4.
LCD_SEG17	PA4				LCD segment line 17 . Segments $16,17,18$ and 19 are controlled by SEGEN4.
LCD_SEG18	PA5				LCD segment line 18 . Segments 16, 17, 18 and 19 are controlled by SEGEN4.
LCD_SEG19	PA6				LCD segment line 19 . Segments 16, 17, 18 and 19 are controlled by SEGEN4.
LCD_SEG20	PB3				LCD segment line 20 . Segments $20,21,22$ and 23 are controlled by SEGEN5.
LCD_SEG21	PB4				LCD segment line 21 . Segments $20,21,22$ and 23 are controlled by SEGEN5.
LCD_SEG22	PB5				LCD segment line 22 . Segments $20,21,22$ and 23 are controlled by SEGEN5.
LCD_SEG23	PB6				LCD segment line 23 . Segments 20, 21, 22 and 23 are controlled by SEGEN5.
LCD_SEG24	PF6				LCD segment line 24 . Segments $24,25,26$ and 27 are controlled by SEGEN6.
LCD_SEG25	PF7				LCD segment line 25 . Segments $24,25,26$ and 27 are controlled by SEGEN6.
LCD_SEG26	PF8				LCD segment line 26 . Segments $24,25,26$ and 27 are controlled by SEGEN6.
LCD_SEG27	PF9				LCD segment line 27 . Segments $24,25,26$ and 27 are controlled by SEGEN6.
LCD_SEG28	PD9				LCD segment line 28 . Segments $28,29,30$ and 31 are controlled by SEGEN7.
LCD_SEG29	PD10				LCD segment line 29 . Segments $28,29,30$ and 31 are controlled by SEGEN7.

Alternate	LOCATION				
Functionality	0	1	2	3	Description
LCD_SEG30	PD11				LCD segment line 30 . Segments $28,29,30$ and 31 are controlled by SEGEN7.
LCD_SEG31	PD12				LCD segment line 31 . Segments $28,29,30$ and 31 are controlled by SEGEN7.
LCD_SEG32	PB0				LCD segment line 32 . Segments $32,33,34$ and 35 are controlled by SEGEN8.
LCD_SEG33	PB1				LCD segment line 33 . Segments $32,33,34$ and 35 are controlled by SEGEN8.
LCD_SEG34	PB2				LCD segment line 34 . Segments $32,33,34$ and 35 are controlled by SEGEN8.
LCD_SEG35	PA7				LCD segment line 35 . Segments $32,33,34$ and 35 are controlled by SEGEN8.
LCD_SEG36	PA8				LCD segment line 36 . Segments $36,37,38$ and 39 are controlled by SEGEN9.
LCD_SEG37	PA9				LCD segment line 37 . Segments $36,37,38$ and 39 are controlled by SEGEN9.
LCD_SEG38	PA10				LCD segment line 38 . Segments $36,37,38$ and 39 are controlled by SEGEN9.
LCD_SEG39	PA11				LCD segment line 39 . Segments $36,37,38$ and 39 are controlled by SEGEN9.
LETIMO_OUT0	PD6	PB11	PF0	PC4	Low Energy Timer LETIM0, output channel 0.
LETIM0_OUT1	PD7	PB12	PF1	PC5	Low Energy Timer LETIM0, output channel 1.
LEU0_RX	PD5	PB14	PE15		LEUART0 Receive input.
LEU0_TX	PD4	PB13	PE14		LEUARTO Transmit output. Also used as receive input in half duplex communication.
LEU1_RX	PC7	PA6			LEUART1 Receive input.
LEU1_TX	PC6	PA5			LEUART1 Transmit output. Also used as receive input in half duplex communication.
LFXTAL_N	PB8				Low Frequency Crystal (typically 32.768 kHz) negative pin. AIso used as an optional external clock input pin.
LFXTAL_P	PB7				Low Frequency Crystal (typically 32.768 kHz) positive pin.
PCNTO_SOIN	PC13	PE0	PC0		Pulse Counter PCNT0 input number 0.
PCNT0_S1IN	PC14	PE1	PC1		Pulse Counter PCNT0 input number 1.
PCNT1_S0IN	PC4	PB3			Pulse Counter PCNT1 input number 0.
PCNT1_S1IN	PC5	PB4			Pulse Counter PCNT1 input number 1.
PCNT2_SOIN	PD0	PE8			Pulse Counter PCNT2 input number 0.
PCNT2_S1IN	PD1	PE9			Pulse Counter PCNT2 input number 1.
TIMO_CCO	PA0	PA0	PF6	PD1	Timer 0 Capture Compare input / output channel 0.
TIM0_CC1	PA1	PA1	PF7	PD2	Timer 0 Capture Compare input / output channel 1.
TIMO_CC2	PA2	PA2	PF8	PD3	Timer 0 Capture Compare input / output channel 2.
TIMO_CDTIO	PA3	PC13	PF3	PC13	Timer 0 Complimentary Deat Time Insertion channel 0.

Alternate	LOCATION				
Functionality	0	1	2	3	Description
TIM0_CDTI1	PA4	PC14	PF4	PC14	Timer 0 Complimentary Deat Time Insertion channel 1.
TIM0_CDTI2	PA5	PC15	PF5	PC15	Timer 0 Complimentary Deat Time Insertion channel 2.
TIM1_CC0	PC13	PE10	PB0		Timer 1 Capture Compare input / output channel 0.
TIM1_CC1	PC14	PE11	PB1		Timer 1 Capture Compare input / output channel 1.
TIM1_CC2	PC15	PE12	PB2		Timer 1 Capture Compare input / output channel 2.
TIM2_CC0	PA8	PA12	PC8		Timer 2 Capture Compare input / output channel 0.
TIM2_CC1	PA9	PA13	PC9		Timer 2 Capture Compare input / output channel 1.
TIM2_CC2	PA10	PA14	PC10		Timer 2 Capture Compare input / output channel 2.
U0_RX	PF7	PE1	PA4	PC15	UART0 Receive input.
U0_TX	PF6	PE0	PA3	PC14	UART0 Transmit output. Also used as receive input in half duplex communication.
USO_CLK	PE12	PE5	PC9		USART0 clock input / output.
US0_CS	PE13	PE4	PC8		USART0 chip select input / output.
USO_RX	PE11	PE6	PC10		USARTO Asynchronous Receive. USART0 Synchronous mode Master Input / Slave Output (MISO).
USO_TX	PE10	PE7	PC11		USART0 Asynchronous Transmit.Also used as receive input in half duplex communication. USART0 Synchronous mode Master Output / Slave Input (MOSI).
US1_CLK	PB7	PD2			USART1 clock input / output.
US1_CS	PB8	PD3			USART1 chip select input / output.
US1_RX	PC1	PD1			USART1 Asynchronous Receive. USART1 Synchronous mode Master Input / Slave Output (MISO).
US1_TX	PC0	PD0			USART1 Asynchronous Transmit.Also used as receive input in half duplex communication. USART1 Synchronous mode Master Output / Slave Input (MOSI).
US2_CLK	PC4	PB5			USART2 clock input / output.
US2_CS	PC5	PB6			USART2 chip select input / output.
US2_RX	PC3	PB4			USART2 Asynchronous Receive. USART2 Synchronous mode Master Input / Slave Output (MISO).
US2_TX	PC2	PB3			USART2 Asynchronous Transmit.Also used as receive input in half duplex communication. USART2 Synchronous mode Master Output / Slave Input (MOSI).

5.9.3 GPIO Pinout Overview

The specific GPIO pins available in EFM32G880 is shown in the following table. Each GPIO port is organized as 16-bit ports indicated by letters A through F, and the individual pin on this port is indicated by a number from 15 down to 0 .

Table 5.27. GPIO Pinout

Port	Pin 15	Pin 14	Pin 13	Pin 12	Pin 11	Pin 10	Pin 9	Pin 8	Pin 7	Pin 6	Pin 5	Pin 4	Pin 3	Pin 2	Pin 1	Pin 0
Port A	PA15	PA14	PA13	PA12	PA11	PA10	PA9	PA8	PA7	PA6	PA5	PA4	PA3	PA2	PA1	PA0
Port B	-	PB14	PB13	PB12	PB11	PB10	PB9	PB8	PB7	PB6	PB5	PB4	PB3	PB2	PB1	PB0
Port C	PC15	PC14	PC13	PC12	PC11	PC10	PC9	PC8	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0
Port D	-	-	-	PD12	PD11	PD10	PD9	PD8	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
Port E	PE15	PE14	PE13	PE12	PE11	PE10	PE9	PE8	PE7	PE6	PE5	PE4	PE3	PE2	PE1	PE0
Port F	-	-	-	-	-	-	PF9	PF8	PF7	PF6	PF5	PF4	PF3	PF2	PF1	PF0

5.10 EFM32G890 (BGA112)

5.10.1 Pinout

The EFM32G890 pinout is shown in the following figure and table. Alternate locations are denoted by "\#" followed by the location number (Multiple locations on the same pin are split with "/"). Alternate locations can be configured in the LOCATION bitfield in the *_ROUTE register in the module in question.

Figure 5.10. EFM32G890 Pinout (top view, not to scale)

Table 5.28. Device Pinout

BGA112 Pin\# and Name	Pin Alternate Functionality / Description					
Pin \#	Pin Name	Analog	EBI	Timers	Communication	Other
A1	PE15	LCD_SEG 11	EBI_AD07 \#0		LEU0_RX \#2	
A2	PE14	LCD_SEG 10	EBI_AD06 \#0		LEU0_TX \#2	
A3	PE12	LCD_SEG 8	EBI_AD04 \#0	TIM1_CC2 \#1	US0_CLK \#0	

BGA112 Pin\# and Name		Pin Alternate Functionality / Description				
Pin \#	Pin Name	Analog	EBI	Timers	Communication	Other
A4	PE9	$\operatorname{LCD}_{5} \mathrm{SEG}$	EBI_AD01 \#0	PCNT2_S1IN \#1		
A5	PD10	$\begin{gathered} \text { LCD_SEG } \\ 29 \end{gathered}$	EBI_CS1 \#0			
A6	PF7	$\underset{25}{\text { LCD_SEG }}$		TIM0_CC1 \#2	U0_RX \#0	
A7	PF5	$\operatorname{LCD}_{3} \mathrm{SEG}$	EBI_REn \#0	TIMO_CDTI2 \#2		
A8	PF4	$\mathrm{LCD}_{2} \mathrm{SEG}$	EBI_WEn \#0	TIM0_CDTI1 \#2		
A9	PE4	$\underset{0}{\text { LCD_COM }}$			US0_CS \#1	
A10	PC14	$\begin{gathered} \text { ACMP1_C } \\ \mathrm{H} 6 \end{gathered}$		$\begin{gathered} \text { TIM0_CDTI1 \#1/3 } \\ \text { TIM1_CC1 \#0 } \\ \text { PCNT0_S1IN \#0 } \end{gathered}$	U0_TX \#3	
A11	PC15	$\begin{gathered} \text { ACMP1_C } \\ \mathrm{H} 7 \end{gathered}$		$\begin{gathered} \text { TIMO_CDTI2 \#1/3 } \\ \text { TIM1_CC2 \#0 } \end{gathered}$	U0_RX \#3	DBG_SWO \#1
B1	PA15	$\text { LCD_SEG }_{12}$	EBI_AD08 \#0			
B2	PE13	$\operatorname{LCD}_{9} \mathrm{SEG}$	EBI_AD05 \#0		US0_CS \#0	ACMP0_O \#0
B3	PE11	$\text { LCD_S }_{7} \text { SEG }$	EBI_AD03 \#0	TIM1_CC1 \#1	US0_RX \#0	BOOT_RX
B4	PE8	$\operatorname{LCD}_{4} \mathrm{SEG}$	EBI_AD00 \#0	PCNT2_SOIN \#1		
B5	PD11	$\begin{gathered} \text { LCD_SEG } \\ 30 \end{gathered}$	EBI_CS2 \#0			
B6	PF8	$\begin{gathered} \text { LCD_SEG } \\ 26 \end{gathered}$		TIM0_CC2 \#2		
B7	PF6	$\begin{gathered} \text { LCD_SEG } \\ 24 \end{gathered}$		TIMO_CC0 \#2	U0_TX \#0	
B8	PF3	$\text { LCD__ }_{1} \text { SEG }$	EBI_ALE \#0	TIMO_CDTIO \#2		
B9	PE5	$\text { LCD_COM }_{1}$			US0_CLK \#1	
B10	PC12	$\underset{\mathrm{H} 4}{\mathrm{ACMP} 1 _C}$				CMU_CLK0 \#1
B11	PC13	$\underset{\mathrm{H} 5}{\mathrm{ACMP} 1 _C}$		$\begin{aligned} & \text { TIMO_CDTIO \#1/3 } \\ & \text { TIM1_CC0 \#0 } \\ & \text { PCNT0_SOIN \#0 } \end{aligned}$		
C1	PA1	$\underset{14}{\text { LCD_SEG }}$	EBI_AD10 \#0	TIM0_CC1 \#0/1	12C0_SCL \#0	CMU_CLK1 \#0
C2	PAO	$\underset{13}{\text { LCD_SEG }}$	EBI_AD09 \#0	TIM0_CC0 \#0/1	12C0_SDA \#0	

BGA112 Pin\# and Name		Pin Alternate Functionality / Description				
Pin \#	Pin Name	Analog	EBI	Timers	Communication	Other
C3	PE10	$\text { LCD_S }_{6}$	EBI_AD02 \#0	TIM1_CC0 \#1	US0_TX \#0	BOOT_TX
C4	PD13					
C5	PD12	$\underset{31}{\text { LCD_SEG }}$	EBI_CS3 \#0			
C6	PF9	$\underset{27}{\text { LCD_SEG }}$				
C7	VSS	Ground.				
C8	PF2	$\text { LCD_S }_{0}$	EBI_ARDY \#0			ACMP1_O \#0 DBG_SWO \#0
C9	PE6	$\operatorname{LCD}_{2} \mathrm{COM}$			US0_RX \#1	
C10	PC10	$\begin{gathered} \text { ACMP1_C } \\ \mathrm{H} 2 \end{gathered}$		TIM2_CC2 \#2	US0_RX \#2	
C11	PC11	$\begin{gathered} \text { ACMP1_C } \\ \mathrm{H} 3 \end{gathered}$			US0_TX \#2	
D1	PA3	$\underset{16}{\text { LCD_SEG }}$	EBI_AD12 \#0	TIMO_CDTIO \#0	U0_TX \#2	
D2	PA2	$\text { LCD_SEG }_{15}$	EBI_AD11 \#0	TIM0_CC2 \#0/1		CMU_CLK0 \#0
D3	PB15					
D4	VSS	Ground.				
D5	IOVDD_6	Digital IO power supply 6.				
D6	PD9	$\begin{gathered} \text { LCD_SEG } \\ 28 \end{gathered}$	EBI_CS0 \#0			
D7	IOVDD_5	Digital IO power supply 5.				
D8	PF1			LETIM0_OUT1 \#2		DBG_SWDIO \#0/1
D9	PE7	$\operatorname{LCD}_{3} \mathrm{COM}$			US0_TX \#1	
D10	PC8	$\begin{gathered} \text { ACMP1_C } \\ \mathrm{H0} \end{gathered}$		TIM2_CC0 \#2	US0_CS \#2	
D11	PC9	$\begin{gathered} \text { ACMP1_C } \\ \mathrm{H} 1 \end{gathered}$		TIM2_CC1 \#2	USO_CLK \#2	
E1	PA6	$\underset{19}{\text { LCD_SEG }}$	EBI_AD15 \#0		LEU1_RX \#1	
E2	PA5	$\underset{18}{\text { LCD_SEG }}$	EBI_AD14 \#0	TIMO_CDTI2 \#0	LEU1_TX \#1	
E3	PA4	$\text { LCD_SEG }_{17}$	EBI_AD13 \#0	TIM0_CDTI1 \#0	U0_RX \#2	
E4	PB0	$\begin{gathered} \text { LCD_SEG } \\ 32 \end{gathered}$		TIM1_CC0 \#2		
E8	PF0			LETIMO_OUT0 \#2		DBG_SWCLK \#0/1

BGA112 Pin\# and Name		Pin Alternate Functionality / Description				
Pin \#	Pin Name	Analog	EBI	Timers	Communication	Other
E9	PEO			PCNTO_SOIN \#1	U0_TX \#1	
E10	PE1			PCNT0_S1IN \#1	U0_RX \#1	
E11	PE3					ACMP1_O \#1
F1	PB1	$\begin{gathered} \text { LCD_SEG } \\ 33 \end{gathered}$		TIM1_CC1 \#2		
F2	PB2	$\begin{array}{\|c} \hline \text { LCD_SEG } \\ 34 \end{array}$		TIM1_CC2 \#2		
F3	PB3	$\begin{gathered} \text { LCD_SEG } \\ 20 \end{gathered}$		PCNT1_S0IN \#1	US2_TX \#1	
F4	PB4	$\underset{21}{\text { LCD_SEG }}$		PCNT1_S1IN \#1	US2_RX \#1	
F8	$\mathrm{VDD}_{\overline{\mathrm{G}}} \mathrm{DRE}$	Power supply for on-chip voltage regulator.				
F9	$\operatorname{VSS}_{\overline{\mathrm{G}}} \mathrm{DRE}$	Ground for on-chip voltage regulator.				
F10	PE2					ACMP0_O \#1
F11	$\begin{aligned} & \text { DECOU- } \\ & \text { PLE } \end{aligned}$	Decouple output for on-chip voltage regulator. An external capacitance of size $\mathrm{C}_{\text {DECOUPLE }}$ is required at this pin.				
G1	PB5	$\underset{22}{\text { LCD_SEG }}$			US2_CLK \#1	
G2	PB6	$\begin{gathered} \text { LCD_SEG } \\ 23 \end{gathered}$			US2_CS \#1	
G3	VSS	Ground.				
G4	IOVDD_0	Digital IO power supply 0.				
G8	IOVDD_4	Digital IO power supply 4.				
G9	VSS	Ground.				
G10	PC6	$\begin{gathered} \text { ACMPO_C } \\ \mathrm{H} 6 \end{gathered}$			LEU1_TX \#0 I2C0_SDA \#2	
G11	PC7	$\begin{gathered} \text { ACMPO_C } \\ \mathrm{H} 7 \end{gathered}$			$\begin{aligned} & \text { LEU1_RX \#0 } \\ & \text { I2C0_SCL \#2 } \end{aligned}$	
H1	PC0	$\begin{gathered} \text { ACMPO_C } \\ \mathrm{HO} \end{gathered}$		PCNTO_SOIN \#2	US1_TX \#0	
H2	PC2	$\begin{gathered} \text { ACMPO_C } \\ \mathrm{H} 2 \end{gathered}$			US2_TX \#0	
H3	PD14				12C0_SDA \#3	
H4	PA7	$\underset{35}{\text { LCD_SEG }}$				
H5	PA8	$\begin{gathered} \text { LCD_SEG } \\ 36 \end{gathered}$		TIM2_CC0 \#0		
H6	VSS	Ground.				
H7	IOVDD_3	Digital IO power supply 3.				
H8	PD8					CMU_CLK1 \#1

BGA112 Pin\# and Name		Pin Alternate Functionality / Description				
Pin \#	Pin Name	Analog	EBI	Timers	Communication	Other
H9	PD5	${ }_{5}^{\mathrm{ADCO}}$			LEU0_RX \#0	
H10	PD6	$\underset{6}{\mathrm{ADCO}} \underset{ }{-\mathrm{CH}}$		LETIMO_OUTO \#0	I2C0_SDA \#1	
H11	PD7	$\underset{7}{\mathrm{ADCO} C H}$		LETIM0_OUT1 \#0	12C0_SCL \#1	
J1	PC1	$\begin{gathered} \text { ACMPO_C } \\ \mathrm{H} 1 \end{gathered}$		PCNT0_S1IN \#2	US1_RX \#0	
J2	PC3	$\begin{gathered} \text { ACMPO_C } \\ \text { H3 } \end{gathered}$			US2_RX \#0	
J3	PD15				12C0_SCL \#3	
J4	PA12	$\begin{gathered} \text { LCD_BCA } \\ \text { P_P } \end{gathered}$		TIM2_CC0 \#1		
J5	PA9	$\begin{gathered} \text { LCD_SEG } \\ 37 \end{gathered}$		TIM2_CC1 \#0		
J6	PA10	$\begin{gathered} \text { LCD_SEG } \\ 38 \end{gathered}$		TIM2_CC2 \#0		
J7	PB9					
J8	PB10					
J9	PD2	$\begin{gathered} \mathrm{ADCO} \\ 2 \end{gathered}$		TIM0_CC1 \#3	US1_CLK \#1	
J10	PD3	$\underset{3}{\mathrm{ADCO} C H}$		TIM0_CC2 \#3	US1_CS \#1	
J11	PD4	$\underset{4}{\mathrm{ADCO}} \mathrm{CH}$			LEU0_TX \#0	
K1	PB7	LFXTAL_P			US1_CLK \#0	
K2	PC4	$\underset{\mathrm{H} 4}{\mathrm{ACMPO} \mathrm{C}}$		LETIMO_OUTO \#3 PCNT1_SOIN \#0	US2_CLK \#0	
K3	PA13	$\begin{gathered} \text { LCD_BCA } \\ \mathrm{P}_{-} \mathrm{N} \end{gathered}$		TIM2_CC1 \#1		
K4	VSS	Ground.				
K5	PA11	$\underset{39}{\text { LCD_SEG }}$				
K6	RESETn	Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.				
K7	AVSS_1	Analog ground 1.				
K8	AVDD_2	Analog power supply 2.				
K9	AVDD_1	Analog power supply 1.				
K10	AVSS_0	Analog ground 0.				
K11	PD1	$\underset{1}{\mathrm{ADCO} C H}$		$\begin{gathered} \text { TIMO_CCO \#3 } \\ \text { PCNT2_S1IN \#0 } \end{gathered}$	US1_RX \#1	
L1	PB8	LFXTAL_N			US1_CS \#0	

BGA1	2 Pin\# and ame	Pin Alternate Functionality / Description				
Pin \#	Pin Name	Analog	EBI	Timers	Communication	Other
L2	PC5	$\begin{gathered} \text { ACMPO_C } \\ \mathrm{H} 5 \end{gathered}$		LETIM0_OUT1 \#3 PCNT1_S1IN \#0	US2_CS \#0	
L3	PA14	$\operatorname{LCD}_{\overline{\mathrm{T}}} \mathrm{BEX}$		TIM2_CC2 \#1		
L4	IOVDD_1	Digital IO power supply 1.				
L5	PB11	$\begin{gathered} \text { DACO_OU } \\ \text { T0 } \end{gathered}$		LETIMO_OUTO \#1		
L6	PB12	$\begin{gathered} \text { DACO_OU } \\ \text { T1 } \end{gathered}$		LETIM0_OUT1 \#1		
L7	AVSS_2	Analog ground 2.				
L8	PB13	$\begin{gathered} \text { HFXTAL_ } \\ \hline \end{gathered}$			LEU0_TX \#1	
L9	PB14	$\underset{\mathrm{N}}{\mathrm{HFXTAL}_{-}}$			LEU0_RX \#1	
L10	AVDD_0	Analog power supply 0.				
L11	PD0	$\begin{gathered} \text { ADCO_CH } \\ 0 \end{gathered}$		PCNT2_SOIN \#0	US1_TX \#1	

5.10.2 Alternate Functionality Pinout

A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in the following table. The table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.
Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout is shown in the column corresponding to LOCATION 0.

Table 5.29. Alternate functionality overview

Alternate	LOCATION				
Functionality	0	1	2	3	Description
ACMPO_CH0	PC0				Analog comparator ACMP0, channel 0.
ACMP0_CH1	PC1				Analog comparator ACMP0, channel 1.
ACMPO_CH2	PC2				Analog comparator ACMP0, channel 2.
ACMPO_CH3	PC3				Analog comparator ACMP0, channel 3.
ACMPO_CH4	PC4				Analog comparator ACMP0, channel 4.
ACMP0_CH5	PC5				Analog comparator ACMP0, channel 5.
ACMP0_CH6	PC6				Analog comparator ACMP0, channel 6.
ACMP0_CH7	PC7				Analog comparator ACMP0, channel 7.
ACMP0_O	PE13	PE2			Analog comparator ACMP0, digital output.
ACMP1_CH0	PC8				Analog comparator ACMP1, channel 0.
ACMP1_CH1	PC9				Analog comparator ACMP1, channel 1.
ACMP1_CH2	PC10				Analog comparator ACMP1, channel 2.
ACMP1_CH3	PC11				Analog comparator ACMP1, channel 3.
ACMP1_CH4	PC12				Analog comparator ACMP1, channel 4.
ACMP1_CH5	PC13				Analog comparator ACMP1, channel 5.
ACMP1_CH6	PC14				Analog comparator ACMP1, channel 6.
ACMP1_CH7	PC15				Analog comparator ACMP1, channel 7.
ACMP1_O	PF2	PE3			Analog comparator ACMP1, digital output.
ADC0_CH0	PD0				Analog to digital converter ADCO, input channel number 0.
ADC0_CH1	PD1				Analog to digital converter ADC0, input channel number 1.
ADC0_CH2	PD2				Analog to digital converter ADC0, input channel number 2.
ADC0_CH3	PD3				Analog to digital converter ADCO, input channel number 3.
ADC0_CH4	PD4				Analog to digital converter ADC0, input channel number 4.
ADC0_CH5	PD5				Analog to digital converter ADC0, input channel number 5.
ADC0_CH6	PD6				Analog to digital converter ADC0, input channel number 6.
ADC0_CH7	PD7				Analog to digital converter ADCO, input channel number 7.
BOOT_RX	PE11				Bootloader RX.
BOOT_TX	PE10				Bootloader TX.
CMU_CLK0	PA2	PC12			Clock Management Unit, clock output number 0.
CMU_CLK1	PA1	PD8			Clock Management Unit, clock output number 1.

Alternate	LOCATION				
Functionality	0	1	2	3	Description
DAC0_OUT0	PB11				Digital to Analog Converter DAC0 output channel number 0.
DAC0_OUT1	PB12				Digital to Analog Converter DAC0 output channel number 1.
DBG_SWCLK	PF0	PF0			Debug-interface Serial Wire clock input. Note that this function is enabled to pin out of reset, and has a built-in pull down.
DBG_SWDIO	PF1	PF1			Debug-interface Serial Wire data input / output. Note that this function is enabled to pin out of reset, and has a built-in pull up.
DBG_SWO	PF2	PC15			Debug-interface Serial Wire viewer Output. Note that this function is not enabled after reset, and must be enabled by software to be used.
EBI_AD00	PE8				External Bus Interface (EBI) address and data input / output pin 00.
EBI_AD01	PE9				External Bus Interface (EBI) address and data input / output pin 01.
EBI_AD02	PE10				External Bus Interface (EBI) address and data input / output pin 02.
EBI_AD03	PE11				External Bus Interface (EBI) address and data input / output pin 03.
EBI_AD04	PE12				External Bus Interface (EBI) address and data input / output pin 04.
EBI_AD05	PE13				External Bus Interface (EBI) address and data input / output pin 05.
EBI_AD06	PE14				External Bus Interface (EBI) address and data input / output pin 06.
EBI_AD07	PE15				External Bus Interface (EBI) address and data input / output pin 07.
EBI_AD08	PA15				External Bus Interface (EBI) address and data input / output pin 08.
EBI_AD09	PAO				External Bus Interface (EBI) address and data input / output pin 09.
EBI_AD10	PA1				External Bus Interface (EBI) address and data input / output pin 10.
EBI_AD11	PA2				External Bus Interface (EBI) address and data input / output pin 11.
EBI_AD12	PA3				External Bus Interface (EBI) address and data input / output pin 12.
EBI_AD13	PA4				External Bus Interface (EBI) address and data input / output pin 13.
EBI_AD14	PA5				External Bus Interface (EBI) address and data input / output pin 14.
EBI_AD15	PA6				External Bus Interface (EBI) address and data input / output pin 15.
EBI_ALE	PF3				External Bus Interface (EBI) Address Latch Enable output.

Alternate	LOCATION				
Functionality	0	1	2	3	Description
EBI_ARDY	PF2				External Bus Interface (EBI) Hardware Ready Control input.
EBI_CSO	PD9				External Bus Interface (EBI) Chip Select output 0.
EBI_CS1	PD10				External Bus Interface (EBI) Chip Select output 1.
EBI_CS2	PD11				External Bus Interface (EBI) Chip Select output 2.
EBI_CS3	PD12				External Bus Interface (EBI) Chip Select output 3.
EBI_REn	PF5				External Bus Interface (EBI) Read Enable output.
EBI_WEn	PF4				External Bus Interface (EBI) Write Enable output.
HFXTAL_N	PB14				High Frequency Crystal negative pin. Also used as external optional clock input pin.
HFXTAL_P	PB13				High Frequency Crystal positive pin.
12C0_SCL	PA1	PD7	PC7	PD15	I2C0 Serial Clock Line input / output.
I2C0_SDA	PA0	PD6	PC6	PD14	I2C0 Serial Data input / output.
LCD_BCAP_N	PA13				LCD voltage booster (optional), boost capacitor, negative pin. If using the LCD voltage booster, connect a 22 nF capacitor between LCD_BCAP_N and LCD_BCAP_P.
LCD_BCAP_P	PA12				LCD voltage booster (optional), boost capacitor, positive pin. If using the LCD voltage booster, connect a 22 nF capacitor between LCD_BCAP_N and LCD_BCAP_P.
LCD_BEXT	PA14				LCD voltage booster (optional), boost output. If using the LCD voltage booster, connect a 1 uF capacitor between this pin and VSS. An external LCD voltage may also be applied to this pin if the booster is not enabled. If AVDD is used directly as the LCD supply voltage, this pin may be left unconnected or used as a GPIO.
LCD_COM0	PE4				LCD driver common line number 0 .
LCD_COM1	PE5				LCD driver common line number 1.
LCD_COM2	PE6				LCD driver common line number 2.
LCD_COM3	PE7				LCD driver common line number 3.
LCD_SEG0	PF2				LCD segment line 0 . Segments $0,1,2$ and 3 are controlled by SEGENO.
LCD_SEG1	PF3				LCD segment line 1 . Segments $0,1,2$ and 3 are controlled by SEGENO.
LCD_SEG2	PF4				LCD segment line 2 . Segments $0,1,2$ and 3 are controlled by SEGENO.
LCD_SEG3	PF5				LCD segment line 3 . Segments $0,1,2$ and 3 are controlled by SEGENO.
LCD_SEG4	PE8				LCD segment line 4 . Segments 4, 5, 6 and 7 are controlled by SEGEN1.
LCD_SEG5	PE9				LCD segment line 5 . Segments 4, 5, 6 and 7 are controlled by SEGEN1.
LCD_SEG6	PE10				LCD segment line 6 . Segments 4, 5, 6 and 7 are controlled by SEGEN1.

Alternate	LOCATION				
Functionality	0	1	2	3	Description
LCD_SEG7	PE11				LCD segment line 7 . Segments $4,5,6$ and 7 are controlled by SEGEN1.
LCD_SEG8	PE12				LCD segment line 8 . Segments $8,9,10$ and 11 are controlled by SEGEN2.
LCD_SEG9	PE13				LCD segment line 9 . Segments $8,9,10$ and 11 are controlled by SEGEN2.
LCD_SEG10	PE14				LCD segment line 10 . Segments 8, 9, 10 and 11 are controlled by SEGEN2.
LCD_SEG11	PE15				LCD segment line 11 . Segments 8, 9, 10 and 11 are controlled by SEGEN2.
LCD_SEG12	PA15				LCD segment line 12 . Segments 12, 13, 14 and 15 are controlled by SEGEN3.
LCD_SEG13	PAO				LCD segment line 13 . Segments 12, 13, 14 and 15 are controlled by SEGEN3.
LCD_SEG14	PA1				LCD segment line 14 . Segments 12, 13, 14 and 15 are controlled by SEGEN3.
LCD_SEG15	PA2				LCD segment line 15 . Segments $12,13,14$ and 15 are controlled by SEGEN3.
LCD_SEG16	PA3				LCD segment line 16 . Segments $16,17,18$ and 19 are controlled by SEGEN4.
LCD_SEG17	PA4				LCD segment line 17 . Segments 16, 17, 18 and 19 are controlled by SEGEN4.
LCD_SEG18	PA5				LCD segment line 18 . Segments $16,17,18$ and 19 are controlled by SEGEN4.
LCD_SEG19	PA6				LCD segment line 19 . Segments $16,17,18$ and 19 are controlled by SEGEN4.
LCD_SEG20	PB3				LCD segment line 20 . Segments 20, 21, 22 and 23 are controlled by SEGEN5.
LCD_SEG21	PB4				LCD segment line 21 . Segments 20, 21, 22 and 23 are controlled by SEGEN5.
LCD_SEG22	PB5				LCD segment line 22 . Segments 20, 21, 22 and 23 are controlled by SEGEN5.
LCD_SEG23	PB6				LCD segment line 23 . Segments 20, 21, 22 and 23 are controlled by SEGEN5.
LCD_SEG24	PF6				LCD segment line 24 . Segments $24,25,26$ and 27 are controlled by SEGEN6.
LCD_SEG25	PF7				LCD segment line 25 . Segments $24,25,26$ and 27 are controlled by SEGEN6.
LCD_SEG26	PF8				LCD segment line 26 . Segments $24,25,26$ and 27 are controlled by SEGEN6.
LCD_SEG27	PF9				LCD segment line 27 . Segments $24,25,26$ and 27 are controlled by SEGEN6.
LCD_SEG28	PD9				LCD segment line 28 . Segments $28,29,30$ and 31 are controlled by SEGEN7.
LCD_SEG29	PD10				LCD segment line 29 . Segments $28,29,30$ and 31 are controlled by SEGEN7.

Alternate	LOCATION				
Functionality	0	1	2	3	Description
LCD_SEG30	PD11				LCD segment line 30 . Segments $28,29,30$ and 31 are controlled by SEGEN7.
LCD_SEG31	PD12				LCD segment line 31 . Segments $28,29,30$ and 31 are controlled by SEGEN7.
LCD_SEG32	PB0				LCD segment line 32 . Segments $32,33,34$ and 35 are controlled by SEGEN8.
LCD_SEG33	PB1				LCD segment line 33 . Segments $32,33,34$ and 35 are controlled by SEGEN8.
LCD_SEG34	PB2				LCD segment line 34 . Segments $32,33,34$ and 35 are controlled by SEGEN8.
LCD_SEG35	PA7				LCD segment line 35 . Segments $32,33,34$ and 35 are controlled by SEGEN8.
LCD_SEG36	PA8				LCD segment line 36 . Segments $36,37,38$ and 39 are controlled by SEGEN9.
LCD_SEG37	PA9				LCD segment line 37 . Segments $36,37,38$ and 39 are controlled by SEGEN9.
LCD_SEG38	PA10				LCD segment line 38 . Segments $36,37,38$ and 39 are controlled by SEGEN9.
LCD_SEG39	PA11				LCD segment line 39 . Segments $36,37,38$ and 39 are controlled by SEGEN9.
LETIMO_OUT0	PD6	PB11	PF0	PC4	Low Energy Timer LETIM0, output channel 0.
LETIM0_OUT1	PD7	PB12	PF1	PC5	Low Energy Timer LETIM0, output channel 1.
LEU0_RX	PD5	PB14	PE15		LEUART0 Receive input.
LEU0_TX	PD4	PB13	PE14		LEUARTO Transmit output. Also used as receive input in half duplex communication.
LEU1_RX	PC7	PA6			LEUART1 Receive input.
LEU1_TX	PC6	PA5			LEUART1 Transmit output. Also used as receive input in half duplex communication.
LFXTAL_N	PB8				Low Frequency Crystal (typically 32.768 kHz) negative pin. AIso used as an optional external clock input pin.
LFXTAL_P	PB7				Low Frequency Crystal (typically 32.768 kHz) positive pin.
PCNTO_SOIN	PC13	PE0	PC0		Pulse Counter PCNT0 input number 0.
PCNT0_S1IN	PC14	PE1	PC1		Pulse Counter PCNT0 input number 1.
PCNT1_S0IN	PC4	PB3			Pulse Counter PCNT1 input number 0.
PCNT1_S1IN	PC5	PB4			Pulse Counter PCNT1 input number 1.
PCNT2_SOIN	PD0	PE8			Pulse Counter PCNT2 input number 0.
PCNT2_S1IN	PD1	PE9			Pulse Counter PCNT2 input number 1.
TIMO_CCO	PA0	PA0	PF6	PD1	Timer 0 Capture Compare input / output channel 0.
TIM0_CC1	PA1	PA1	PF7	PD2	Timer 0 Capture Compare input / output channel 1.
TIMO_CC2	PA2	PA2	PF8	PD3	Timer 0 Capture Compare input / output channel 2.
TIMO_CDTIO	PA3	PC13	PF3	PC13	Timer 0 Complimentary Deat Time Insertion channel 0.

Alternate	LOCATION				
Functionality	0	1	2	3	Description
TIM0_CDTI1	PA4	PC14	PF4	PC14	Timer 0 Complimentary Deat Time Insertion channel 1.
TIM0_CDTI2	PA5	PC15	PF5	PC15	Timer 0 Complimentary Deat Time Insertion channel 2.
TIM1_CC0	PC13	PE10	PB0		Timer 1 Capture Compare input / output channel 0.
TIM1_CC1	PC14	PE11	PB1		Timer 1 Capture Compare input / output channel 1.
TIM1_CC2	PC15	PE12	PB2		Timer 1 Capture Compare input / output channel 2.
TIM2_CC0	PA8	PA12	PC8		Timer 2 Capture Compare input / output channel 0.
TIM2_CC1	PA9	PA13	PC9		Timer 2 Capture Compare input / output channel 1.
TIM2_CC2	PA10	PA14	PC10		Timer 2 Capture Compare input / output channel 2.
U0_RX	PF7	PE1	PA4	PC15	UART0 Receive input.
U0_TX	PF6	PE0	PA3	PC14	UART0 Transmit output. Also used as receive input in half duplex communication.
USO_CLK	PE12	PE5	PC9		USART0 clock input / output.
US0_CS	PE13	PE4	PC8		USART0 chip select input / output.
USO_RX	PE11	PE6	PC10		USARTO Asynchronous Receive. USART0 Synchronous mode Master Input / Slave Output (MISO).
USO_TX	PE10	PE7	PC11		USART0 Asynchronous Transmit.Also used as receive input in half duplex communication. USART0 Synchronous mode Master Output / Slave Input (MOSI).
US1_CLK	PB7	PD2			USART1 clock input / output.
US1_CS	PB8	PD3			USART1 chip select input / output.
US1_RX	PC1	PD1			USART1 Asynchronous Receive. USART1 Synchronous mode Master Input / Slave Output (MISO).
US1_TX	PC0	PD0			USART1 Asynchronous Transmit.Also used as receive input in half duplex communication. USART1 Synchronous mode Master Output / Slave Input (MOSI).
US2_CLK	PC4	PB5			USART2 clock input / output.
US2_CS	PC5	PB6			USART2 chip select input / output.
US2_RX	PC3	PB4			USART2 Asynchronous Receive. USART2 Synchronous mode Master Input / Slave Output (MISO).
US2_TX	PC2	PB3			USART2 Asynchronous Transmit.Also used as receive input in half duplex communication. USART2 Synchronous mode Master Output / Slave Input (MOSI).

5.10.3 GPIO Pinout Overview

The specific GPIO pins available in EFM32G890 is shown in the following table. Each GPIO port is organized as 16-bit ports indicated by letters A through F, and the individual pin on this port is indicated by a number from 15 down to 0 .

Table 5.30. GPIO Pinout

Port	$\begin{aligned} & \text { Pin } \\ & 15 \end{aligned}$	$\begin{gathered} \text { Pin } \\ 14 \end{gathered}$	$\begin{aligned} & \text { Pin } \\ & 13 \end{aligned}$	$\begin{aligned} & \text { Pin } \\ & 12 \end{aligned}$	$\begin{aligned} & \text { Pin } \\ & 11 \end{aligned}$	$\begin{aligned} & \text { Pin } \\ & 10 \end{aligned}$	Pin 9	Pin 8	Pin 7	Pin 6	Pin 5	Pin 4	Pin 3	Pin 2	Pin 1	Pin 0
Port A	PA15	PA14	PA13	PA12	PA11	PA10	PA9	PA8	PA7	PA6	PA5	PA4	PA3	PA2	PA1	PAO
Port B	PB15	PB14	PB13	PB12	PB11	PB10	PB9	PB8	PB7	PB6	PB5	PB4	PB3	PB2	PB1	PB0
Port C	PC15	PC14	PC13	PC12	PC11	PC10	PC9	PC8	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0
Port D	PD15	PD14	PD13	PD12	PD11	PD10	PD9	PD8	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
Port E	PE15	PE14	PE13	PE12	PE11	PE10	PE9	PE8	PE7	PE6	PE5	PE4	PE3	PE2	PE1	PE0
Port F	-	-	-	-	-	-	PF9	PF8	PF7	PF6	PF5	PF4	PF3	PF2	PF1	PF0

6. BGA112 Package Specifications

6.1 BGA112 Package Dimensions

Figure 6.1. BGA112

Note:

1. The dimensions in parenthesis are reference.
2. Datum ' C ' and seating plane are defined by the crown of the solder balls.
3. All dimensions are in millimeters.
6.2 BGA112 PCB Layout

Figure 6.2. BGA112 PCB Land Pattern

Table 6.1. BGA112 PCB Land Pattern Dimensions (Dimensions in mm)

Symbol	Dim. (mm)
a	0.35
b	0.80
d	8.00
e	8.00

Figure 6.3. BGA112 PCB Solder Mask

Table 6.2. BGA112 PCB Solder Mask Dimensions (Dimensions in mm)

Symbol	Dim. (mm)
a	0.48
b	0.80
d	8.00
e	8.00

Figure 6.4. BGA112 PCB Stencil Design

Table 6.3. BGA112 PCB Stencil Design Dimensions (Dimensions in mm)

Symbol	Dim. (mm)
a	0.33
b	0.80
d	8.00
e	8.00

Note:

1. The drawings are not to scale.
2. All dimensions are in millimeters.
3. All drawings are subject to change without notice.
4. The PCB Land Pattern drawing is in compliance with IPC-7351B.
5. Stencil thickness 0.125 mm .
6. For detailed pin-positioning, see Pin Definitions.

6.3 BGA112 Package Marking

In the illustration below package fields and position are shown.

Figure 6.5. Example Chip Marking (Top View)

7. LQFP100 Package Specifications

7.1 LQFP100 Package Dimensions

Figure 7.1. LQFP100

Note:

1. Datum ' T ', ' U ' and ' Z ' to be determined at datum plane ' H '
2. Datum ' D ' and ' E ' to be determined at seating plane datum ' Y '.
3. Dimension 'D1' and 'E1' do not include mold protrusions. Allowable protrusion is 0.25 per side. Dimensions 'D1' and 'E1' do include mold mismatch and are determined at datum plane datum 'H'.
4. Dimension 'b' does not include dambar protrusion. Allowable dambar protrusion shall not cause the lead width to exceed the maximum ' b ' dimension by more than 0.08 mm . Dambar can not be located on the lower radius or the foot. Minimum space between protrusion and an adjacent lead is 0.07 mm .
5. Exact shape of each corner is optional.

Table 7.1. LQFP100 (Dimensions in mm)

7.2 LQFP100 PCB Layout

Figure 7.2. LQFP100 PCB Land Pattern

Table 7.2. LQFP100 PCB Land Pattern Dimensions (Dimensions in mm)

Symbol	Dim. (mm)	Symbol	Pin Number	Symbol	Pin Number
a	1.45	P1	1	P6	75
b	0.30	P2	25	P7	76
c	0.50	P3	26	P8	100
d	15.40	P4	50		
e 15.40	P5	51			

Figure 7.3. LQFP100 PCB Solder Mask

Table 7.3. LQFP100 PCB Solder Mask Dimensions (Dimensions in mm)

Symbol	Dim. (mm)
a	1.57
b	0.42
c	0.50
d	15.40
e	15.40

Figure 7.4. LQFP100 PCB Stencil Design

Table 7.4. LQFP100 PCB Stencil Design Dimensions (Dimensions in mm)

Symbol	Dim. (mm)
a	1.35
b	0.20
c	0.50
d	15.40
e	15.40

Note:

1. The drawings are not to scale.
2. All dimensions are in millimeters.
3. All drawings are subject to change without notice.
4. The PCB Land Pattern drawing is in compliance with IPC-7351B.
5. Stencil thickness 0.125 mm .
6. For detailed pin-positioning, see Pin Definitions.

7.3 LQFP100 Package Marking

In the illustration below package fields and position are shown.

Figure 7.5. Example Chip Marking (Top View)

8. TQFP64 Package Specifications

8.1 TQFP64 Package Dimensions

Figure 8.1. TQFP64

Note:

1. All dimensions \& tolerancing confirm to ASME Y14.5M-1994.
2. The top package body size may be smaller than the bottom package body size.
3. Datum 'A,B', and 'B' to be determined at datum plane 'H'.
4. To be determined at seating place ' C '.
5. Dimension 'D1' and 'E1' do not include mold protrusions. Allowable protrusion is 0.25 mm per side. 'D1' and 'E1' are maximum plastic body size dimension including mold mismatch. Dimension 'D1' and 'E1' shall be determined at datum plane ' H '.
6. Detail of Pin 1 indicatifier are option all but must be located within the zone indicated.
7. Dimension ' b ' does not include dambar protrusion. Allowable dambar protrusion shall not cause the lead width to exceed the maximum 'b' dimension by more than 0.08 mm . Dambar can not be located on the lower radius or the foot. Minimum space between protrusion and an adjacent lead is 0.07 mm .
8. Exact shape of each corner is optional.
9. These dimension apply to the flat section of the lead between 0.10 mm and 0.25 mm from the lead tip.
10. All dimensions are in millimeters.

Table 8.1. QFP64 (Dimensions in mm)

DIM	MIN	NOM	MAX	DIM	MIN	NOM	MAX
A	-	1.10	1.20	L1	-		
A1	0.05	-	0.15	R1	0.08	-	-
A2	0.95	1.00	1.05	R2	0.08	-	0.20
b	0.17	0.22	0.27	S	0.20	-	-
b1	0.17	0.20	0.23	θ	0°	3.5°	7°
c	0.09	-	0.20	$\theta 1$	0°	-	-
C1	0.09	-	0.16	$\theta 2$	11°	12°	13°
D	12.0 BSC			$\theta 3$	11°	12°	13°
D1	10.0 BSC						
e	0.50 BSC						
E	12.0 BSC						
E1	10.0 BSC						
L	0.45	0.60	0.75				

8.2 TQFP64 PCB Layout

Figure 8.2. TQFP64 PCB Land Pattern

Table 8.2. TQFP64 PCB Land Pattern Dimensions (Dimensions in mm)

Symbol	Dim. (mm)	Symbol	Pin Number	Symbol	Pin Number
a	1.60	P1	1	P6	48
b	0.30	P2	16	P7	49
c	0.50	P3	17	P8	64
d	11.50	P4	32		
e	11.50	P5	33		

Figure 8.3. TQFP64 PCB Solder Mask

Table 8.3. TQFP64 PCB Solder Mask Dimensions (Dimensions in mm)

Symbol	Dim. (mm)
a	1.72
b	0.42
c	0.50
d	11.50
e	11.50

Figure 8.4. TQFP64 PCB Stencil Design

Table 8.4. TQFP64 PCB Stencil Design Dimensions (Dimensions in mm)

Symbol	Dim. (mm)
a	1.50
b	0.20
c	0.50
d	11.50
e	11.50

Note:

1. The drawings are not to scale.
2. All dimensions are in millimeters.
3. All drawings are subject to change without notice.
4. The PCB Land Pattern drawing is in compliance with IPC-7351B.
5. Stencil thickness 0.125 mm .
6. For detailed pin-positioning, see Pin Definitions.

8.3 TQFP64 Package Marking

In the illustration below package fields and position are shown.

Figure 8.5. Example Chip Marking (Top View)

9. TQFP48 Package Specifications

9.1 TQFP48 Package Dimensions

Figure 9.1. TQFP48

Note:

1. Dimensions and tolerance per ASME Y14.5M-1994
2. Control dimension: Millimeter
3. Datum plane $A B$ is located at bottom of lead and is coincident with the lead where the lead exists from the plastic body at the bottom of the parting line.
4. Datums T, U and Z to be determined at datum plane $A B$.
5. Dimensions S and V to be determined at seating plane $A C$.
6. Dimensions A and B do not include mold protrusion. Allowable protrusion is 0.250 per side. Dimensions A and B do include mold mismatch and are determined at datum $A B$.
7. Dimension D does not include dambar protrusion. Dambar protrusion shall not cause the D dimension to exceed 0.350 .
8. Minimum solder plate thickness shall be 0.0076 .
9. Exact shape of each corner is optional.

Table 9.1. QFP48 (Dimensions in mm)

DIM	MIN	NOM	MAX	DIM	MIN	NOM	MAX
A	-	7.000 BSC	-	M	-	12DEG REF	
A1	-	3.500 BSC	-	N	0.090	-	0.160
B	-	7.000 BSC	-	P	-	0.250 BSC	-
B1	-	3.500 BSC	-	R	0.150	-	0.250
C	1.000	-	1.200	S	-	9.000 BSC	-
D	0.170	-	0.270	S1	-	4.500 BSC	-
E	0.950	-	1.050	V	-	9.000 BSC	-
F	0.170	-	0.230	V1	-	4.500 BSC	-
G	-	0.500 BSC	-	W	-	0.200 BSC	-
H	0.050	-	0.150	AA	-	1.000 BSC	-
J	0.090	-	0.200				
K	0.500	-	0.700				
L	ODEG	-	7DEG				

The TQFP48 package is 7 by 7 mm in size and has a 0.5 mm pin pitch.
The TQFP48 package uses Nickel-Palladium-Gold preplated leadframe.
All EFM32 packages are RoHS compliant and free of Bromine (Br) and Antimony (Sb).
For additional Quality and Environmental information, please see: http://www.silabs.com/support/quality/pages/default.aspx.

9.2 TQFP48 PCB Layout

Figure 9.2. TQFP48 PCB Land Pattern

Table 9.2. TQFP48 PCB Land Pattern Dimensions (Dimensions in mm)

Symbol	Dim. (mm)	Symbol	Pin Number	Symbol	Pin Number
a	1.60	P1	1	P6	36
b	0.30	P2	12	P7	37
c	0.50	P3	13	P8	48
d	8.50	P4	24		
e	8.50	P5	25		

Figure 9.3. TQFP48 PCB Solder Mask

Table 9.3. TQFP48 PCB Solder Mask Dimensions (Dimensions in mm)

Symbol	Dim. (mm)
a	1.72
b	0.42
c	0.50
d	8.50
e	8.50

Figure 9.4. TQFP48 PCB Stencil Design

Table 9.4. TQFP48 PCB Stencil Design Dimensions (Dimensions in mm)

Symbol	Dim. (mm)
a	1.50
b	0.20
c	0.50
d	8.50
e	8.50

Note:

1. The drawings are not to scale.
2. All dimensions are in millimeters.
3. All drawings are subject to change without notice.
4. The PCB Land Pattern drawing is in compliance with IPC-7351B.
5. Stencil thickness 0.125 mm .
6. For detailed pin-positioning, see Pin Definitions.

9.3 TQFP48 Package Marking

In the illustration below package fields and position are shown.

Figure 9.5. Example Chip Marking (Top View)

10. QFN64 Package Specifications

10.1 QFN64 Package Dimensions

Rev: 98SPP64048A_X01_08MAR2011

Figure 10.1. QFN64

Note:

1. Dimensioning \& tolerancing confirm to ASME Y14.5M-1994.
2. All dimensions are in millimeters. Angles are in degrees.
3. Dimension 'b' applies to metallized terminal and is measured between 0.25 mm and 0.30 mm from the terminal tip. Dimension L1 represents terminal full back from package edge up to 0.1 mm is acceptable.
4. Coplanarity applies to the exposed heat slug as well as the terminal.

5 . Radius on terminal is optional.

Table 10.1. QFN64 (Dimensions in mm)

Symbol	Min	Nom	Max
A	0.80	0.85	0.90
A1	0.00	-	0.05
A3	0.25	0.203 REF	
b		0.30	0.35
D	7.00 BSC		
E	7.10	9.00 BSC	7.30
D2	7.10	7.20	7.30
E2		7.20	

Symbol	Min	Nom	Max
e	0.40	0.50 BSC	0.50
L	0.00	-	0.10
L1		0.10	
aaa	0.10		
bbb	0.10		
ccc	0.05		
ddd	0.08		

The QFN64 Package uses Nickel-Palladium-Gold preplated leadframe.
All EFM32 packages are RoHS compliant and free of Bromine (Br) and Antimony (Sb).
For additional Quality and Environmental information, please see: http://www.silabs.com/support/quality/pages/default.aspx.

Figure 10.2. QFN64 PCB Land Pattern

Table 10.2. QFN64 PCB Land Pattern Dimensions (Dimensions in mm)

Symbol	Dim. (mm)	Symbol	Pin Number	Symbol	Pin Number
a	0.85	P1	1	P8	64
b	0.30	P2	16	P9	0
c	0.50	P3	17		
d	8.90	P4	32		
e	8.90	P5	33		
f	7.20	P6	48		
g	7.20	P7	49		

Figure 10.3. QFN64 PCB Solder Mask

Table 10.3. QFN64 PCB Solder Mask Dimensions (Dimensions in mm)

Symbol	Dim. (mm)	Symbol	Dim. (mm)
a	0.97	e	8.90
b	0.42	f	7.32
c	0.50	g	7.32

Symbol	Dim. (mm)	Symbol	Dim. (mm)
d	8.90	-	-

Figure 10.4. QFN64 PCB Stencil Design

Table 10.4. QFN64 PCB Stencil Design Dimensions (Dimensions in mm)

Symbol	Dim. (mm)	Symbol	Dim. (mm)
a	0.75	e	8.90
b	0.22	x	2.70
c	0.50	y	2.70
d	8.90	z	0.80

Note:

1. The drawings are not to scale.
2. All dimensions are in millimeters.
3. All drawings are subject to change without notice.
4. The PCB Land Pattern drawing is in compliance with IPC-7351B.
5. Stencil thickness 0.125 mm .
6. For detailed pin-positioning, see Pin Definitions.

10.3 QFN64 Package Marking

In the illustration below package fields and position are shown.

Figure 10.5. Example Chip Marking (Top View)

11. QFN32 Package Specifications

11.1 QFN32 Package Dimensions

Figure 11.1. QFN32

Note:

1. Dimensioning \& tolerancing confirm to ASME Y14.5M-1994.
2. All dimensions are in millimeters. Angles are in degrees.
3. Dimension 'b' applies to metallized terminal and is measured between 0.25 mm and 0.30 mm from the terminal tip. Dimension L1 represents terminal full back from package edge up to 0.1 mm is acceptable.
4. Coplanarity applies to the exposed heat slug as well as the terminal.
5. Radius on terminal is optional.

Table 11.1. QFN32 (Dimensions in mm)

Symbol	A	A1	A3	b	D	E	D2	E2	e	L	L1	aaa	bbb	ccc	ddd	eee
Min	0.80	0.00	$\begin{gathered} 0.203 \\ \text { REF } \end{gathered}$	0.25	$\begin{aligned} & 6.00 \\ & \text { BSC } \end{aligned}$	$\begin{aligned} & 6.00 \\ & \text { BSC } \end{aligned}$	4.30	4.30	$\begin{aligned} & 0.65 \\ & \text { BSC } \end{aligned}$	0.30	0.00	0.10	0.10	0.10	0.05	0.08
Nom	0.85	-		0.30			4.40	4.40		0.35						
Max	0.90	0.05		0.35			4.50	4.50		0.40	0.10					

The QFN32 package uses Nickel-Palladium-Gold preplated leadframe.
All EFM32 packages are RoHS compliant and free of Bromine (Br) and Antimony (Sb).
For additional Quality and Environmental information, please see: http://www.silabs.com/support/quality/pages/default.aspx.

Figure 11.2. QFN32 PCB Land Pattern

Table 11.2. QFN32 PCB Land Pattern Dimensions (Dimensions in mm)

Symbol	Dim. (mm)	Symbol	Pin Number	Symbol	Pin Number
a	0.80	P1	1	P6	24
b	0.35	P2	8	P7	25
c	0.65	P3	9	P8	32
d	6.00	P4	16	P9	0
e	6.00	P5	17		
f	4.40				
g	4.40				

Figure 11.3. QFN32 PCB Solder Mask

Table 11.3. QFN32 PCB Solder Mask Dimensions (Dimensions in mm)

Symbol	Dim. (mm)
a	0.92
b	0.47
c	0.65

Symbol	Dim. (mm)
d	6.00
e	6.00
f	4.52
g	4.52

Figure 11.4. QFN32 PCB Stencil Design

Table 11.4. QFN32 PCB Stencil Design Dimensions (Dimensions in mm)

Symbol	Dim. (mm)
a	0.70
b	0.25
c	0.65
d	6.00
e	6.00
x	1.30
z	1.30

Note:

1. The drawings are not to scale.
2. All dimensions are in millimeters.
3. All drawings are subject to change without notice.
4. The PCB Land Pattern drawing is in compliance with IPC-7351B.
5. Stencil thickness 0.125 mm .
6. For detailed pin-positioning, see Pin Definitions.

11.3 QFN32 Package Marking

In the illustration below package fields and position are shown.

Figure 11.5. Example Chip Marking (Top View)

12. Chip Revision, Solder Information, Errata

12.1 Chip Revision

The revision of a chip can be determined from the "Revision" field in the package marking.

12.2 Soldering Information

The latest IPC/JEDEC J-STD-020 recommendations for Pb-Free reflow soldering should be followed.

12.3 Errata

See the errata document for description and resolution of device errata. This document is available in Simplicity Studio and online at: http://www.silabs.com/support/pages/document-library.aspx?p=MCUs--32-bit

13. Revision History

13.1 Revision 2.20

April, 2020
In 4.12 Analog Comparator (ACMP):

- Corrected units for $\mathrm{I}_{\mathrm{ACMP}}$ (BIASPROG=0b0000, FULLBIAS=0 and HALFBIAS=1 in ACMPn_CTRL register) from $\mu \mathrm{A}$ to nA .

In 4.10 Analog Digital Converter (ADC):

- Input $O N$ resistance $\left(R_{A D C I N}\right)$ changed from $1 \mathrm{M} \Omega$ minimum to 300Ω minimum and 800Ω maximum.
- Added test conditions for missing codes specification (MC ${ }_{A D C}$).

In 4.7 Flash:

- Added word write cycles between erase (WWC FLASH) specification.

In Table 5.7 Device Pinout on page 91 under 5.3 EFM32G230 (QFN64):

- Communication functions on pins [12:11] (PC[3:2]) changed from US2_CS \#0 and US2_CLK \#0 to US2_RX \#0 and US2_TX \#0, respectively.

In Table 5.10 Device Pinout on page 98 under 5.4 EFM32G232 (TQFP64):

- Communication functions on pins [10:9] (PC[1:0]) changed from US1_RX \#1 and US1_TX \#1 to US1_RX \#0 and US1_TX \#0, respectively.
- Communication functions on pins [12:11] (PC[3:2]) changed from US1_CS \#1 and US1_CLK \#1 to US2_RX \#0 and US2_TX \#0, respectively.

In 6.1 BGA112 Package Dimensions:

- Removed statements regarding materials used.

In 10.2 QFN64 PCB Layout:

- Corrected pin number for symbol P9.

In 11.2 QFN32 PCB Layout:

- Corrected pin number for symbol P9.

13.2 Revision 2.10

July 19, 2017
In 4.8 General Purpose Input Output:

- Added missing multiply symbols.

In 4.10 Analog Digital Converter (ADC):

- Updated average active current.
- Updated SNR.
- Updated SINAD.
- Updated SFDR.
- Renamed VREF Output Voltage to VREF Voltage.

In 4.11 Digital Analog Converter (DAC):

- Renamed VREF Output Voltage to VREF Voltage.

13.3 Revision 2.00

May 10th, 2017
Consolidated all EFM32G data sheets:

- EFM32G200
- EFM32G210
- EFM32G222
- EFM32G230
- EFM32G232
- EFM32G280
- EFM32G290
- EFM32G840
- EFM32G842
- EFM32G880
- EFM32G890

New formatting throughout.
Added 1. Feature List.
Updated ordering codes in 2. Ordering Information for Revision E and tape and reel.

Added Figure 2.1 Ordering Code Decoder on page 5.

Separated Memory Map figure into Figure 3.2 System Address Space with Core and Code Space Listing on page 27 and Figure 3.3 System Address Space with Peripheral Listing on page 28 for readability.

Removed footnote for storage temperature range in 4.2 Absolute Maximum Ratings.
In 4.6 Power Management:

- Updated EMO condition for $V_{\text {BODextthr- }}$ specification.
- Added $\mathrm{V}_{\text {BODexthr- }}$ in EM1 and EM2 specifications.
- Updated EMO condition for $\mathrm{V}_{\text {BODextthr+ }}$ specification.

Updated Flash page erase time and device erase time in 4.7 Flash and added footnotes.
Updated figures in 4.9.3 LFRCO.
Updated figures and HFRCO current consumption typical values in 4.9.4 HFRCO.

In 4.10 Analog Digital Converter (ADC):

- Updated test conditions, updated specifications, and added footnote for average active current.
- Added input bias current.
- Added input offset current.
- Updated ADC clock frequency.
- Updated SNR, SINAD and SFDR.
- Updated offset voltage.
- Updated missing codes.
- Added gain error drift and offset error drift.
- Added VREF output voltage, VREF voltage drift, VREF temperature drift, VREF current consumption, and ADC and DAC VREF matching.

In 4.11 Digital Analog Converter (DAC):

- Updated $I_{\text {DAC }}$ parameter, test conditions, and footnote.
- Added DAC load current specification to 4.11 Digital Analog Converter (DAC).
- Added VREF output voltage, VREF voltage drift, VREF temperature drift, VREF current consumption, and ADC and DAC VREF matching.

Updated ACMP active current (BIASPROG=0b1111, FULLBIAS=1 and HALFBIAS=0 in ACMPn_CTRL register) typical value in 4.12 Analog Comparator (ACMP).

Updated VCMP hysteresis typical value in 4.13 Voltage Comparator (VCMP).

Corrected pin number for symbol P3 in Table 11.2 QFN32 PCB Land Pattern Dimensions (Dimensions in mm) on page 191.
Updated package marking figures to include temperature grade.

13.4 Revision 1.90

May 22nd, 2015
For devices with an ADC, Added clarification on conditions for INL ${ }_{\text {ADC }}$ and DNL ${ }_{\text {ADC }}$ parameters.
Corrected EM2 current consumption condition in Electrical Characteristics section.
Added AUXHFRCO to block diagram and Electrical Characteristics.
Updated HFRCO table in the Electrical Characteristics section.
Updated EM0, EM2, EM3, and EM4 maximum current specifications in the Electrical Characteristics section.
Updated the Output Low Voltage maximum for sinking 20 mA with VDD $=3.0 \mathrm{~V}$ in the Electrical Characteristics section.
Updated the Input Leakage Current maximum in the Electrical Characteristics section.
Updated the minimum and maximum frequency specifications for the LFRCO, HFRCO, and AUXHFRCO in the Electrical Characteristics section.

Updated the maximum current consumption of the HFRCO in the Electrical Characteristics section.
Updated the maximum current consumption of the HFRCO in the Electrical Characteristics section.
Added some minimum ADC SNR, SNDR, and SFDR specifications in the Electrical Characteristics section.
Added some minimum and maximum ADC offset voltage, DNL, and INL specifications in the Electrical Characteristics section.
Added maximum DAC current specifications in the Electrical Characteristics section.
Added maximum ACMP current and maximum and minimum offset voltage specifications in the Electrical Characteristics section.
Added maximum VCMP current and updated typical VCMP current specifications in the Electrical Characteristics section.
Updated references to energyAware Designer to Configurator.

13.5 Revision 1.80

July 2nd, 2014
Corrected single power supply voltage minimum value from 1.85 V to 1.98 V .
Updated current consumption.
Updated transition between energy modes.
Updated power management data.
Updated GPIO data.
Updated LFXO, HFXO, HFRCO and ULFRCO data.
Updated LFRCO and HFRCO plots.
For devices with an ACMP, updated ACMP data.

13.6 Revision 1.71

November 21st, 2013
Updated figures.
Updated errata-link.
Updated chip marking.
Added link to Environmental and Quality information.
For devices with a DAC, re-added missing DAC-data.

13.7 Revision 1.70

September 30th, 2013
For devices with an I2C, added I2C characterization data.
Corrected GPIO operating voltage from 1.8 V to 1.85 V .
For devices with an ADC, corrected the ADC resolution from 12,10 and 6 bit to 12,8 and 6 bit.
For QFN64 devices, updated the Max $V_{\text {ESDCDM }}$ value to 750 V .
Updated Environmental information.
Updated trademark, disclaimer and contact information.
Other minor corrections.

13.8 Revision 1.60

June 28th, 2013
For BGA devices, updated PCB Land Pattern, PCB Solder Mask and PCB Stencil Design figures.
Updated power requirements in the Power Management section.
Removed minimum load capacitance figure and table. Added reference to application note.
Other minor corrections.

13.9 Revision 1.50

September 11th, 2012
Updated the HFRCO 1 MHz band typical value to 1.2 MHz .
Updated the HFRCO 7 MHz band typical value to 6.6 MHz .
For BGA devices, corrected BGA solder balls material from Sn96.5/Ag3/Cu0.5 to SAC105.
Other minor corrections.

13.10 Revision 1.40

February 27th, 2012
Updated Power Management section.
Corrected operating voltage from 1.8 V to 1.85 V .
Corrected TGRAD ADCTH parameter.
Corrected package drawing.
Updated PCB land pattern, solder mask and stencil design.
For LQFP48 devices, corrected available Pulse Counters from 3 to 2 .
For LQFP48 devices, corrected available LEUARTs from 2 to 1.
For LQFP64 devices, corrected ordering codes in the ordering information table.
13.11 Revision 1.30

May 20th, 2011
This revision applies the following devices:

- EFM32G200
- EFM32G210
- EFM32G230
- EFM32G280
- EFM32G290
- EFM32G840
- EFM32G880
- EFM32G890

Updated LFXO load capacitance section.

13.12 Revision 1.20

December 17th, 2010
This revision applies the following devices:

- EFM32G200
- EFM32G210
- EFM32G230
- EFM32G280
- EFM32G290
- EFM32G840
- EFM32G880
- EFM32G890

Increased max storage temperature.
Added data for $\angle 150^{\circ} \mathrm{C}$ and $\angle 70^{\circ} \mathrm{C}$ on Flash data retention.
Changed latch-up sensitivity test description.
Added IO leakage current.
For LQFP100 devices, updated ESD CDM value.
Added Flash current consumption.
Updated HFRCO data.
Updated LFRCO data.
Added graph for ADC Absolute Offset over temperature.
Added graph for ADC Temperature sensor readout.

13.13 Revision 1.11

November 17th, 2010
This revision applies the following devices:

- EFM32G200
- EFM32G210
- EFM32G230
- EFM32G280
- EFM32G290
- EFM32G840
- EFM32G880
- EFM32G890

Corrected maximum DAC clock speed for continuous mode.
Added DAC sample-hold mode voltage drift rate.
Added pulse widths detected by the HFXO glitch detector.
Added power sequencing information to Power Management section.

13.14 Revision 1.10

September 13th, 2010
This revision applies the following devices:

- EFM32G200
- EFM32G210
- EFM32G230
- EFM32G280
- EFM32G290
- EFM32G840
- EFM32G880
- EFM32G890

For LQFP100 devices, corrected number of GPIO pins.
Added typical values for $\mathrm{R}_{\text {ADCFILT }}$ and $\mathrm{C}_{\text {ADCFILT }}$.
Added two conditions for DAC clock frequency; one for sample/hold and one for sample/off.
Added RoHS information and specified leadframe/solderballs material.
Added Serial Bootloader to feature list and system summary.
Updated ADC characterization data.
Updated DAC characterization data.
Updated RCO characterization data.
Updated ACMP characterization data.
Updated VCMP characterization data.

13.15 Revision 1.00

April 23rd, 2010
This revision applies the following devices:

- EFM32G200
- EFM32G210
- EFM32G230
- EFM32G280
- EFM32G290
- EFM32G840
- EFM32G880
- EFM32G890

ADC_VCM line removed.
Added pinout illustration and additional pinout table.
Changed "Errata" chapter. Errata description moved to separate document.
Document changed status from "Preliminary".
Updated "Electrical Characteristics" chapter.
For EFM32G222
May 20th, 2011
Updated LFXO load capacitance section.

13.16 Revision 0.90

This revision applies the following devices:

- EFM32G222

Initial preliminary revision, April 14th, 2011

This revision applies the following devices:

- EFM32G232
- EFM32G842

Initial preliminary revision, June 30th, 2011

13.17 Revision 0.85

February 19th, 2010
This revision applies the following devices:

- EFM32G200
- EFM32G210
- EFM32G230
- EFM32G280
- EFM32G290
- EFM32G840
- EFM32G880
- EFM32G890

Renamed DBG_SWV pin to DBG_SWO.

13.18 Revision 0.84

February 11th, 2010
This revision applies the following devices:

- EFM32G230
- EFM32G840

Corrected pinout tables.

13.19 Revision 0.83

January 25th, 2010
This revision applies the following devices:

- EFM32G200
- EFM32G210
- EFM32G230
- EFM32G280
- EFM32G290
- EFM32G840
- EFM32G880
- EFM32G890

Updated errata section.
Specified flash word width in Flash Electrical Characteristics.
Added Capacitive Sense Internal Resistor values in ACMP Electrical Characteristics.

13.20 Revision 0.82

December 9th, 2009
This revision applies the following devices:

- EFM32G200
- EFM32G210
- EFM32G230
- EFM32G280
- EFM32G290
- EFM32G840
- EFM32G880
- EFM32G890

For LQFP100 devices, incorrect pin 0 removed from pinout table.
Updated contact information.
ADC current consumption numbers updated in ADC Electrical Characteristics.
For devices with LCD, updated LCD supply voltage range in LCD Electrical Characteristics.

13.21 Revision 0.81

November 20th, 2009
This revision applies the following devices:

- EFM32G200
- EFM32G210
- EFM32G230
- EFM32G280
- EFM32G290
- EFM32G840
- EFM32G880
- EFM32G890

For devices without a differential DAC, System Summary updated.
Electrical Characteristics updated.
Storage temperature in Electrical Characteristics updated.
Temperature coefficient of band-gap reference in Electrical Characteristics added.
Erase times in Flash Electrical Characteristics updated.
Definitions of DNL and INL added in ADC section.
For devices with and LCD, LCD Electrical Characteristics added.
Current consumption of digital peripherals added in Electrical Characteristics.
For LQFP100 devices, package information in Pinout and Package corrected.
For BGA112 devices, pinout information in Pinout table corrected.
Updated errata section.

13.22 Revision 0.80

October 19th, 2009
This revision applies the following devices:

- EFM32G200
- EFM32G210
- EFM32G230
- EFM32G280
- EFM32G290
- EFM32G840
- EFM32G880
- EFM32G890

Initial preliminary revision

IoT Portfolio www.silabs.com/loT

SWIHW
www.silabs.com/simplicity

Quality
www.silabs.com/quality

Support and Community community.silabs.com

Disclaimer

Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or reliability reasons. Such changes will not alter the specifications or the performance of the product. Silicon Labs shall have no liability for the consequences of use of the information supplied in this document. This document does not imply or expressly grant any license to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any FDA Class III devices, applications for which FDA premarket approval is required, or Life Support Systems without the specific written consent of Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs disclaims all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such unauthorized applications.

Trademark Information

 EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®, Gecko®, Gecko OS, Gecko OS Studio, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® , Zentri, the Zentri logo and Zentri DMS, ZWave®, and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA
http://www.silabs.com

