Programmable Shunt Regulator

KA431A, KA431L

Description

The KA431A and KA431L are three–terminal adjustable regulators with a guaranteed thermal stability over the operating temperature range. The output voltage can be set to any value between V_{REF} (approximately 2.5 V) and 36 V with two external resistors. These devices have a typical dynamic output impedance of 0.2 Ω . Active output circuitry provides a sharp turn–on characteristic, making these devices excellent replacements for Zener diodes in many applications.

Features

- Programmable Output Voltage to 36 V
- Low Dynamic Output Impedance: 0.2 Ω (Typical)
- Sink Current Capability: 1.0 to 100 mA
- Equivalent Full-Range Temperature Coefficient of 50 ppm/°C (Typical)
- Temperature Compensated for Operation Over Full Rated Operating Temperature Range
- Low Output Noise Voltage
- Fast Turn-on Response

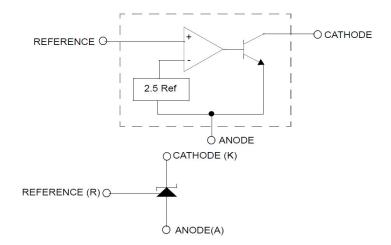
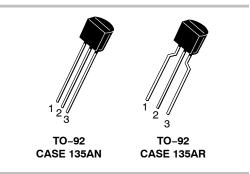
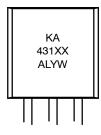
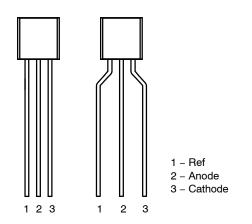



Figure 1. Block Diagram



ON Semiconductor®

www.onsemi.com



MARKING DIAGRAM

KA431XX = Specific Device Code
A = Assembly Location
L = Wafer Lot
YW = Assembly Start Week

PIN CONNECTIONS

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

KA431A, KA431L

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{KA}	Cathode Voltage	37	V
I _{KA}	Cathode Current Range (Continuous)	-100 to +150	mA
I _{REF}	Reference Input Current Range	−0.05 to +10	mA
P_{D}	Power Dissipation	770	mW
$R_{\theta jA}$	Thermal Resistance, Junction to Ambient	160	°C/W
T _{OPR}	Operating Temperature Range	-25 to +85	°C
T_J	Junction Temperature	150	°C
T _{STG}	Storage Temperature Range	−65 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V _{KA}	Cathode Voltage	V_{REF}	36	V
I _{KA}	Cathode Current	1	100	mA

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

ELECTRICAL CHARACTERISTICS (Values are at $T_A = 25^{\circ}C$ unless otherwise noted)

				KA431A		KA431L				
Symbol	Parameter	Conditions		Min	Тур	Max	Min	Тур	Max	Unit
V _{REF}	Reference Input Voltage	V _{KA} = V _{REF} , I _k	V _{KA} = V _{REF} , I _{KA} = 10 mA		2.495	2.520	2.482	2.495	2.508	V
$\Delta V_{REF}/\Delta T$	Deviation of Reference Input Voltage Over– Temperature	$V_{KA} = V_{REF}$, $I_{KA} = 10 \text{ mA}$ $T_{MIN} \le T_A \le T_{MAX}$ (Note 1)		-	4.5	17.0	-	4.5	17.0	mV
$\Delta V_{REF} / \Delta V_{KA}$	Ratio of Change in Reference Input Voltage to	I _{KA} = 10 mA	$\Delta V_{KA} = 10 \text{ V-V}_{REF}$	ı	-1.0	-2.7	-	-1.0	-2.7	mV/V
	the Change in Cathode Voltage		$\Delta V_{KA} = 36 \text{ V} - 10 \text{ V}$	-	-0.5	-2.0	_	-0.5	-2.0	
I _{REF}	Reference Input Current	I _{KA} = 10 mA, F	I_{KA} = 10 mA, R1 = 10 kΩ, R2 = ∞		1.5	4.0	_	1.5	4.0	μΑ
ΔI _{REF} /ΔΤ	Deviation of Reference Input Current Over Full Temperature Range		_{KA} = 10 mA, R1 = 10 kΩ, R2 = ∞, Γ _A = Full Range		0.4	1.2	_	0.4	1.2	μΑ
I _{KA(MIN)}	Minimum Cathode Current for Regulation	V _{KA} = V _{REF}		-	0.45	1.00	_	0.45	1.00	mA
I _{KA(OFF)}	Off - Stage Cathode Current	V _{KA} = 36 V, V _{REF} = 0		-	0.05	1.00	_	0.05	1.00	μΑ
Z _{KA}	Dynamic Impedance	$V_{KA} = V_{REF}, I_{KA} = 1 \text{ to } 100 \text{ mA},$ $f \ge 1.0 \text{ kHz}$		-	0.15	0.50	_	0.15	0.50	Ω

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

1. $T_{MIN} = -25^{\circ}C$, $T_{MAX} = +85^{\circ}C$.

TEST CIRCUIT

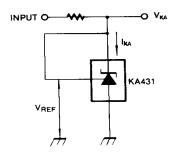


Figure 2. Test Circuit for $V_{KA} = V_{REF}$

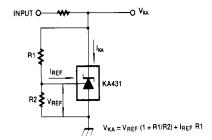


Figure 3. Test Circuit for $V_{KA} \ge V_{REF}$

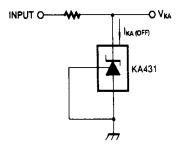


Figure 4. Test Circuit for I_{KA(OFF)}

KA431A, KA431L

TYPICAL PERFORMANCE CHARACTERISTICS

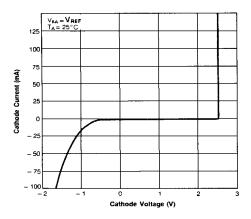


Figure 5. Cathode Current vs. Cathode Voltage

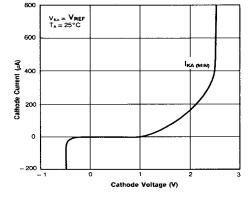


Figure 6. Cathode Current vs. Cathode Voltage

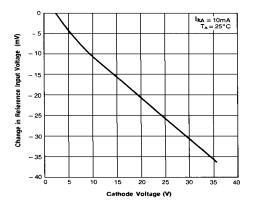


Figure 7. Change in Reference Input Voltage vs. Cathode Voltage

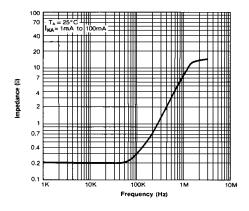


Figure 8. Dynamic Impedance Frequency

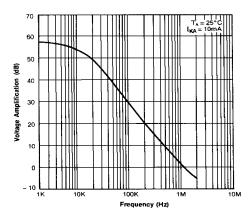


Figure 9. Small Signal Voltage Amplification vs. Frequency

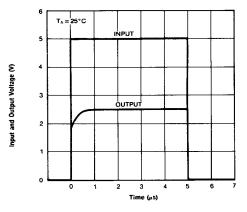


Figure 10. Pulse Response

KA431A, KA431L

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

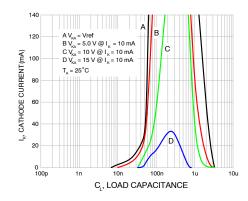


Figure 11. Stability Boundary Conditions

TYPICAL APPLICATION

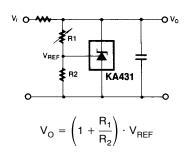


Figure 12. Shunt Regulator

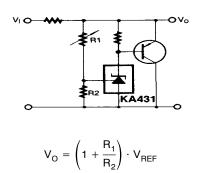


Figure 14. High-Current Shunt Regulator

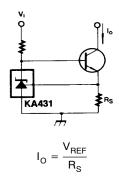


Figure 16. Constant-Current Sink

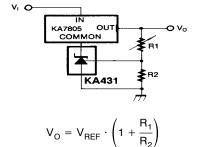
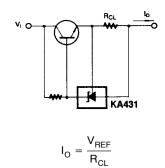
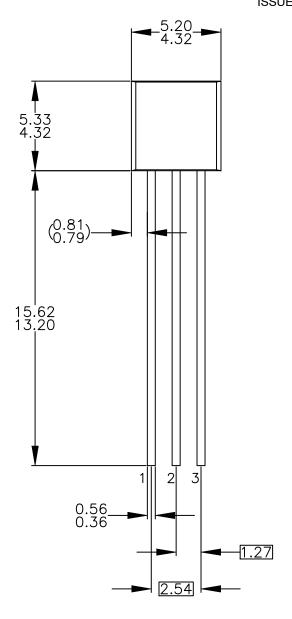
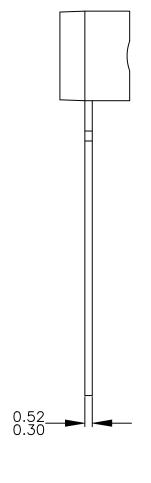


Figure 13. Output Control for Three-Terminal Fixed Regulator

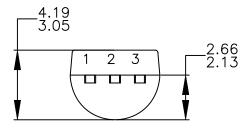



Figure 15. Current Limit or Current Source


ORDERING INFORMATION

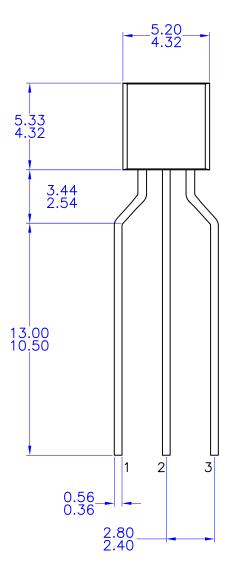
Part Number	Operating Temperature Range	Output Voltage Tolerance	Tom Mark	Package	Packing Method
KA431AZBU	−25 ~ +85°C	1%	KA431AZ	TO-92	Bulk
KA431AZTA			KA431AZ	TO-92	Ammo
KA431LZTA		0.5%	KA431LZ	TO-92	Ammo

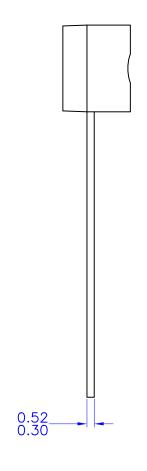
TO-92 3 4.825x4.76 CASE 135AN ISSUE O


DATE 31 JUL 2016

NOTES: UNLESS OTHERWISE SPECIFIED

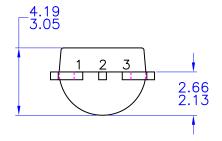
- DRAWING WITH REFERENCE TO JEDEC TO-92 RECOMMENDATIONS. A)
- ALL DIMENSIONS ARE IN MILLIMETERS.
 DRAWING CONFORMS TO ASME Y14.5M—2009.


DOCUMENT NUMBER: 98AON13880G		Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	TO-92 3 4.825X4.76	•	PAGE 1 OF 1		


ON Semiconductor and at a trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

TO-92 3 4.83x4.76 LEADFORMED

CASE 135AR ISSUE O


DATE 30 SEP 2016

NOTES: UNLESS OTHERWISE SPECIFIED

- A) DRAWING WITH REFERENCE TO JEDEC TO-92 RECOMMENDATIONS.
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DRAWING CONFORMS TO ASME Y14.5M-1994

DOCUMENT NUMBER:	98AON13879G	Electronic versions are uncontrolled except when accessed directly from the Document Reposit Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	TO-92 3 4.83X4.76 LEADFORMED		PAGE 1 OF 1		

ON Semiconductor and at a trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

onsemi:

KA431ADTF KA431AZBU KA431AZTA KA431ZTA KA431DTF KA431LZTA