Figure 1. Mounting detail

Recommended hole size dia 1.2

Primary resistor R1: the transducer's optimum accuracy is obtained with the nominal primary current. As far as possible, R1 will be calculated so that the nominal voltage to be measured corresponds to a primary current of 10 mA .
Example: Voltage to be measured $\mathrm{U}_{\mathrm{N}}=250 \mathrm{~V}$
a. $\mathrm{R} 1=25 \mathrm{k} \Omega 10 \mathrm{~W}$, I prim. $=10 \mathrm{~mA}$, accuracy $= \pm 0.6 \%$ of U_{N} at $+25^{\circ} \mathrm{C}$
b. R1 $=50 \mathrm{k} \Omega 5 \mathrm{~W}$, I prim. $=5 \mathrm{~mA}$, accuracy $= \pm 1.2 \%$ of U_{N} at $+25^{\circ} \mathrm{C}$

Operating range (recommended): taking into account the resistance of the primary windings (which must remain low compared to R1, in order to keep thermal deviation as low as possible) and the isolation, this transducer is suitable for measuring nominal voltages of 10 to 500 V .

Connection pins

Pin +
: Supply voltage +15 V
Pin M : Measuring output
Pin- : Supply voltage -15V
Pin + HT : Primary voltage +
Pin -HT : Primary voltage -

Technical specification

Input : 10mA
Output : 25mA
RS stock no. 286-361
LV 25-P

Nominal current I_{N}	10 mA
Nominal analogue output current	25mA
Turns ratio	2500:1000
Overall accuracy at $+25^{\circ} \mathrm{C}$	$\pm 0.6 \%$ of I_{N}
Supply voltage	$\pm 15 \mathrm{~V}$ ($\pm 5 \%$)
Isolation	2.5kVr.m.s./50Hz/1 min
Linearity	<0.2\%
Response time	$<40 \mu$ s for R1 series $25 \mathrm{k} \Omega$ resistor
Operating temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage temperature	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Current consumption	$10 \mathrm{~mA}+$ output current
Primary internal resistance	$250 \Omega\left(\mathrm{at}+70^{\circ} \mathrm{C}\right)$
Secondary internal resistance	$110 \Omega\left(\mathrm{at}+70^{\circ} \mathrm{C}\right)$
Weight	22g
Package	Potted into an insulated self extinguishing plastic case
Polarity markings	a positive output current is obtained on terminal M when a positive voltage is applied on terminal +HT of the primary circuit
Connection to primary circuit Connection to secondary circuit	By 2 pins 1 mm diameter By 3 pins 1 mm diameter

