

3.3 V LVDS 1-Bit, High-Speed Differential Driver

FIN1001

Description

This single driver is designed for high-speed interconnects utilizing Low Voltage Differential Signaling (LVDS) technology. The driver translates LVTTL levels to LVDS levels with a typical differential output swing of 350 mV which provides low EMI at ultra low power dissipation even at high frequencies. This device is ideal for high-speed transfer of clock or data. The FIN1001 can be paired with its companion receiver, the FIN1002, or with any other LVDS receiver.

Features

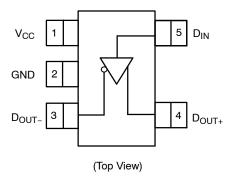
- Greater than 600 Mbs Data Rate
- 3.3 V Power Supply Operation
- 0.5 ns Maximum Pulse Skew
- 1.5 ns Maximum Propagation Delay
- Low Power Dissipation
- Power-Off Protection
- Meets or Exceeds TIA/EIA-644 LVDS Standard
- Flow-through Pin-out Simplifies PCB Layout
- 5-Lead SOT23 Package Saves Space
- This is a Pb-Free and Halide Free Device

PIN DEFINITIONS

Pin No.	Name	Description
1	V _{CC}	Power Supply
2	GND	Ground
3	Dout-	Inverting LVDS Driver Output
4	Dout+	Non-inverting LVDS Driver Output
5	DIN	LVTTL Data Input

FUNCTION TABLE

Inputs	Outputs		
D _{IN}	D _{OUT+}	D _{OUT}	
LOW	LOW	HIGH	
HIGH	HIGH	LOW	


SOT-23, 5 Lead CASE 527AH

MARKING DIAGRAMS

FN01 = Specific Device Code M = Assembly Operation Month

CONNECTION DIAGRAM

ORDERING INFORMATION

See detailed ordering and shipping information on page 6 of this data sheet.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter		Min.	Max.	Unit
V _{CC}	Supply Voltage	Supply Voltage			V
D _{IN}	DC Input Voltage		-0.5	6.0	V
D _{OUT}	DC Output Voltage		-0.5	4.6	V
I _{OSD}	Driver Short Circuit Curre	nt	Conti	nuous	
Io	Output Current		-	16	mA
T _{STG}	Storage Temperature Ran	Storage Temperature Range			°C
T_J	Maximum Junction Tempe	Maximum Junction Temperature			°C
T_L	Lead Temperature, Soldering, 10 Seconds		-	+260	°C
ESD	Electrostatic Discharge	Human Body Model	-	7500	V
		Machine Model	-	400	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min.	Max.	Unit
V _{CC}	Supply Voltage	3.0	3.6	V
V _{IN}	Input Voltage	0	Vcc	V
T _A	Operating Temperature	-40	+125	°C

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTICS (Note 1)

All min and max values are guaranteed at $T_A = -40^{\circ} C$ to +125°C, unless otherwise specified. All typical values are at $T_A = 25^{\circ} C$ and with $V_{CC} = 3.3$ V, unless otherwise specified.

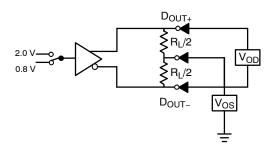
Symbol	Parameter		Conditions	Min	Тур	Max	Unit
V _{OD}	Output Differential Voltage	$R_L = 100 \Omega$	$T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C}$	250	350	450	mV
		See Figure 1	$T_A = -40^{\circ}\text{C to } 125^{\circ}\text{C}$	230	350	450	mV
ΔV_{OD}	VOD Magnitude Change from Differential Low-to-High		$T_A = -40^{\circ} \text{ to } 125^{\circ}\text{C}$		-	25	mV
Vos	Offset Voltage				1.25	1.375	V
ΔV_{OS}	Offset Magnitude Change from Differential Low-to-High			-	-	25	mV
I _{OFF}	Power-Off Output Current	$V_{CC} = 0 \text{ V, } V_{Ol}$	_T = 0 V or 3.6 V	-	_	±20	μΑ
I _{OS}	Short Circuit Output Current	V _{OUT} = 0 V V _{OD} = 0 V		-	-5.5	-8	mA
				-	±4	±8	
I _{I(OFF)}	Power-OFF Input Current	V _{CC} = 0 V, V _{IN} = 0 V or 3.6 V		-	-	±20	μΑ
V_{IH}	Input HIGH Voltage			2.0	-	VCC	V
V_{IL}	Input LOW Voltage			GND	-	0.8	V
I _{IN}	Input Current	$V_{IN} = 0 \text{ V or } V_{C}$	V _{IN} = 0 V or V _{CC}		_	±20	μΑ
I _{I(OFF)}	Power-Off Input Current	$V_{CC} = 0 \text{ V}, V_{IN}$	= 0 V or 3.6 V	-	_	±20	μΑ
V _{IK}	Input Clamp Voltage	I _{IK} = -18 mA	I _{IK} = -18 mA		-0.8	_	V
I _{CC}	Power Supply Current	No Load, V _{IN} = 0 V or V _{CC}		-	4.5	8	mA
		$R_L = 100 \Omega$, $V_{IN} = 0 V$ or V_{CC}		-	6.5	10	
C _{IN}	Input Capacitance	V _{CC} = 3.3 V		-	3.2	_	pF
C _{OUT}	Output Capacitance	V _{CC} = 0 V		-	3.3	-	pF

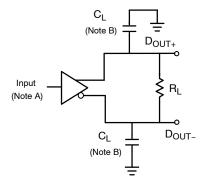
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

1. Not production tested across the full temperature range.

AC ELECTRICAL CHARACTERISTICS

All min and max values are guaranteed at $T_A = -40$ to $+85^{\circ}C$.


All typical values are at $T_A = 25^{\circ}C$ and with $V_{CC} = 3.3$ V, unless otherwise specified.


 R_L = 100 Ω , C_L = 5 pF. See Figure 2 and Figure 3.

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
t _{PLHD}	Propagation Delay	LOW to HIGH	0.50	0.98	1.50	ns
t _{PHLD}	Propagation Delay	HIGH to LOW	0.50	0.93	1.50	ns
t _{TLHD}	Differential Output Rise Time	20% to 80%	0.4	0.5	1.0	ns
t _{THLD}	Output Fall Time	80% to 20%	0.4	0.5	1.0	ns
t _{SK(p)}	Pulse Skew	t _{PLH} - t _{PHL}	_	0.05	0.5	ns
t _{SK(PP)}	Part-to-Part Skew (Note 2)		_	_	1.0	ns

t_{SK(PP)} is the magnitude of the difference in propagation delay times between any specified terminals of two devices switching in the same direction (either LOW-to-HIGH or HIGH-to-LOW) when both devices operate with the same supply voltage, same temperature, and have identical test circuits

TEST DIAGRAMS

Note A: All input pulses have frequency = 10 Mhz, t_R or $t_F = 2$ ns

Note B: C_L includes all probe and fixture capacitances

Figure 1. Differential Driver DC Test Circuit

Figure 2. Differential Driver Propagation Delay and Transition Time Test Circuit

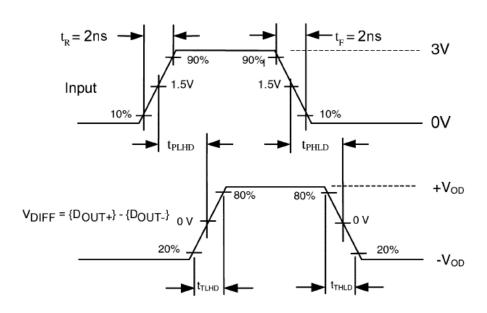


Figure 3. AC Waveforms

TYPICAL PERFORMANCE CHARACTERISTICS

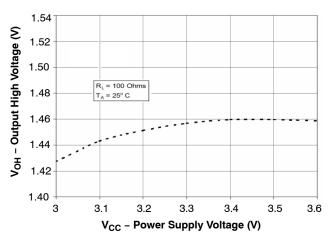


Figure 4. Output High Voltage vs. Power Supply Voltage

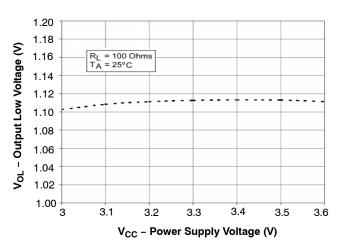


Figure 5. Output Low Voltage vs. Power Supply Voltage

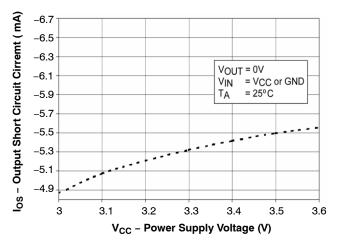


Figure 6. Output Short Circuit Current vs. Power Supply Voltage

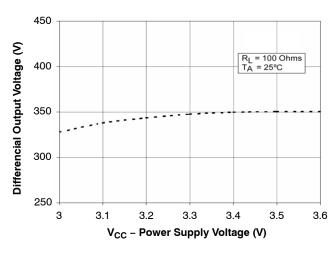


Figure 7. Differential Output Voltage vs. Power Supply Voltage

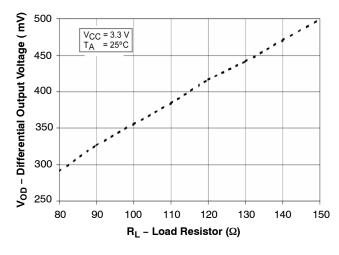


Figure 8. Differential Output Voltage vs. Load Resistor

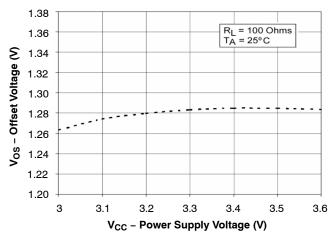
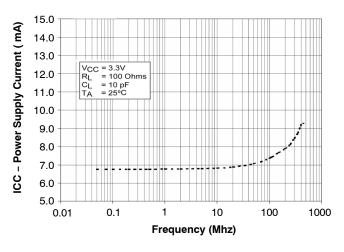
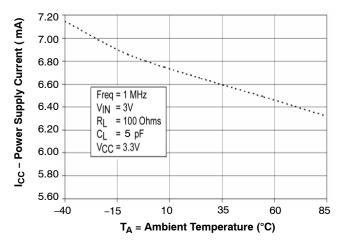



Figure 9. Offset Voltage vs. Power Supply Voltage


TYPICAL PERFORMANCE CHARACTERISTICS

7.20 ICC - Power Supply Current (mA) 7.10 TA = 25°C 7.00 Freq = 1 MHz V_{IN} = 0V to 3V 6.90 RL = 100 Ohms 6.80 C_L = 10 pF 6.70 6.60 6.50 6.40 6.30 3 3.3 3.5 3.6 V_{CC} - Power Supply Voltage (V)

Figure 10. Power Supply Current vs. Frequency

Figure 11. Power Supply Current vs. Power Supply Voltage

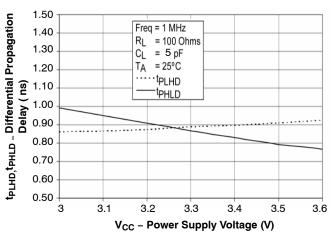
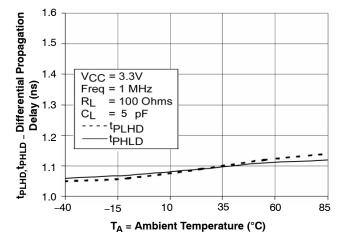



Figure 12. Power Supply Current vs. Ambient Temperature

Figure 13. Differential Propagation Delay vs.
Power Supply

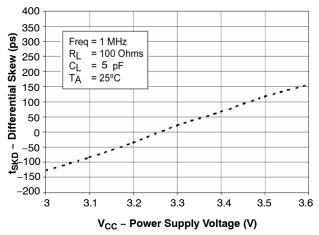


Figure 14. Differential Propagation Delay vs. Ambient Temperature

Figure 15. Differential Pulse Skew (t_{PLH} – t_{PHL}) vs. Power Supply Voltage

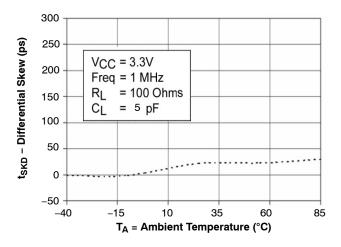


Figure 16. Differential Pulse Skew (t_{PLH} - t_{PHL}) vs. Ambient Temperature

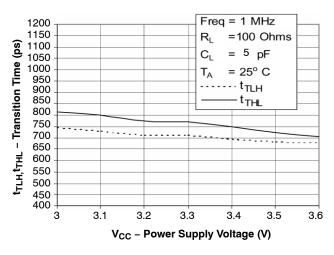


Figure 17. Transition Time vs. Power Supply Voltage

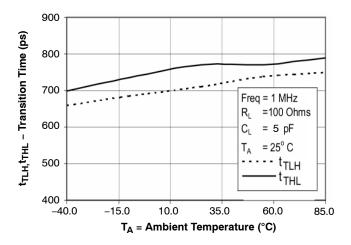


Figure 18. Transition Time vs. Ambient Temperature

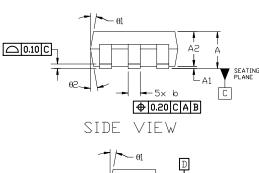
ORDERING INFORMATION

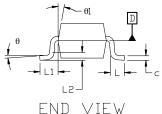

Part Number	Operating Temperature Range	Package	Shipping [†]
FIN1001M5X	-40°C - +125°C	5-Lead SOT23, JEDEC MO-178, 1.6 mm (Pb-Free)	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

DATE 09 JUN 2021

REFERENCE

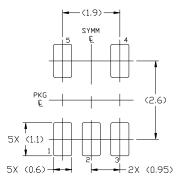



В

F1 F

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 19894
- CONTROLLING DIMENSION: MILLIMETERS
- MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE
- DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS, MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.25 PER SIDE. D AND E1 DIMENSIONS ARE DETERMINED AT DATUM D.
- DIMENSION 'b' DOES NOT INCLUDE DAMBAR PROTRUSION. DAMBAR PROTRUSION SHALL BE O. 08mm TOTAL IN EXCESS OF THE 'b' DIMENSION AT MAXIMUM MATERIAL CONDITION. MINIMUM SPACE BETWEEN PROTRUSION AND AN ADJACENT LEAD SHALL NOT BE LESS THAN 0.07mm.

TOP VIEW


GENERIC MARKING DIAGRAM*

XXX = Specific Device Code = Date Code

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "=", may or may not be present. Some products may not follow the Generic Marking.

	MILLIMETERS			
DIM	MIN.	N□M.	MAX.	
Α	0.90	_	1.45	
A1	0.00	_	0.15	
A2	0.90	1.15	1.30	
b	0.30	_	0.50	
C	0.08	_	0.22	
D	2.90 BSC			
Ε	2.80 BSC			
E1	1.60 BSC			
e	0	.95 BSC		
L	0.30	0.45	0.60	
L1	0	.60 REF		
L2	0.25 REF			
θ	0° 4° 8°			
θ1	0°	15°		
θ2	0°	10°	15°	

RECOMMENDED MOUNTING FOOTPRINT

For additional information on our Pb-Free strategy and soldering details, please download the $\square N$ Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

		Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED"	
DESCRIPTION:	SOT-23, 5 LEAD		PAGE 1 OF 1

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

onsemi

FIN1001M5 FIN1001M5X