
Comparator, Single Channel, Open Collector, Low Power, Wide Supply Range

Description

The TL331 is an open collector, low–power comparator designed specifically to operate over a wide supply range from 2 V to 36 V single supply and ± 1 V to ± 18 V for split supplies. The input common–mode voltage range includes ground, even when operated from a single power supply voltage. TL331 comes in a space saving TSOP–5 package and is also available in an automotive qualified version.

Features

- Wide Single Supply Voltage Range or Dual Supplies
- Low Supply Current: 0.5 mA Typical
- Low Input Bias Current: 25 nA Typical
- Low Input Offset Current: ±5 nA Typical
- Low Input Offset Voltage: ±2 mV Typical
- Input Common Mode Voltage Range includes Ground
- Low Output Saturation Voltage: 150 mV Typ at I_O = 4 mA
- Differential Input Voltage Range Equal to the Supply Voltage
- TTL, DTL, ECL, CMOS Compatible Devices
- TL331V for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable*
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

ON Semiconductor®

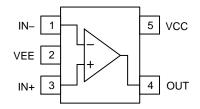
www.onsemi.com

TSOP-5 SN SUFFIX CASE 483

MARKING DIAGRAM

TL3 = Specific Device Code

A = Assembly Location


Y = Year

W = Work Week

= Pb–Free Package

(Note: Microdot may be in either location)

PIN CONNECTIONS

ORDERING INFORMATION

Device	Package	Shipping [†]
TL331SN4T3G	TSOP-5 (Pb-Free)	3000 / Tape & Reel
TL331VSN4T3G*	TSOP-5 (Pb-Free)	3000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

Table 1. MAXIMUM RATINGS (Over operating free-air temperature, unless otherwise stated)

Parameter	Symbol	Limit	Unit
Supply Voltage (V _{CC} – V _{EE})	V _S	36	V
INPUT AND OUTPUT PINS			
Input Voltage (Note 1)	V _{IN}	±36	V
Differential Input Voltage (Note 1)	V _{ID}	-0.3 to 36	V
Output Short Circuit Current (Note 2)	I _{SC}	20	mA
TEMPERATURE	<u>.</u>		
Storage Temperature	T _{STG}	-65 to +150	°C
Junction Temperature	TJ	+150	°C
ESD RATINGS			
Human Body Model	НВМ	2000	V
Charged Device Model	CDM	2500	V
Machine Model	MM	150	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Positive excursions of the input voltage may exceed the power supply level. The low input voltage state must not be less than 0.3 V below the negative supply rail.
- 2. Short circuits from the output to V_{CC} can cause excessive heating and potential destruction. The maximum short circuit current is independent of the magnitude of V_{CC}.

Table 2. THERMAL INFORMATION (Note 3)

Parameter	Symbol	Single Layer Board (Note 4)	Multi-Layer Board (Note 5)	Unit
Junction to Ambient Thermal Resistance	θ_{JA}	274	209	°C/W

- 3. Short-circuits can cause excessive heating and destructive dissipation. These values are typical.
- 4. Values based on a 1S standard PCB according to JEDEC 51-3 with 1.0 oz copper and a 400 mm² copper area
- 5. Values based on a 1S2P standard PCB according to JEDEC 51–7 with 1.0 oz copper and a 25 mm² copper area

Table 3. OPERATING CONDITIONS

Parameter	Symbol	Limit	Unit
Operating Supply Voltage	V _S	2 to 36	V
Specified Operating Range	T _A	-40 to +125	°C

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Table 4. ELECTRICAL CHARACTERISTICS (Vs=+5.0 V, At T_A = +25°C, V_{CM} = mid-supply, unless otherwise noted) **Boldface** limits apply over the specified temperature range, $T_A = -40^{\circ}C$ to $+125^{\circ}C$.

Parameter	Symbol	Test Conditions		Min	Тур	Max	Unit
INPUT CHARACTERISTICS				•			
Input Offset Voltage	V _{OS}	$Vo = 1.4 \text{ V},$ $R_S = 0 \Omega,$	$V_{CM} = 0$ to $V_{CC} -1.5$ V		1	5	mV
		$V_S = 5 \text{ V to } 30 \text{ V}$	$V_{CM} = 0$ to $V_{CC} - 2$ V			9	mV
Input Bias Current	I _{IB}				-25	-250	nA
						-400	nA
Input Offset Current	I _{OS}				5	50	nA
						150	nA
Input Common Mode Range (Note 6)	V _{ICMR}			0		V _{CC} – 1.5	V
Differential Input Voltage (Note 7)	V _{ID}					V _{CC}	V
OUTPUT CHARACTERISTIC	S						
Output Voltage Low	V _{OL}	$V_{ID} = -1 \text{ V, } I_O = 4 \text{ mA}$			150	400	mV
						700	mV
Output Sink Current	Io	$V_{ID} = -1 \text{ V}, V_{O} = 1.5 \text{ V}$		6	16		mA
Output Leakage Current	I _{OH}	$V_{ID} = 1 \text{ V}, V_{CC} = V_{O} = 5 \text{ V}$ $V_{ID} = 1 \text{ V}, V_{CC} = V_{O} = 30 \text{ V}$			0.1	50	nA
						1	μΑ
DYNAMIC PERFORMANCE							
Large Signal Differential Voltage Gain	A _{VD}	$V_{CC} = 15 \text{ V}, R_F$ $V_O = 1.4 \text{ V}$	$p_U = 15 \text{ k}\Omega$, to 11.4 V	50	200		V/mV
Propagation Delay L–H	t _{PLH}	5 mV overdrive,	R _{PU} = 5.1 kΩ		850		ns
(Note 8)		20 mV overdrive,	R _{PU} = 5.1 kΩ		600		ns
		100 mV overdrive	, R _{PU} = 5.1 kΩ		400		ns
		TTL Input, Vre R _{PU} = 5			300		ns
Propagation Delay H–L	t _{PHL}	5 mV overdrive,	R _{PU} = 5.1 kΩ		700		ns
		20 mV overdrive,	R _{PU} = 5.1 kΩ		400		ns
		100 mV overdrive	, R _{PU} = 5.1 kΩ		250		ns
		TTL Input, Vre R _{PU} = 5			300		ns
POWER SUPPLY							
Quiescent Current	I _{CC}	No load, V ₀	_{CC} = 5 V		0.5	0.7	mA
		No load, V _C	_C = 30 V		0.6	1.25	mA

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

6. The input common mode voltage of either input signal should not be allowed to go negative by more than 0.3 V. The upper end of the common

mode voltage range is VCC – 1.5 V, but either or both inputs can go to +36 V without damage.

^{7.} Positive excursions of the input voltage may exceed the power supply level. As long as the other voltage remains within the common mode range, the comparator will provide a proper output stage. The low input voltage state must not be less than 0.3 V below the negative supply

^{8.} TL331 is an open collector comparator. Rise time is a function of the RC time constant. A 5.1 kΩ pull-up resistor was used for these measurements.

TYPICAL CHARACTERISTICS

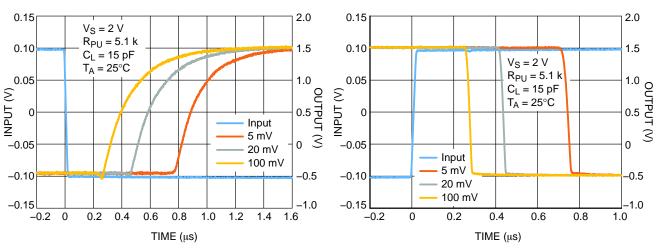
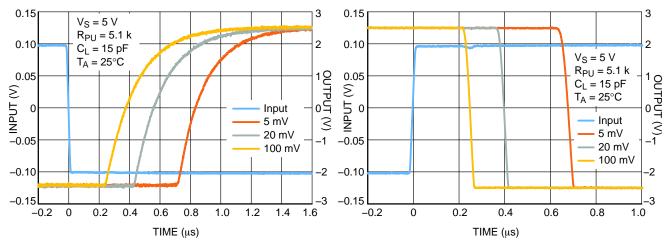


Figure 1. Low-to-High Propagation Delay vs.
Overdrive at 2 V Supply

Figure 2. High-to-Low Propagation Delay vs.
Overdrive at 2 V Supply



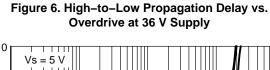

Figure 3. Low-to-High Propagation Delay vs.
Overdrive at 5 V Supply

Figure 4. High-to-Low Propagation Delay vs. Overdrive at 5 V Supply

TYPICAL CHARACTERISTICS

Figure 5. Low-to-High Propagation Delay vs.
Overdrive at 36 V Supply



Figure 7. Quiescent Current vs. Temperature

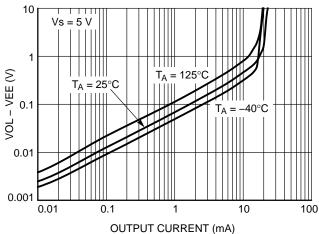
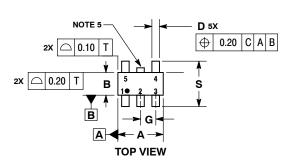
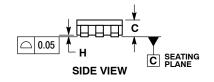
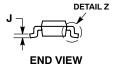
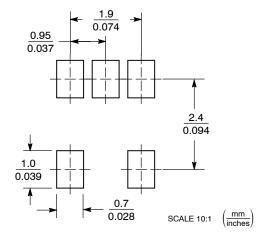



Figure 8. Low Level Output Voltage vs. Output Current at 5 V Supply




TSOP-5 **CASE 483 ISSUE N**

DATE 12 AUG 2020



NOTES:

- DIMENSIONING AND TOLERANCING PER ASME
- CONTROLLING DIMENSION: MILLIMETERS.
 MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH
 THICKNESS. MINIMUM LEAD THICKNESS IS THE
 MINIMUM THICKNESS OF BASE MATERIAL.
- DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMENSION A. OPTIONAL CONSTRUCTION: AN ADDITIONAL
- TRIMMED LEAD IS ALLOWED IN THIS LOCATION. TRIMMED LEAD NOT TO EXTEND MORE THAN 0.2 FROM BODY.

	MILLIMETERS			
DIM	MIN	MAX		
Α	2.85	3.15		
В	1.35	1.65		
C	0.90	1.10		
D	0.25	0.50		
G	0.95	0.95 BSC		
Н	0.01	0.10		
J	0.10	0.26		
K	0.20	0.60		
М	0 °	10 °		
S	2.50	3.00		

SOLDERING FOOTPRINT*

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

XXX = Specific Device Code XXX = Specific Device Code

= Assembly Location = Date Code

= Year = Pb-Free Package

= Work Week W

= Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

DOCUMENT NUMBER: 98ARB18753C Electronic versions are uncontrolled except when accessed directly from the Printed versions are uncontrolled except when stamped "CONTROLLED COF				
	DESCRIPTION:	TSOP-5		PAGE 1 OF 1

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

onsemi

TL331SN4T3G TL331VSN4T3G