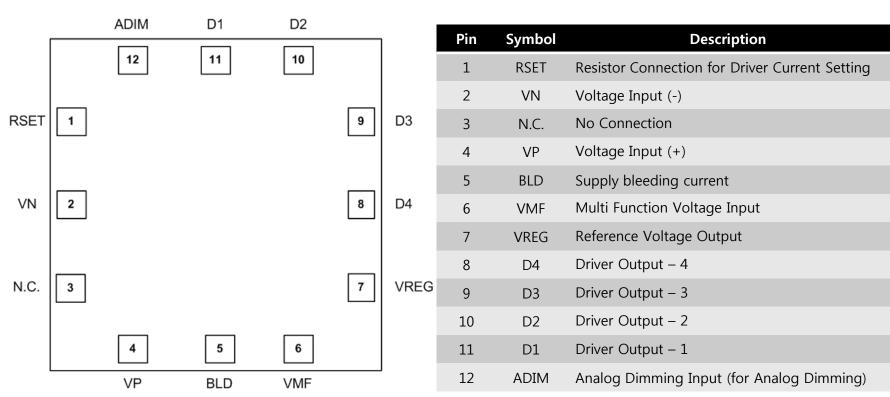
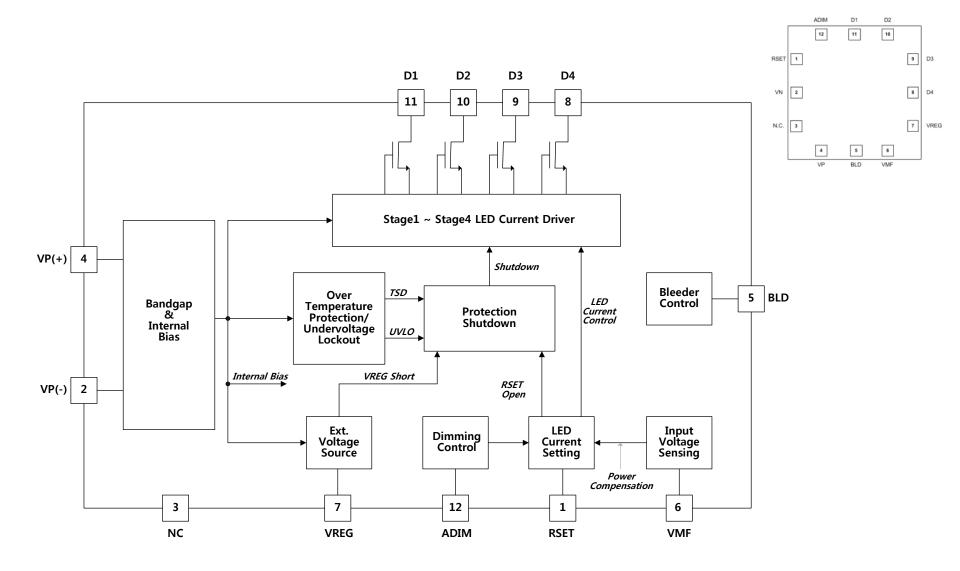


Acrich IC 3.0


Seoul Semiconductor

February 24th, 2015

IC Information


PIN Information

< PIN information>

< TOP View >

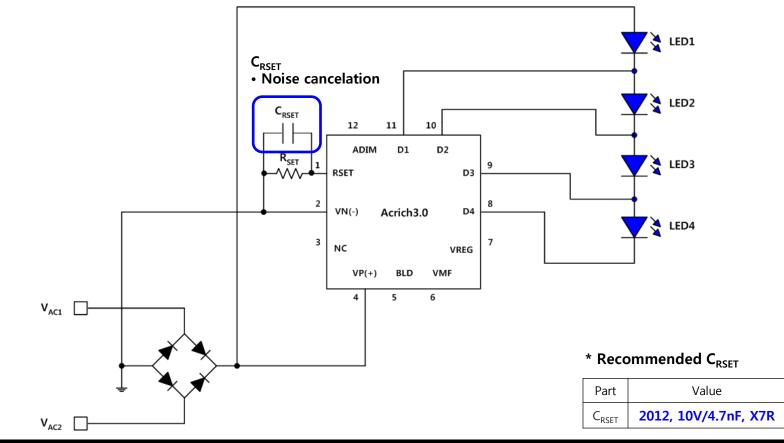
Block Diagram

Preliminary Specification

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
VP(+) to VN(-), D1~D4	V _{HV}	-0.3 ~ +450	V
VREG to VN(-)	V _{CC}	-0.3 ~ +9	V
Other Pins to VN(-)	V _{LV}	-0.3 ~ +6.5	V
Operating Ambient Temperature	T _A	-40 ~ +120	°C
Storage Temperature	T _{STG}	-40 ~ +120	°C
Maximum Junction Temperature	TJ	+150	°C
ESD	V _{HBMV}	1.5	kV
Power Dissipation ^(Note1)	P _D	3	W
Mayimum Driver Stage Current(Note2)	т	240@ V _{AC} = 100V	mA
Maximum Driver Stage Current ^(Note2)	I _{D4}	110@ V _{AC} = 220V	mA

- Package power dissipation is dependent on the PCB board type, size, layout, pattern and thermal heat sink.
- The maximum drive current means the guaranteed operating current.
- The maximum drive current is not the DC current.
- It is the maximum peak current of the forth stage for guarantying normal operation in AC direct drive method.
- The operating current must be used within the allowed package dissipation.
- The operating drive current must be determined within the maximum drive current with margin.


Application Circuit& Function Description

NEW Acrich with AIC3.0

Function	Acrich V2.0	Acrich V3.0	Remarks
PKG	QFN 6x6mm	QFN 6x6mm	
Operating Temperature	-30~100°C	-30~100°C	
Line Voltage	90~270V	90~270V	AC rms
Input Power at 100V	1~16W	1~16W	16W max.
Input Current	10~200mA	10~200mA	200mA max.
LED String	4 Step	4 Step	
Conversion Efficiency @220V	90%	90%	
Conversion Efficiency @120V	86%	86%	
Line Voltage regulation	No	± 5% @Typ. Vac+20%	
THD	<15%	<15%	
H.D. (>25W)	Pass	Pass	IEC 61000-3-2
Analog Dimming	5~100% 0.05~1.5Vdc	0~100% @0.4~2.0Vdc	External Dimming
Phase Cut Dimming	Δ	O TRIAC Dimmer Compatible	
EMI immunity	Filter less @<45W Filter less @<45W		
Auxiliary Source Output	Non	7Vdc 5mA max.	For Remote Control
Power Factor	0.97	>0.97	
Temperature Protection	>130°C	Turn Off >160°C Turn On <130°C Added Hysteresis Protection	
Built in Active Bleeder Driver	No	Internal MOSFET	20mA pk
UVLO	No	Yes	More Stability Operation
Power Setting Protection	No	Yes	Open Short Protection for Rset used Potentiometer

I. Normal Operation

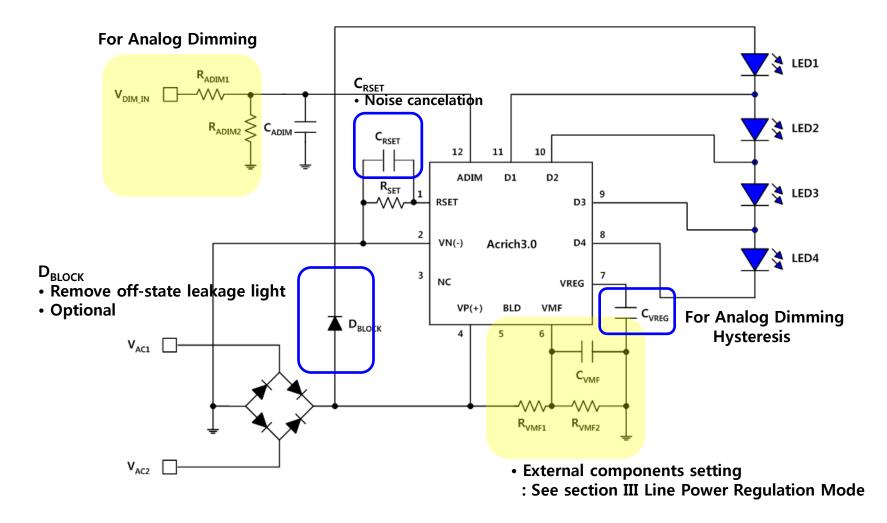
Typical Application Circuit

Typical VAC		Recommend	l Typical V _F	LED3 LED4 21.5V 21.5V			
	LED1	LED2	LED3	LED4			
120V	43V	43V	21.5V	21.5V			
220V	64.5V	64.5V	64.5V	64.5V			

Copyright © Seoul Semiconductor Co., Ltd.

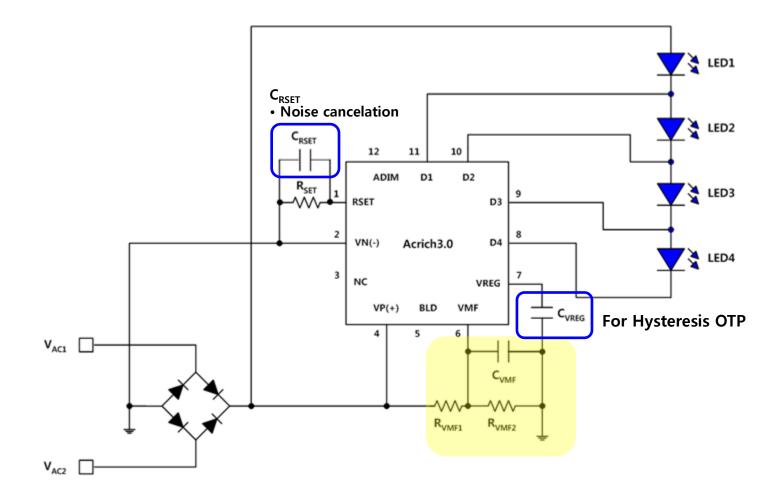
I. Normal Operation

RSET Setting for Power Dissipation


The LED current can be set by using the R_{SET} pin. Therefore LED power dissipation can be set by adjusting the LED current. The resistor connected between R_{SET} pin and VN(-). The R_{SET} pin resistor can be set by the following a table. Use the table below to choose the value of R_{SET} for the desired power dissipation.

V _{AC}	Туре	Power Dissipation	R _{SET} ± 1%
	А	4W	8.11kΩ
100V	В	8W	8.40kΩ
1004	С	12W	6.28kΩ
	С	16W	8.61kΩ
	А	4W	6.45kΩ
120V	В	8W	6.69kΩ
1200	С	12W	5.30kΩ
	С	16W	7.31kΩ
	А	4W	3.20kΩ
22017	А	8W	6.96kΩ
220V	В	12W	5.28kΩ
	В	16W	7.20kΩ

- * Note
- The R_{SET} values is based on the simulation results only.
- The actual R_{SET} values must be determined by the actual LED arrays and LED VF bin and board condition for given input power requirement.
- R_{SET} values are same at all operation mode (ADIM, Power Regulation & TRIAC).
- The size of R_{SET} is 1608.

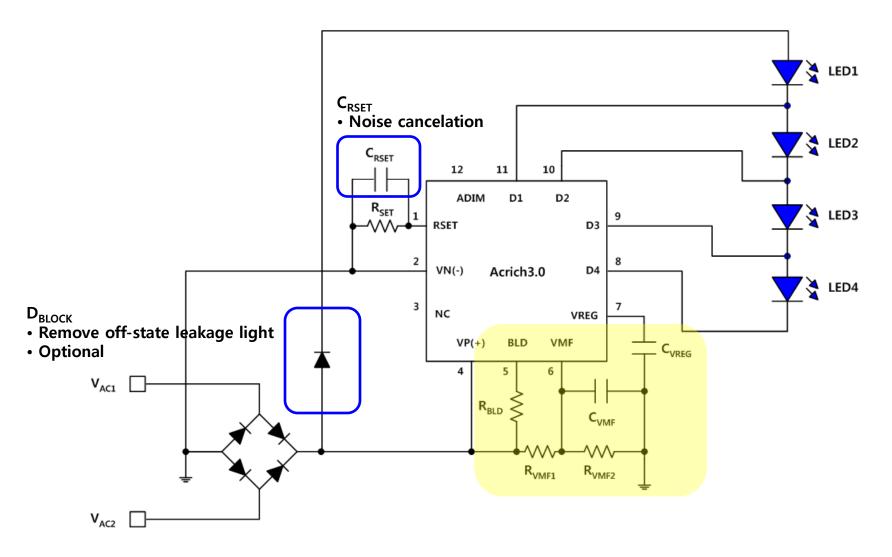

II. Analog Dimming Mode

Analog Dimming with Line Power Regulation – Application Circuit

III. Line Power Regulation Mode

Application Circuit

III. Line Power Regulation Mode


VMF pin detects external the voltage level of external VAC to implement line power regulation function. If use the line power regulation, set the VMF pin voltage to 3.5V by using external components. When the VMF pin is opened, line power regulation is not operated. Refer to the following recommended external components in application.

\/alua	100	Vac	120Vac	220	Vac	230Vac
Value	50Hz	60Hz	60Hz	50Hz	60Hz	50Hz
R _{VMF1}	2ΜΩ	2ΜΩ	2ΜΩ	2ΜΩ	2ΜΩ	2ΜΩ
R _{VMF2}	77.6kΩ	77.1kΩ	64.6kΩ	35.4kΩ	35.7kΩ	33.9kΩ
C _{VMF}	10uF (10V)					

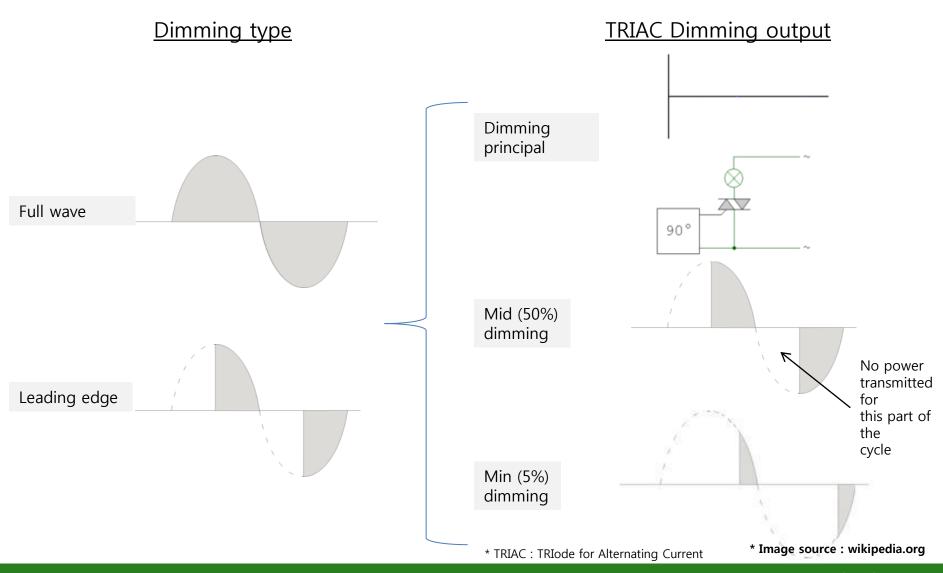
* Note

- All values of the external component is based on a simulation result only.
- The actual R_{VMF2} values must be determined by the actual LED arrays and board condition.
- The size of the external component is 2012.

Application Circuit

Phase Cut Off Angle Setting - External Components Setting

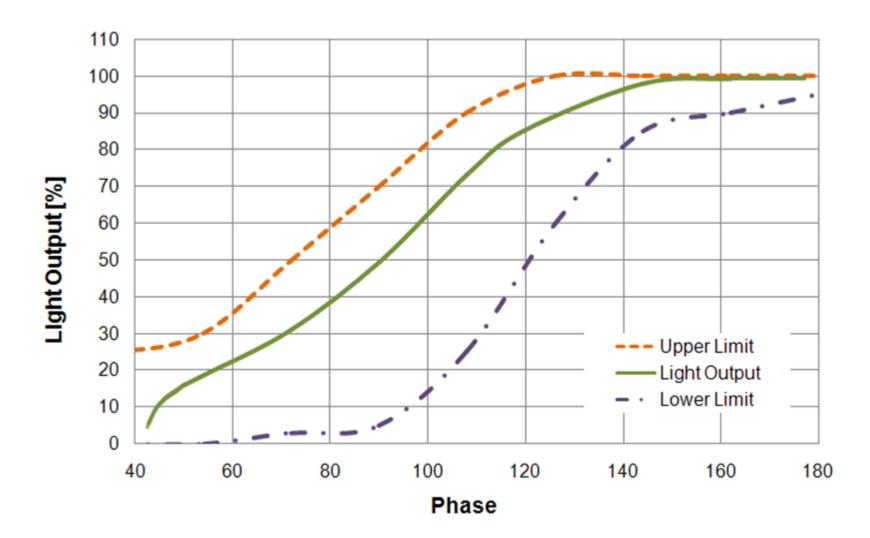
Refer to the following recommended external components in application.


Typical VAC	100V/50Hz				220V/50Hz			230V/50Hz		
Phase Cut Off Angle	60°	50°	40°	60°	50°	40°	60°	50°	40°	
R _{VMF1}	2ΜΩ									
R _{VMF2}	19.32kΩ	23.33kΩ	28.91kΩ	10.39kΩ	12.92kΩ	16.00kΩ	9.91kΩ	12.50kΩ	16.18kΩ	
C _{VMF}	10uF (10V)									

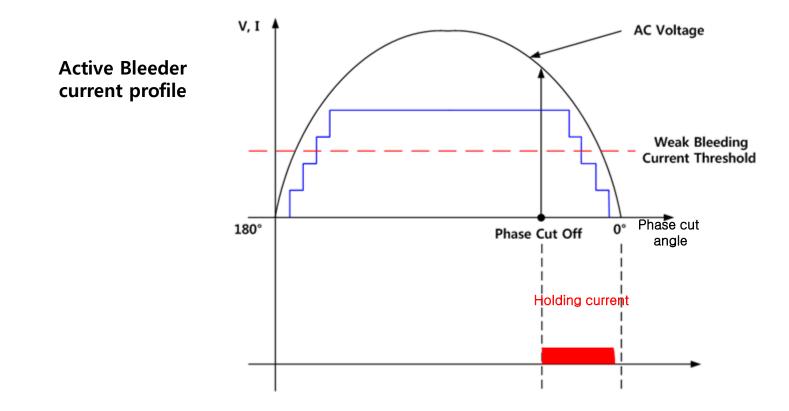
Typical VAC	100V/60Hz			120V/60Hz			220V/60Hz		
Phase Cut Off Angle	60°	50°	40°	60°	50°	40°	60°	50°	40°
R _{VMF1}	2ΜΩ								
R _{VMF2}	19.08kΩ	23.13kΩ	28.37kΩ	18.84kΩ	24.29kΩ	32.26kΩ	9.99kΩ	12.38kΩ	15.89kΩ
C _{VMF}	10uF (10V)								

* Note

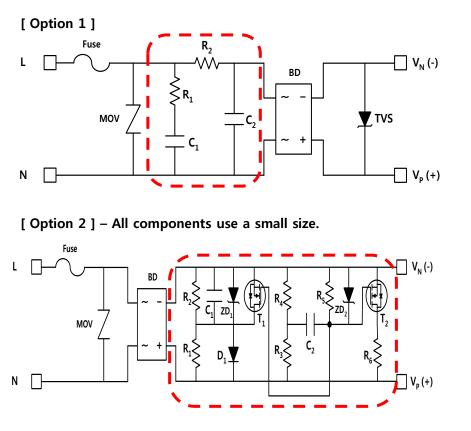
- All values of the external component is based on the simulation results only.
- The actual R_{VMF2} values must be determined by the actual LED arrays and board condition.
- The size of the external component is 2012.


A "chopped" waveform at a dimmed level - Reduced

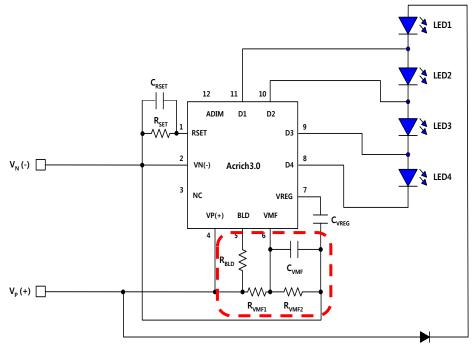
Copyright © Seoul Semiconductor Co., Ltd.


www.seoulsemicon.com

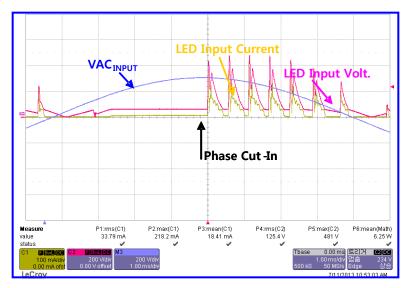
Dimming Profile (NEMA SSL-6)



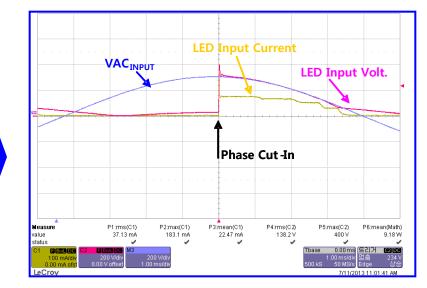
Active Bleeder Operation of Bleeder Current


The active bleeder can cover a wider range of TRIAC turn-on in a line input cycle compared to passive bleeder. The Bleeder current is the internal current source. Their maximum output current can be adjusted by the resistor value connected between the BLD pin and VP(+). The Bleeder current is 0~30mA(peak).

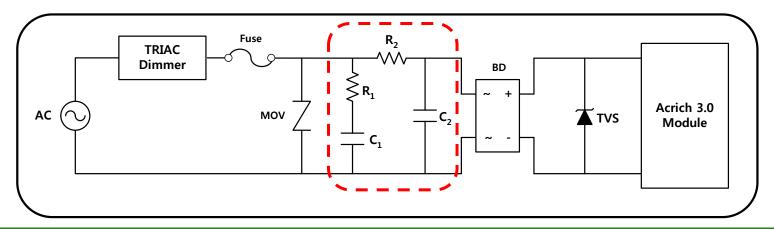
Passive Bleeder - Preliminarily Electric schematic of SPC and module The passive bleeder is designed to supply latching and holding current to eliminate misfire and flicker.

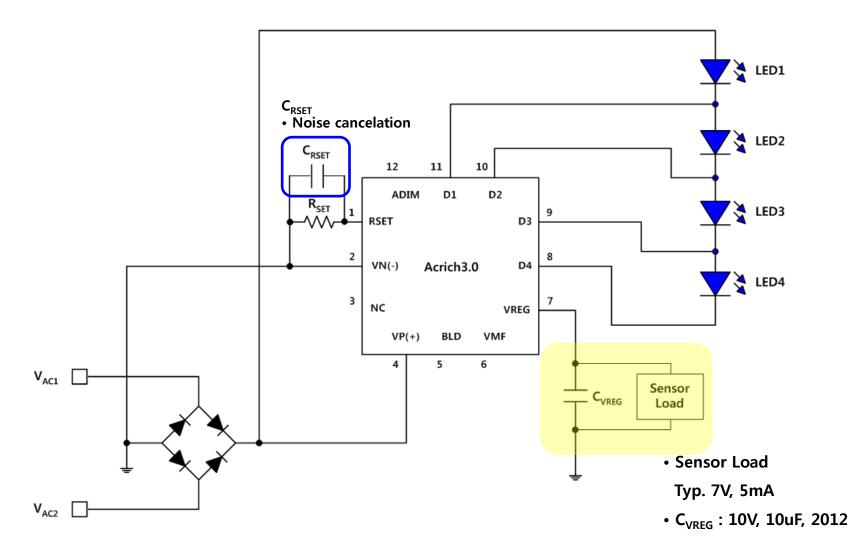


< SPC with Bleeder circuit > Daughter board type



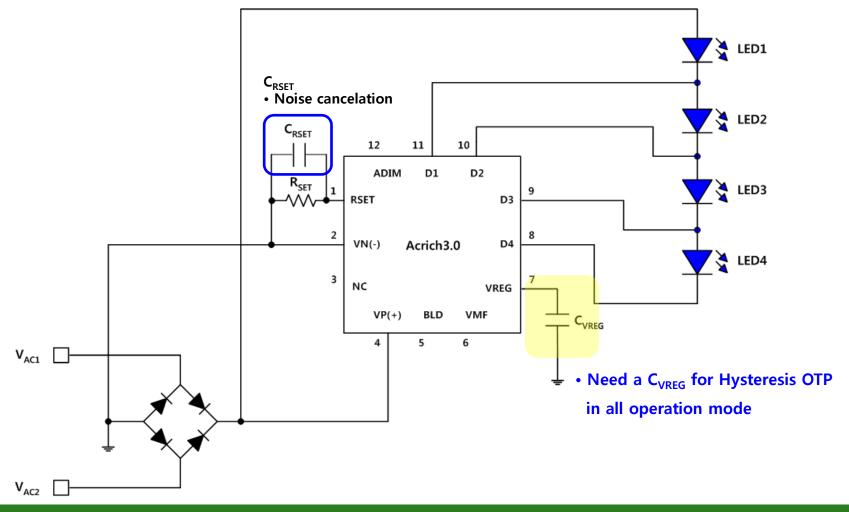
< Acrich module TRIAC dimmable >


Waveforms comparisons (w/o Vs. with bleeder circuit)



With bleeder circuit

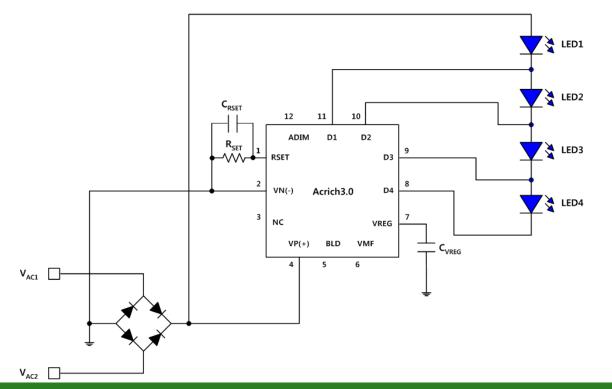
V. Auxiliary Power for Sensor Application


Application Circuit

VI. Protection

① Over Temperature Protection (OTP) – Hysteresis Application Circuit

The LED is off when the temperature exceeds 160°C and restarts when the junction temperature falls. If a capacitor is connected to VREG, the Acrich3.0 IC restarts by the VREG reset.


VI. Protection

② RSET Open/Short Protection

When RSET Pin is opened, the Acrich3.0 is shut down, that is, all the LED output currents become zero. When RSET Pin is shorted to VN(-), all the output currents have its extremely low current level below a few hundreds of uA determined by the offset voltages of the amplifiers consisting the LED current sources.

③ VREG Short Protection

When VREG Pin is shorted to VIN(-), the Acrich3.0 becomes shut down.

Legal Disclaimer

Information in this presentation is provided in connection with Seoul Semiconductor products and/or business operation. While Seoul Semiconductor has made every attempt to ensure that the information contained in this presentation has been obtained from reliable sources, Seoul Semiconductor is not responsible for any errors or omissions, or for the results obtained from the use of this information.

All information in this presentation is provided "as is" with no guarantee of completeness, accuracy, timeliness or of the results obtained from the use of this information, and without warranty of any kind, express or implied, including, but not limited to warranties of merchantability, performance, and fitness for a particular purpose, or any warranty otherwise arising out of any proposal, specification, or sample.

In no event will Seoul Semiconductor, its related corporations, or the employees thereof be liable to you or anyone else for any decision made or action taken in reliance on the information in this presentation or for any consequential, special or similar damages, even if advised of the possibility of such damages.

THANK YOU!

www.seoulsemicon.com