

Low Capacitance, Low Charge Injection, $\pm 15 \text{ V/} + 12 \text{ V}$ iCMOS Quad SPST Switches

Data Sheet

ADG1211/ADG1212/ADG1213

FEATURES

1 pF off capacitance
2.6 pF on capacitance
<1 pC charge injection
33 V supply range
120 Ω on resistance
Fully specified at ±15 V, +12 V
No V_L supply required
3 V logic-compatible inputs
Rail-to-rail operation
16-lead TSSOP and 16-lead LFCSP
Typical power consumption: <0.03 μW

APPLICATIONS

Automatic test equipment
Data acquisition systems
Battery-powered systems
Sample-and-hold systems
Audio signal routing
Video signal routing
Communication systems

GENERAL DESCRIPTION

The ADG1211/ADG1212/ADG1213 are monolithic complementary metal-oxide semiconductor (CMOS) devices containing four independently selectable switches designed on an *i*CMOS* (industrial CMOS) process. *i*CMOS is a modular manufacturing process combining high voltage CMOS and bipolar technologies. It enables the development of a wide range of high performance analog ICs capable of 33 V operation in a footprint that no previous generation of high voltage devices has been able to achieve. Unlike analog ICs using conventional CMOS processes, *i*CMOS components can tolerate high supply voltages while providing increased performance, dramatically lower power consumption, and reduced package size.

The ultralow capacitance and charge injection of these switches make them ideal solutions for data acquisition and sample-and-hold applications, where low glitch and fast settling are required. Fast switching speed coupled with high signal bandwidth make the devices suitable for video signal switching.

*i*CMOS construction ensures ultralow power dissipation, making the devices ideally suited for portable and battery-powered instruments.

FUNCTIONAL BLOCK DIAGRAM

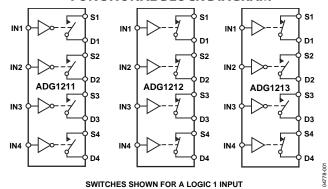


Figure 1.

The ADG1211/ADG1212/ADG1213 contain four independent single-pole/single-throw (SPST) switches. The ADG1211 and ADG1212 differ only in that the digital control logic is inverted. The ADG1211 switches are turned on with Logic 0 on the appropriate control input, while Logic 1 is required for the ADG1212. The ADG1213 has two switches with digital control logic similar to that of the ADG1211; the logic is inverted on the other two switches. The ADG1213 exhibits break-before-make switching action for use in multiplexer applications.

Each switch conducts equally well in both directions when on and has an input signal range that extends to the supplies. In the off condition, signal levels up to the supplies are blocked.

PRODUCT HIGHLIGHTS

- 1. Ultralow capacitance.
- 2. <1 pC charge injection.
- 3. 3 V logic-compatible digital inputs: $V_{IH} = 2.0 \text{ V}$, $V_{IL} = 0.8 \text{ V}$.
- 4. No V_L logic power supply required.
- 5. Ultralow power dissipation: $<0.03 \mu W$.
- 6. 16-lead TSSOP and 3 mm \times 3 mm LFCSP packages.

Rev. D

Document Feedback

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2005–2016 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com

Data Sheet

TABLE OF CONTENTS

Features
Applications1
Functional Block Diagram
General Description
Product Highlights
Revision History
Specifications
Dual Supply3
Single Supply5
REVISION HISTORY
11/2016—Rev. C to Rev. D
Change to VDD Parameter, Table 25
3/2016—Rev. B to Rev. C
5/2010—Rev. D to Rev. C
Changes to Figure 3
Changes to Figure 3
Changes to Figure 3 7 Updated Outline Dimensions 14 Changes to Ordering Guide 15 8/2012—Rev. A to Rev. B Changes to Table 1 3 Changes to Table 2 5

Absolute Maximum Ratings6
ESD Caution6
Pin Configurations and Function Descriptions7
Terminology8
Typical Performance Characteristics9
Test Circuits
Outline Dimensions
Ordering Guide
2/2009—Rev. 0 to Rev. A
Changes to Power Requirements, I_{DD} , Digital Inputs = 5 V
Parameter, Table 1

Changes to Power Requirements, $I_{\rm DD}$, Digital Inputs = 5 V Parameter, Table 25

7/2005—Revision 0: Initial Version

SPECIFICATIONS

DUAL SUPPLY

 V_{DD} = 15 V \pm 10%, V_{SS} = –15 V \pm 10%, GND = 0 V, unless otherwise noted.

Table 1.

Parameter	25°C	Y Version ¹ -40°C to +85°C	–40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH		.00 0		-	Test conditions, comments
Analog Signal Range			V _{DD} to V _{SS}	V	
On Resistance (R _{ON})	120		100 10 133	Ωtyp	$V_S = \pm 10 \text{ V}, I_S = -1 \text{ mA}; \text{ see Figure 20}$
on nesistance (non)	190	230	260	Ω max	$V_{DD} = +13.5 \text{ V}, V_{SS} = -13.5 \text{ V}$
On Resistance Match Between Channels (ΔR _{ON})	2.5			Ωtyp	$V_S = \pm 10 \text{ V, } I_S = -1 \text{ mA}$
	6	10	11	Ω max	
On Resistance Flatness (R _{FLAT(ON)})	20			Ωtyp	$V_S = -5 \text{ V/0 V/+5 V; } I_S = -1 \text{ mA}$
	57	72	79	Ω max	
LEAKAGE CURRENTS					$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$
Source Off Leakage, Is (Off)	±0.02			nA typ	$V_S = \pm 10 \text{ V}, V_D = \mp 10 \text{ V}; \text{ see Figure 21}$
-	±0.1	±0.6	±1	nA max	13 = 10 1, 15 1 10 1, 300 1.iguile = 1
Drain Off Leakage, I _D (Off)	±0.02	_0.0		nA typ	$V_S = \pm 10 \text{ V}, V_D = \mp 10 \text{ V}$; see Figure 21
, (,	±0.1	±0.6	±1	nA max	vs - ±10 v, vb - +10 v, see rigule 21
Channel On Leakage, ID, Is (On)	±0.02	10.0	<u> </u>		$V_S = V_D = \pm 10 \text{ V}$; see Figure 22
Charmer On Leakage, 10, 15 (OH)	±0.02 ±0.1	±0.6	±1	nA typ nA max	$VS = VD = \pm 10 \text{ V, see Figure 22}$
DIGITAL INPUTS	±0.1	10.0	<u> </u>	TIA IIIax	+
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, VINL			0.8	V max	
Input Cow voltage, VINL Input Current, I _{INL} or I _{INH}	0.005		0.8		V _{IN} = V _{INI} or V _{INH}
input current, int or inh	0.003		±0.1	μA typ	VIN — VINL OI VINH
Digital Input Capacitance, C _{IN}	2.5		±0.1	μΑ max pF typ	
DYNAMIC CHARACTERISTICS ²	2.3			рг тур	+
	110			ns tun	D = 300 O C = 35 pF
ton	130	160	195	ns typ ns max	$R_L = 300 \Omega$, $C_L = 35 pF$ $V_S = 10 V$; see Figure 23
+.	85	100	193		$R_L = 300 \Omega$, $C_L = 35 pF$
toff	115	130	150	ns typ ns max	$V_S = 10 \text{ V}$; see Figure 23
Break-Before-Make Time Delay, t _D	25	130	130		$R_L = 300 \Omega$, $C_L = 35 pF$
(ADG1213 Only)	23		10	ns typ ns min	$V_{S1} = V_{S2} = 10 \text{ V}$; see Figure 24
Charge Injection	-0.3		10	pC typ	$V_S = 0 \text{ V}$, $R_S = 0 \Omega$, $C_L = 1 \text{ nF}$; see Figure 25
Off Isolation	80			dB typ	$R_L = 50 \Omega$, $C_L = 5 \text{pF}$, $f = 1 \text{MHz}$; see Figure 2
Channel-to-Channel Crosstalk	90			dB typ	$R_L = 50 \Omega$, $C_L = 5 \text{ pF}$, $f = 1 \text{ MHz}$; see Figure 2
Total Harmonic Distortion + Noise	0.15			% typ	$R_L = 30 \Omega$, $C_L = 3 \text{ pr, } I = 1 \text{ MHz, see Figure 2}$ $R_L = 10 \text{ k}\Omega$, 5 V rms, $f = 20 \text{ Hz to } 20 \text{ kHz}$
-3 dB Bandwidth	1000			MHz typ	$R_L = 10 \text{ K}/2$, 3 V 11113, 1 = 20 112 to 20 K112 $R_L = 50 \Omega$, $C_L = 5 \text{ pF}$; see Figure 28
C _s (Off)	0.9			pF typ	$V_S = 0 \text{ V}, f = 1 \text{ MHz}$
C3 (OII)	1.1			pF typ pF max	$V_S = 0 V, I = 1 MHz$ $V_S = 0 V, f = 1 MHz$
C _D (Off)	1			pF typ	$V_S = 0 \text{ V, } f = 1 \text{ MHz}$
CD (OII)	1.2			pF typ pF max	$V_S = 0 \text{ V, } f = 1 \text{ MHz}$
C_D , C_S (On)	2.6			pF max pF typ	$V_S = 0 \text{ V, } f = 1 \text{ MHz}$ $V_S = 0 \text{ V, } f = 1 \text{ MHz}$
CD, CS (OH)	3			pF typ pF max	$V_S = 0 \text{ V, } f = 1 \text{ MHz}$ $V_S = 0 \text{ V, } f = 1 \text{ MHz}$

		Y Version ¹				
Parameter	25°C	−40°C to +85°C	–40°C to +125°C	Unit	Test Conditions/Comments	
POWER REQUIREMENTS					$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$	
I _{DD}	0.001			μA typ	Digital inputs = 0 V or V _{DD}	
			1.0	μA max		
I _{DD}	220			μA typ	Digital inputs = 5 V	
			380	μA max		
I _{SS}	0.001			μA typ	Digital inputs = 0 V or V_{DD}	
			1.0	μA max		
I _{SS}	0.001			μA typ	Digital inputs = 5 V	
			1.0	μA max		
VDD/VSS			±4.5/±16.5	V min/max		

 $^{^1}$ Temperature range for Y version is -40°C to $+125^\circ\text{C}$. 2 Guaranteed by design, not subject to production test.

SINGLE SUPPLY

 V_{DD} = 12 V \pm 10%, V_{SS} = 0 V, GND = 0 V, unless otherwise noted.

Table 2.		Y Version ¹ -40°C to	−40°C to		
Parameter	25°C	+85°C	+125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			$0 V to V_{DD}$	V	
On Resistance (R _{ON})	300			Ωtyp	$V_S = 0 \text{ V to } 10 \text{ V, } I_S = -1 \text{ mA; see Figure } 20$
	475	567	625	Ω max	$V_{DD} = 10.8 \text{ V}, V_{SS} = 0 \text{ V}$
On Resistance Match Between Channels (ΔR_{ON})	4.5			Ωtyp	$V_S = 0 \text{ V to } 10 \text{ V, } I_S = -1 \text{ mA}$
	12	26	27	Ω max	
On Resistance Flatness (R _{FLAT(ON)})	60			Ωtyp	$V_S = 3 \text{ V}/6 \text{ V}/9 \text{ V}, I_S = -1 \text{ mA}$
LEAKAGE CURRENTS					$V_{DD} = 13.2 \text{ V}, V_{SS} = 0 \text{ V}$
Source Off Leakage, Is (Off)	±0.02			nA typ	$V_S = 1 \text{ V}/10 \text{ V}, V_D = 10 \text{ V}/1 \text{ V}; \text{ see Figure 21}$
	±0.1	±0.6	±1	nA max	
Drain Off Leakage, I _D (Off)	±0.02			nA typ	$V_S = 1 \text{ V}/10 \text{ V}, V_D = 10 \text{ V}/1 \text{ V}; \text{ see Figure 21}$
	±0.1	±0.6	±1	nA max	
Channel On Leakage, ID, Is (On)	±0.02			nA typ	$V_S = V_D = 1 \text{ V or } 10 \text{ V}$; see Figure 22
	±0.1	±0.6	±1	nA max	
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current, I _{INL} or I _{INH}	0.001			μA typ	$V_{IN} = V_{INL}$ or V_{INH}
•			±0.1	μA max	
Digital Input Capacitance, C _{IN}	3			pF typ	
DYNAMIC CHARACTERISTICS ²				1 /1	
ton	130			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	170	210	240	ns max	$V_S = 8 \text{ V}$; see Figure 23
toff	95			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	120	145	180	ns max	$V_S = 8 \text{ V}$; see Figure 23
Break-Before-Make Time Delay, t _D	50			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
(ADG1213 Only)			10	ns min	$V_{S1} = V_{S2} = 8 \text{ V}$; see Figure 24
Charge Injection	0		. •	pC typ	$V_S = 6 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF}; \text{ see Figure 25}$
Off Isolation	80			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 26
Channel-to-Channel Crosstalk	90			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 27
-3 dB Bandwidth	900			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 28
C _s (Off)	1.2			pF typ	$V_S = 6 \text{ V, } f = 1 \text{ MHz}$
C ₃ (OII)	1.4			pF max	$V_S = 6 \text{ V, } f = 1 \text{ MHz}$
C _D (Off)	1.3			pF typ	$V_S = 6 \text{ V, } f = 1 \text{ MHz}$
Co (Oil)	1.5			pF typ pF max	$V_S = 6 \text{ V, } f = 1 \text{ MHz}$
C_D , C_S (On)	3.2			pF max pF typ	$V_S = 6 \text{ V, } f = 1 \text{ MHz}$
CD, CS (OTI)	3.9			pF typ pF max	$V_S = 6 \text{ V}, T = 1 \text{ MHz}$ $V_S = 6 \text{ V}, f = 1 \text{ MHz}$
POWER REQUIREMENTS	3.9			ргтнах	
	0.001			A +>	V _{DD} = 13.2 V
ldd	0.001		1.0	μA typ	Digital inputs = 0 V or V _{DD}
	220		1.0	μA max	Disital in sector 5 V
I _{DD}	220		1.0	μA typ	Digital inputs = 5 V
VDD			1.0	μA max	V OVICNE OVI
VDD			5/16.5	V min/max	$V_{SS} = 0 \text{ V, GND} = 0 \text{ V}$

 $^{^1}$ Temperature range for Y version is -40°C to $+125^\circ\text{C}.$ 2 Guaranteed by design, not subject to production test.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted.

Table 3.

Parameter	Rating
V_{DD} to V_{SS}	35 V
V _{DD} to GND	−0.3 V to +25 V
V _{ss} to GND	+0.3 V to −25 V
Analog Inputs ¹	V_{SS} – 0.3 V to V_{DD} + 0.3 V or 30 mA, whichever occurs first
Digital Inputs ¹	GND – 0.3 V to V_{DD} + 0.3 V or 30 mA, whichever occurs first
Peak Current, S or D	100 mA (pulsed at 1 ms, 10% duty cycle max)
Continuous Current per Channel, S or D	25 mA
Operating Temperature Range	
Automotive (Y Version)	−40°C to +125°C
Storage Temperature Range	−65°C to +150°C
Junction Temperature	150°C
16-Lead TSSOP, θ _{JA} Thermal Impedance (4-Layer Board)	112°C/W
16-Lead LFCSP, θ _{JA} Thermal Impedance	72.7°C/W
Reflow Soldering Peak Temperature, Pb free	260°C

¹ Overvoltages at IN, S, or D are clamped by internal diodes. Current must be limited to the maximum ratings given.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Only one absolute maximum rating can be applied at any one time.

Table 4. ADG1211/ADG1212 Truth Table

ADG1211 INx	ADG1212 INx	Switch Condition
0	1	On
1	0	Off

Table 5. ADG1213 Truth Table

ADG1213 INx	Switch 1, 4	Switch 2, 3
0	Off	On
_1	On	Off

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

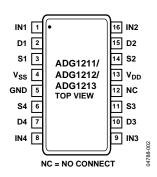


Figure 2. TSSOP Pin Configuration

ADG1211/ADG1212/ADG1213 PIN 1 INDICATOR PUN 1 S1 1 Vss 2 TOP VIEW GND 3 (Not to Scale) 10 NC S4 4 FIN 1 12 S2 11 V_{DD} 10 NC S4 4 FIN 2 S3 2 TOP VIEW TOP VIEW TOP VIEW TOP VIEW TOP VIEW TOP VIEW TO NC S4 4 FIN 2 S4 4 FIN 2 S5 2 TOP VIEW TO NC S4 4 FIN 2 S5 2 TOP VIEW TO NC S2 4 TO NC S4 4 FIN 2 S5 2 S6 3 NCTES 1. NC = NO CONNECT. DO NOT CONNECT TO THIS PIN. 2. THE EXPOSED PAD MUST BE TIED TO SUBSTRATE, V_{SS}.

Figure 3. LFCSP Pin Configuration

Table 6. Pin Function Descriptions

F	in No.		
TSSOP	LFCSP	Mnemonic	Description
1	15	IN1	Logic Control Input.
2	16	D1	Drain Terminal. Can be an input or output.
3	1	S1	Source Terminal. Can be an input or output.
4	2	Vss	Most Negative Power Supply Potential.
5	3	GND	Ground (0 V) Reference.
6	4	S4	Source Terminal. Can be an input or output.
7	5	D4	Drain Terminal. Can be an input or output.
8	6	IN4	Logic Control Input.
9	7	IN3	Logic Control Input.
10	8	D3	Drain Terminal. Can be an input or output.
11	9	S3	Source Terminal. Can be an input or output.
12	10	NC	No Internal Connection.
13	11	V_{DD}	Most Positive Power Supply Potential.
14	12	S2	Source Terminal. Can be an input or output.
15	13	D2	Drain Terminal. Can be an input or output.
16	14	IN2	Logic Control Input.

TERMINOLOGY

 I_{DD}

The positive supply current.

Iss

The negative supply current.

 $V_D(V_S)$

The analog voltage on Terminals D and S.

RON

The ohmic resistance between D and S.

R_{FLAT(ON)}

Flatness is defined as the difference between the maximum and minimum value of on resistance, as measured over the specified analog signal range.

Is (Off)

The source leakage current with the switch off.

I_D (Off)

The drain leakage current with the switch off.

 I_D , I_S (On)

The channel leakage current with the switch on.

 $\mathbf{V}_{\mathsf{INL}}$

The maximum input voltage for Logic 0.

 \mathbf{V}_{INH}

The minimum input voltage for Logic 1.

IINL (IINH)

The input current of the digital input.

Cs (Off)

The off switch source capacitance, measured with reference to ground.

C_D (Off)

The off switch drain capacitance, measured with reference

to ground.

CD, Cs (On)

The on switch capacitance, measured with reference to ground.

CIN

The digital input capacitance.

ton

The delay between applying the digital control input and the output switching on. See Figure 23.

toff

The delay between applying the digital control input and the output switching off. See Figure 23.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

Off Isolation

A measure of unwanted signal coupling through an off switch.

Crosstalk

A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

Bandwidth

The frequency at which the output is attenuated by 3 dB.

On Response

The frequency response of the on switch.

Insertion Loss

The loss due to the on resistance of the switch.

THD + N

The ratio of the harmonic amplitude plus noise of the signal to the fundamental.

TYPICAL PERFORMANCE CHARACTERISTICS

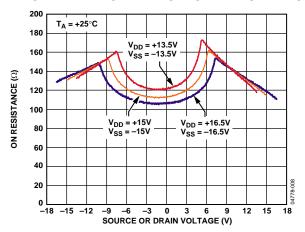


Figure 4. On Resistance as a Function of V_D (V_S) for Dual Supply

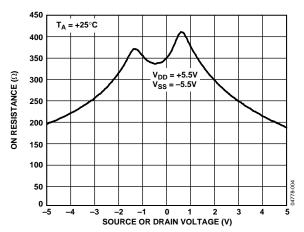


Figure 5. On Resistance as a Function of V_D (V_S) for Dual Supply

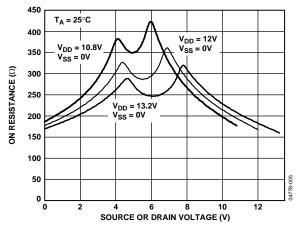


Figure 6. On Resistance as a Function of V_D (V_S) for Single Supply

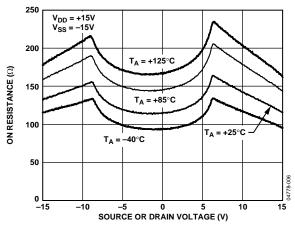


Figure 7. On Resistance as a Function of V_D (V_S) for Different Temperatures, Dual Supply

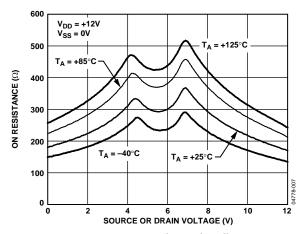


Figure 8. On Resistance as a Function of V_D (V_S) for Different Temperatures, Single Supply

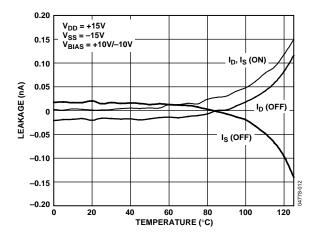


Figure 9. Leakage Currents as a Function of Temperature, Dual Supply

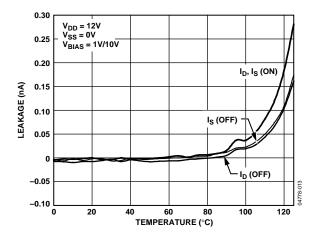


Figure 10. Leakage Currents as a Function of Temperature, Single Supply

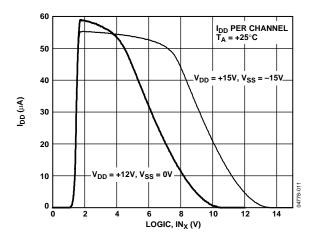


Figure 11. IDD vs. Logic Level

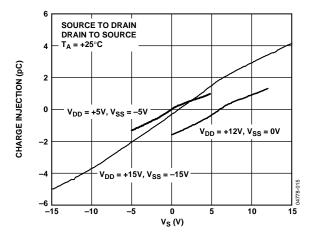


Figure 12. Charge Injection vs. Source Voltage

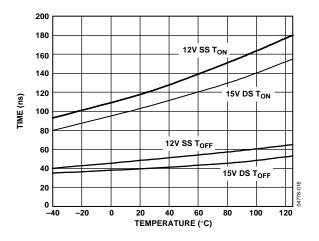


Figure 13. T_{ON}/T_{OFF} Times vs. Temperature

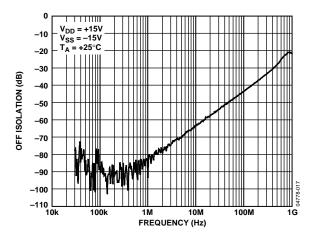


Figure 14. Off Isolation vs. Frequency

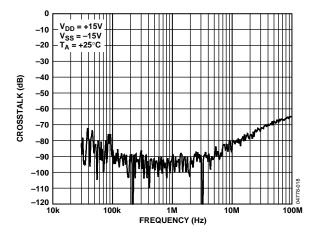


Figure 15. Crosstalk vs. Frequency

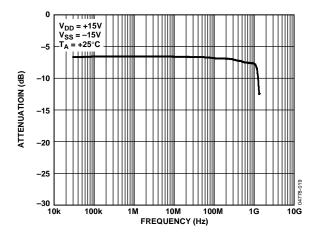


Figure 16. On Response vs. Frequency

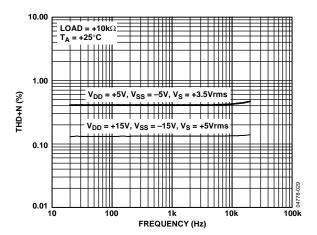


Figure 17. THD + N vs. Frequency

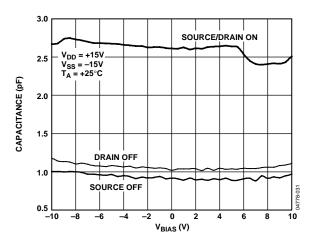


Figure 18. Capacitance vs. Source Voltage, Dual Supply

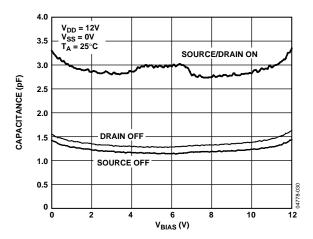
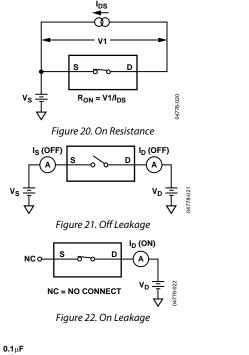



Figure 19. Capacitance vs. Source Voltage, Single Supply

TEST CIRCUITS

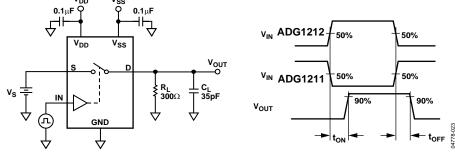


Figure 23. Switching Times

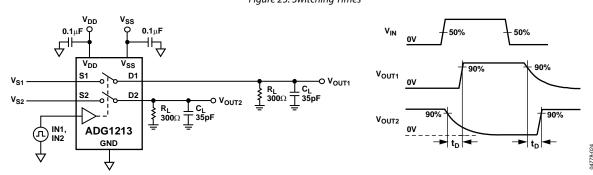


Figure 24. Break-Before-Make Time Delay

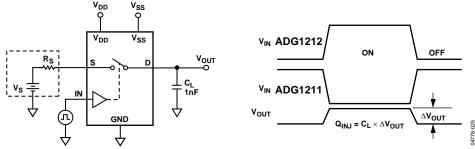


Figure 25. Charge Injection

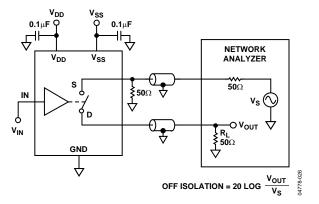


Figure 26. Off Isolation

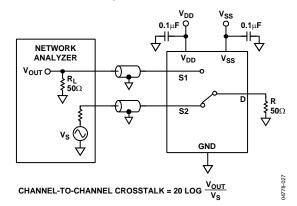


Figure 27. Channel-to-Channel Crosstalk

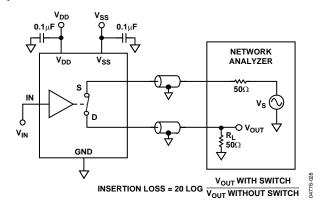


Figure 28. Bandwidth

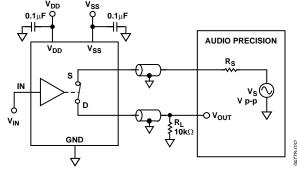
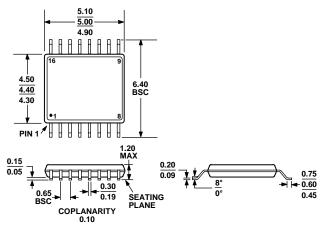
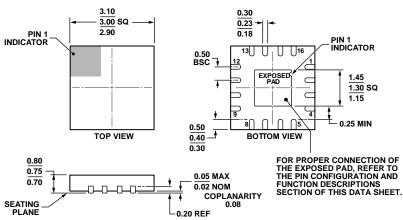



Figure 29. THD + Noise


OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-153-AB

Figure 30. 16-Lead Thin Shrink Small Outline Package [TSSOP] (RU-16)

Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MO-220-WEED.

Figure 31. 16-Lead Lead Frame Chip Scale Package [LFCSP] 3 mm × 3 mm Body and 0.75 mm Package Height (CP-16-21) Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option	Branding
ADG1211YRUZ	-40°C to +125°C	Thin Shrink Small Outline Package [TSSOP]	RU-16	
ADG1211YRUZ-REEL	-40°C to +125°C	Thin Shrink Small Outline Package [TSSOP]	RU-16	
ADG1211YRUZ-REEL7	-40°C to +125°C	Thin Shrink Small Outline Package [TSSOP]	RU-16	
ADG1211YCPZ-500RL7	-40°C to +125°C	Lead Frame Chip Scale Package [LFCSP]	CP-16-21	S07
ADG1211YCPZ-REEL7	-40°C to +125°C	Lead Frame Chip Scale Package [LFCSP]	CP-16-21	S07
ADG1212YRUZ	-40°C to +125°C	Thin Shrink Small Outline Package [TSSOP]	RU-16	
ADG1212YRUZ-REEL7	-40°C to +125°C	Thin Shrink Small Outline Package [TSSOP]	RU-16	
ADG1212YCPZ-500RL7	-40°C to +125°C	Lead Frame Chip Scale Package [LFCSP]	CP-16-21	S08
ADG1212YCPZ-REEL7	-40°C to +125°C	Lead Frame Chip Scale Package [LFCSP]	CP-16-21	S08
ADG1213YRUZ	-40°C to +125°C	Thin Shrink Small Outline Package [TSSOP]	RU-16	
ADG1213YRUZ-REEL7	-40°C to +125°C	Thin Shrink Small Outline Package [TSSOP]	RU-16	
ADG1213YCPZ-500RL7	-40°C to +125°C	Lead Frame Chip Scale Package [LFCSP]	CP-16-21	S09
ADG1213YCPZ-REEL7	-40°C to +125°C	Lead Frame Chip Scale Package [LFCSP]	CP-16-21	S09

¹ Z = RoHS Compliant Part.

NOTES