LDO Voltage Regulator Adjustable Output, Load Dump Protection

60 V, 100 mA

LM2931, NCV2931 Series

The LM2931 series consists of positive fixed and adjustable output voltage regulators that are specifically designed to maintain proper regulation with an extremely low input-to-output voltage differential. These devices are capable of supplying output currents in excess of 100 mA and feature a low bias current of 0.4 mA at 10 mA output.

Designed primarily to survive in the harsh automotive environment, these devices will protect all external load circuitry from input fault conditions caused by reverse battery connection, two battery jump starts, and excessive line transients during load dump. This series also includes internal current limiting, thermal shutdown, and additionally, is able to withstand temporary power-up with mirror-image insertion.

Due to the low dropout voltage and bias current specifications, the LM2931 series is ideally suited for battery powered industrial and consumer equipment where an extension of useful battery life is desirable. The ' C ' suffix adjustable output regulators feature an output inhibit pin which is extremely useful in microprocessor-based systems.

Features

- Input-to-Output Voltage Differential of < 0.6 V @ 100 mA
- Output Current in Excess of 100 mA
- Low Bias Current
- 60 V Load Dump Protection
- -50 V Reverse Transient Protection
- Internal Current Limiting with Thermal Shutdown
- Temporary Mirror-Image Protection
- Ideally Suited for Battery Powered Equipment
- Economical 5-Lead TO-220 Package with Two Optional Leadforms
- Available in Surface Mount SOP-8, D ${ }^{2}$ PAK and DPAK Packages
- High Accuracy ($\pm 2.5 \%$) Reference (LM2931AC) Available
- NCV Prefix for Automotive and Other Applications Requiring

Unique Site and Control Change Requirements; AEC-Q100
Qualified and PPAP Capable

- Pb-Free Packages are Available

Applications

- Battery Powered Consumer Products
- Hand-held Instruments
- Camcorders and Cameras

FIXED OUTPUT VOLTAGE

ADJUSTABLE OUTPUT VOLTAGE

Pin 1. Adjust
2. Output Inhibit
3. Ground
4. Input
5. Output

ORDERING INFORMATION

See detailed ordering and shipping information on page 12 of this data sheet.

DEVICE MARKING INFORMATION

See general marking and heatsink information in the device marking section on page 14 of this data sheet.

LM2931, NCV2931 Series

Representative Schematic Diagram

This device contains 26 active transistors.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Input Voltage Continuous	V_{1}	40	Vdc
Transient Input Voltage ($\tau \leq 100 \mathrm{~ms}$)	$V_{1}(\tau)$	60	Vpk
Transient Reverse Polarity Input Voltage 1.0% Duty Cycle, $\tau \leq 100 \mathrm{~ms}$	$-\mathrm{V}_{1}(\tau)$	-50	Vpk
Electrostatic Discharge Sensitivity (ESD) Human Body Model (HBM) Class 2, JESD22 A114-C Machine Model (MM) Class A, JESD22 A115-A Charged Device Model (CDM), JESD22 C101-C		$\begin{gathered} 2000 \\ 200 \\ 2000 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
Power Dissipation Case 29 (TO-92 Type) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Thermal Resistance, Junction-to-Ambient Thermal Resistance, Junction-to-Case Case 221A, 314A, 314B and 314D (TO-220 Type) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Thermal Resistance, Junction-to-Ambient Thermal Resistance, Junction-to-Case Case 318H (SOT-223) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Thermal Resistance, Junction-to-Ambient Thermal Resistance, Junction-to-Case Case 369A (DPAK) (Note 1) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Thermal Resistance, Junction-to-Ambient Thermal Resistance, Junction-to-Case Case 751 (SOP-8) (Note 2) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Thermal Resistance, Junction-to-Ambient Thermal Resistance, Junction-to-Case Case 936 and 936A (D²PAK) (Note 3) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Thermal Resistance, Junction-to-Ambient Thermal Resistance, Junction-to-Case	$\begin{gathered} \mathrm{P}_{\mathrm{D}} \\ \mathrm{R}_{\theta \mathrm{JA}} \\ \mathrm{R}_{\theta \mathrm{JC}} \\ \mathrm{P}_{\mathrm{D}} \\ \mathrm{R}_{\theta \mathrm{JA}} \\ \mathrm{R}_{\theta \mathrm{JC}} \\ \\ \mathrm{P}_{\mathrm{D}} \\ \mathrm{R}_{\theta \mathrm{JA}} \\ \mathrm{R}_{\theta \mathrm{JC}} \\ \\ \mathrm{P}_{\mathrm{D}} \\ \mathrm{R}_{\theta \mathrm{JA}} \\ \mathrm{R}_{\theta \mathrm{JC}} \\ \\ \mathrm{P}_{\mathrm{D}} \\ \mathrm{R}_{\theta \mathrm{JA}} \\ \mathrm{R}_{\theta \mathrm{JC}} \\ \\ \mathrm{P}_{\mathrm{D}} \\ \mathrm{R}_{\theta \mathrm{JA}} \\ \mathrm{R}_{\theta \mathrm{JC}} \end{gathered}$	Internally Limited 178 83 Internally Limited 65 5.0 Internally Limited 242 21 Internally Limited 92 6.0 Internally Limited 160 25 Internally Limited 70 5.0	$\begin{gathered} \mathrm{W} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \\ \\ \mathrm{~W} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \\ \\ \mathrm{~W} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \\ \\ \mathrm{~W} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \\ \mathrm{~W} \\ \mathrm{~W} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \\ \mathrm{~W} \\ \mathrm{~W} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \\ \hline \end{gathered}$
Operating Ambient Temperature Range	T_{A}	-40 to +125	${ }^{\circ} \mathrm{C}$
Operating Die Junction Temperature	T_{J}	+150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. DPAK Junction-to-Ambient Thermal Resistance is for vertical mounting. Refer to Figure 25 for board mounted Thermal Resistance
2. SOP-8 Junction-to-Ambient Thermal Resistance is for minimum recommended pad size. Refer to Figure 24 for Thermal Resistance variation versus pad size.
3. D²PAK Junction-to-Ambient Thermal Resistance is for vertical mounting. Refer to Figure 26 for board mounted Thermal Resistance.
4. NCV rated devices are subjected to and meet the AECQ-100 quality standards.

LM2931, NCV2931 Series

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\text {in }}=14 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}, \mathrm{C}_{\mathrm{O}}=100 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}(\mathrm{ESR})}=0.3 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ [Note 5])

Characteristic	Symbol	LM2931-5.0/NCV2931-5.0			LM2931A-5.0/NCV2931A-5.0			Unit
		Min	Typ	Max	Min	Typ	Max	

FIXED OUTPUT

Output Voltage	V_{O}							V
$\mathrm{V}_{\text {in }}=14 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		4.75	5.0	5.25	4.81	5.0	5.19	
$\begin{aligned} & \mathrm{V}_{\text {in }}=6.0 \mathrm{~V} \text { to } 26 \mathrm{~V}, \mathrm{I}_{\mathrm{O}} \leq 100 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$		4.50	-	5.50	4.75	-	5.25	
Line Regulation	Regline							mV
$\mathrm{V}_{\text {in }}=9.0 \mathrm{~V}$ to 16 V		-	2.0	10	-	2.0	10	
$\mathrm{V}_{\text {in }}=6.0 \mathrm{~V}$ to 26 V		-	4.0	30	-	4.0	30	
Load Regulation ($\mathrm{l}_{\mathrm{O}}=5.0 \mathrm{~mA}$ to 100 mA)	Regload	-	14	50	-	14	50	mV
Output Impedance	Z_{0}							$\mathrm{m} \Omega$
$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}, \Delta \mathrm{l}_{\mathrm{O}}=1.0 \mathrm{~mA}, \mathrm{f}=100 \mathrm{~Hz} \text { to } \\ & 10 \mathrm{kHz} \end{aligned}$		-	200	-	-	200	-	
Bias Current	I_{B}							mA
$\mathrm{V}_{\text {in }}=14 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		-	5.8	30	-	5.8	30	
$\begin{aligned} & \mathrm{V}_{\text {in }}=6.0 \mathrm{~V} \text { to } 26 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$		-	0.4	1.0	-	0.4	1.0	
Output Noise Voltage ($\mathrm{f}=10 \mathrm{~Hz}$ to 100 kHz)	V_{n}	-	700	-	-	700	-	$\mu \mathrm{Vrms}$
Long Term Stability	S	-	20	-	-	20	-	$\mathrm{mV} / \mathrm{kHR}$
Ripple Rejection ($\mathrm{f}=120 \mathrm{~Hz}$)	RR	60	90	-	60	90	-	dB
Dropout Voltage	$\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}$							V
$\mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}$		-	0.015	0.2	-	0.015	0.2	
$\mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}$		-	0.16	0.6	-	0.16	0.6	
Over-Voltage Shutdown Threshold	$\left.\mathrm{V}_{\text {th(}} \mathrm{OV}\right)$	26	29.5	40	26	29.5	40	V
Output Voltage with Reverse Polarity Input $\left(\mathrm{V}_{\mathrm{in}}=-15 \mathrm{~V}\right)$	- V_{O}	-0.3	0	-	-0.3	0	-	V

5. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.
6. NCV devices are qualified for automotive use.

LM2931, NCV2931 Series

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\text {in }}=14 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}, \mathrm{C}_{\mathrm{O}}=100 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{O}(\mathrm{ESR})}=0.3 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ [Note 7])

Characteristic	Symbol	LM2931C/NCV2931C			LM2931AC/NCV2931AC			Unit
		Min	Typ	Max	Min	Typ	Max	

ADJUSTABLE OUTPUT

$\begin{aligned} & \text { Reference Voltage (Note 8, Figure 18) } \\ & \mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{O}} \leq 100 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=-40 \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{V}_{\text {ref }}$	$\begin{aligned} & 1.14 \\ & 1.08 \end{aligned}$	1.20 -	$\begin{aligned} & 1.26 \\ & 1.32 \end{aligned}$	$\begin{aligned} & 1.17 \\ & 1.15 \\ & \hline \end{aligned}$	1.20 -	$\begin{array}{r} 1.23 \\ 1.25 \\ \hline \end{array}$	V
Output Voltage Range	$\mathrm{V}_{\text {O } \text { range }}$	$\begin{gathered} 3.0 \text { to } \\ 24 \end{gathered}$	$\begin{gathered} 2.7 \text { to } \\ 29.5 \end{gathered}$	-	$\begin{gathered} 3.0 \text { to } \\ 24 \end{gathered}$	$\begin{gathered} 2.7 \text { to } \\ 29.5 \end{gathered}$	-	V
Line Regulation ($\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{O}}+0.6 \mathrm{~V}$ to 26 V)	Regline	-	0.2	1.5	-	0.2	1.5	mV / N
Load Regulation ($\mathrm{I}_{\mathrm{O}}=5.0 \mathrm{~mA}$ to 100 mA)	Regload	-	0.3	1.0	-	0.3	1.0	\%/V
Output Impedance $\mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}, \Delta \mathrm{I}_{\mathrm{O}}=1.0 \mathrm{~mA}, \mathrm{f}=10 \mathrm{~Hz} \text { to } 10 \mathrm{kHz}$	Z_{0}	-	40	-	-	40	-	$\mathrm{m} \Omega / \mathrm{N}$
Bias Current $\begin{aligned} & \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA} \\ & \mathrm{I}=10 \mathrm{~mA} \end{aligned}$ $\text { Output Inhibited }\left(\mathrm{V}_{\mathrm{th}(\mathrm{O})}=2.5 \mathrm{~V}\right)$	I_{B}		$\begin{aligned} & 6.0 \\ & 0.4 \\ & 0.2 \end{aligned}$	$\begin{aligned} & - \\ & 1.0 \\ & 1.0 \end{aligned}$	-	$\begin{aligned} & 6.0 \\ & 0.4 \\ & 0.2 \end{aligned}$	$\begin{gathered} - \\ 1.0 \\ 1.0 \end{gathered}$	mA
Adjustment Pin Current	$\mathrm{I}_{\text {Adj }}$	-	0.2	-	-	0.2	-	$\mu \mathrm{A}$
Output Noise Voltage ($\mathrm{f}=10 \mathrm{~Hz}$ to 100 kHz)	V_{n}	-	140	-	-	140	-	$\mu \mathrm{Vrms} / \mathrm{V}$
Long-Term Stability	S	-	0.4	-	-	0.4	-	\%/kHR
Ripple Rejection ($\mathrm{f}=120 \mathrm{~Hz}$)	RR	0.10	0.003	-	0.10	0.003	-	\%/V
$\begin{gathered} \text { Dropout Voltage } \\ \mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA} \end{gathered}$	$\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}$		$\begin{gathered} 0.015 \\ 0.16 \end{gathered}$	$\begin{aligned} & 0.2 \\ & 0.6 \end{aligned}$		$\begin{gathered} 0.015 \\ 0.16 \end{gathered}$	$\begin{aligned} & 0.2 \\ & 0.6 \end{aligned}$	V
Over-Voltage Shutdown Threshold	$\mathrm{V}_{\mathrm{th}(\mathrm{OV})}$	26	29.5	40	26	29.5	40	V
Output Voltage with Reverse Polarity Input $\left(\mathrm{V}_{\mathrm{in}}=-15 \mathrm{~V}\right)$	- V_{O}	-0.3	0	-	-0.3	0	-	V
$\begin{aligned} & \hline \text { Output Inhibit Threshold Voltages } \\ & \text { Output "On": } \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \text { Output "Off": } \mathrm{T}_{\mathrm{A}}=-40^{\circ} \text { to }+125^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-45^{\circ} \mathrm{C} \\ & \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{V}_{\text {th(OI) }}$	$\begin{gathered} - \\ - \\ 2.50 \\ 3.25 \end{gathered}$	$\begin{gathered} 2.15 \\ - \\ 2.26 \end{gathered}$	$\begin{aligned} & 1.90 \\ & 1.20 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.50 \\ & 3.25 \end{aligned}$	$\begin{gathered} 2.15 \\ - \\ 2.26 \end{gathered}$	$\begin{gathered} 1.90 \\ 1.20 \\ - \end{gathered}$	V
Output Inhibit Threshold Current ($\left.\mathrm{V}_{\text {th }(\mathrm{OI})}=2.5 \mathrm{~V}\right)$	$\mathrm{Ith}_{\text {(OI) }}$	-	30	50	-	30	50	$\mu \mathrm{A}$

7. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.
8. The reference voltage on the adjustable device is measured from the output to the adjust pin across R_{1}.

Figure 1. Dropout Voltage versus Output Current

Figure 3. Peak Output Current versus Input Voltage

Figure 5. Output Voltage versus Input Voltage

Figure 2. Dropout Voltage versus Junction Temperature

Figure 4. Output Voltage versus Input Voltage

Figure 6. Load Dump Characteristics

Figure 7. Bias Current versus Input Voltage

Figure 9. Bias Current versus Junction Temperature

Figure 11. Ripple Rejection versus Frequency

Figure 8. Bias Current versus Output Current

Figure 10. Output Impedance versus Frequency

Figure 12. Ripple Rejection versus Output Current

Figure 15. Reference Voltage versus Output Voltage

t, TIME ($10 \mu \mathrm{~s} / \mathrm{DIV}$)
Figure 14. Load Regulation

Figure 16. Output Inhibit-Thresholds versus Output Voltage

APPLICATIONS INFORMATION

The LM2931 series regulators are designed with many protection features making them essentially blow-out proof. These features include internal current limiting, thermal shutdown, overvoltage and reverse polarity input protection, and the capability to withstand temporary power-up with mirror-image insertion. Typical application circuits for the fixed and adjustable output device are shown in Figures 17 and 18.

The input bypass capacitor C_{in} is recommended if the regulator is located an appreciable distance ($\geq 4^{\prime \prime}$) from the supply input filter. This will reduce the circuit's sensitivity to the input line impedance at high frequencies.

This regulator series is not internally compensated and thus requires an external output capacitor for stability. The capacitance value required is dependent upon the load current, output voltage for the adjustable regulator, and the type of capacitor selected. The least stable condition is encountered at maximum load current and minimum output voltage. Figure 22 shows that for operation in the "Stable" region, under the conditions specified, the magnitude of the output capacitor impedance $\left|\mathrm{Z}_{\mathrm{O}}\right|$ must not exceed 0.4Ω. This
limit must be observed over the entire operating temperature range of the regulator circuit.
With economical electrolytic capacitors, cold temperature operation can pose a serious stability problem. As the electrolyte freezes, around $-30^{\circ} \mathrm{C}$, the capacitance will decrease and the equivalent series resistance (ESR) will increase drastically, causing the circuit to oscillate. Quality electrolytic capacitors with extended temperature ranges of -40° to $+85^{\circ} \mathrm{C}$ and -55° to $+105^{\circ} \mathrm{C}$ are readily available. Solid tantalum capacitors may be a better choice if small size is a requirement, however, the maximum $\left|Z_{O}\right|$ limit over temperature must be observed.
Note that in the stable region, the output noise voltage is linearly proportional to $\left|\mathrm{Z}_{\mathrm{O}}\right|$. In effect, C_{O} dictates the high frequency roll-off point of the circuit. Operation in the area titled "Marginally Stable" will cause the output of the regulator to exhibit random bursts of oscillation that decay in an under-damped fashion. Continuous oscillation occurs when operating in the area titled "Unstable". It is suggested that oven testing of the entire circuit be performed with maximum load, minimum input voltage, and minimum ambient temperature.

Figure 17. Fixed Output Regulator

The LM2931 series can be current boosted with a PNP transistor. The D45VH7, on a heatsink, will provide an output current of 5.0 A with an input to output voltage differential of approximately 1.0 V . Resistor R in conjunction with the V_{BE} of the PNP determines when the pass transistor begins conducting. This circuit is not short circuit proof.

Figure 19. (5.0 A) Low Differential Voltage Regulator

Switch Position 1 = Output "On", 2 = Output "Off"

$$
\mathrm{V}_{\text {out }}=\mathrm{V}_{\text {ref }}\left(1+\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}\right)+\mathrm{I}_{\text {Adj }} \mathrm{R}_{2} \quad 22.5 \mathrm{k} \geq \frac{\mathrm{R}_{1} \mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}
$$

Figure 18. Adjustable Output Regulator

The circuit of Figure 19 can be modified to provide supply protection against short circuits by adding the current sense resistor R_{SC} and an additional PNP transistor. The current sensing PNP must be capable of handling the short circuit current of the LM2931. Safe operating area of both transistors must be considered under worst case conditions.

Figure 20. Current Boost Regulator with Short Circuit Projection

Figure 21. Constant Intensity Lamp Flasher

LM2931, NCV2931 Series

Figure 22. Output Noise Voltage vs. Output Capacitor Impedance

Figure 23. Output Capacitor ESR Stability vs. Output Load Current

Figure 24. SOP-8 Thermal Resistance and Maximum Power Dissipation versus P.C.B. Copper Length

Figure 25. DPAK Thermal Resistance and Maximum Power Dissipation versus P.C.B. Copper Length

LM2931, NCV2931 Series

Figure 26. 3-Pin and 5-Pin D²PAK
Thermal Resistance and Maximum Power Dissipation versus P.C.B. Copper Length

Figure 27. SOT-223 Thermal Resistance and Maximum Power Dissipation vs. P.C.B. Copper Length

DEFINITIONS

Dropout Voltage - The input/output voltage differential at which the regulator output no longer maintains regulation against further reductions in input voltage. Measured when the output decreases 100 mV from nominal value at 14 V input, dropout voltage is affected by junction temperature and load current.

Line Regulation - The change in output voltage for a change in the input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly affected.

Load Regulation - The change in output voltage for a change in load current at constant chip temperature.

Maximum Power Dissipation - The maximum total device dissipation for which the regulator will operate within specifications.

Bias Current - That part of the input current that is not delivered to the load.

Output Noise Voltage - The rms AC voltage at the output, with constant load and no input ripple, measured over a specified frequency range.

Long-Term Stability - Output voltage stability under accelerated life test conditions with the maximum rated voltage listed in the devices electrical characteristics and maximum power dissipation.

LM2931, NCV2931 Series

ORDERING INFORMATION

Device	Output		Package	Shipping ${ }^{\dagger}$
	Voltage	Tolerance		
LM2931AD-5.0G	5.0 V	$\pm 3.8 \%$	$\begin{gathered} \text { SOIC-8 } \\ \text { (Pb-Free) } \end{gathered}$	98 Units / Rail
LM2931AD-5.0R2G	5.0 V	$\pm 3.8 \%$	$\begin{gathered} \text { SOIC-8 } \\ \text { (Pb-Free) } \end{gathered}$	2500 / Tape \& Reel
LM2931ADT-5.0RKG	5.0 V	$\pm 3.8 \%$	DPAK (Pb-Free)	2500 / VacPk
LM2931AD2T-5R4G	5.0 V	$\pm 3.8 \%$	D2PAK (Pb-Free)	800 / VacPk Reel
LM2931AT-5.0G	5.0 V	$\pm 3.8 \%$	$\begin{gathered} \text { TO-220 } \\ \text { (Pb-Free) } \end{gathered}$	50 Units / Rail
LM2931AZ-5.0G	5.0 V	$\pm 3.8 \%$	$\begin{gathered} \text { TO-92 } \\ \text { (Pb-Free) } \end{gathered}$	2000 / Inner Bag
LM2931AZ-5.0RAG	5.0 V	$\pm 3.8 \%$	$\begin{gathered} \text { TO-92 } \\ \text { (Pb-Free) } \end{gathered}$	2000 / Tape \& Reel
LM2931AZ-5.0RPG	5.0 V	$\pm 3.8 \%$	$\begin{gathered} \text { TO-92 } \\ \text { (Pb-Free) } \end{gathered}$	2000 / Ammo Pack
LM2931D-5.0R2G	5.0 V	$\pm 5.0 \%$	$\begin{gathered} \text { SOIC-8 } \\ \text { (Pb-Free) } \end{gathered}$	2500 / Tape \& Reel
LM2931D2T-5.0R4G	5.0 V	$\pm 5.0 \%$	$\begin{gathered} \mathrm{D}^{2} \text { PAK } \\ (\mathrm{Pb}-\mathrm{Free}) \end{gathered}$	800 / VacPk Reel
LM2931DT-5.0G	5.0 V	$\pm 5.0 \%$	DPAK (Pb-Free)	75 Units / Rail
LM2931T-5.0G	5.0 V	$\pm 5.0 \%$	$\begin{gathered} \text { TO-220 } \\ \text { (Pb-Free) } \end{gathered}$	50 Units / Rail
LM2931Z-5.0G	5.0 V	$\pm 5.0 \%$	$\begin{gathered} \text { TO-92 } \\ \text { (Pb-Free) } \end{gathered}$	2000 / Inner Bag
LM2931Z-5.0RAG	5.0 V	$\pm 5.0 \%$	$\begin{gathered} \text { TO-92 } \\ \text { (Pb-Free) } \end{gathered}$	2000 / Tape \& Reel
LM2931Z-5.0RPG	5.0 V	$\pm 5.0 \%$	$\begin{gathered} \text { TO-92 } \\ \text { (Pb-Free) } \end{gathered}$	2000 / Ammo Pack
LM2931CDG	Adjustable	$\pm 5.0 \%$	$\begin{gathered} \hline \text { SOIC-8 } \\ \text { (Pb-Free) } \end{gathered}$	98 Units / Rail
LM2931CDR2G	Adjustable	$\pm 5.0 \%$	$\begin{gathered} \text { SOIC-8 } \\ \text { (Pb-Free) } \end{gathered}$	2500 / Tape \& Reel
LM2931ACDR2G	Adjustable	$\pm 2.0 \%$	$\begin{gathered} \text { SOIC-8 } \\ \text { (Pb-Free) } \end{gathered}$	2500 / Tape \& Reel
LM2931ACD2TR4G	Adjustable	$\pm 2.0 \%$	$\begin{gathered} \mathrm{D}^{2} \text { PAK } \\ (\mathrm{Pb}-\mathrm{Free}) \end{gathered}$	800 / VacPk Reel
NCV2931ACDR2G*	Adjustable	$\pm 2.5 \%$	$\begin{gathered} \hline \text { SOIC-8 } \\ \text { (Pb-Free) } \end{gathered}$	2500 / Tape \& Reel
NCV2931AD-5.0R2G*	5.0 V	$\pm 3.8 \%$	$\begin{gathered} \text { SOIC-8 } \\ \text { (Pb-Free) } \end{gathered}$	2500 / Tape \& Reel
NCV2931AST-5.0T3G*	5.0 V	$\pm 3.8 \%$	$\begin{aligned} & \hline \text { SOT-223 } \\ & \text { (Pb-Free) } \end{aligned}$	4000 / Tape \& Reel
NCV2931AZ-5.0G*	5.0 V	$\pm 3.8 \%$	$\begin{gathered} \text { TO-92 } \\ \text { (Pb-Free) } \end{gathered}$	2000 / Inner Bag

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NCV2931: $\mathrm{T}_{\text {low }}=-40^{\circ} \mathrm{C}, \mathrm{T}_{\text {high }}=+125^{\circ} \mathrm{C}$. Guaranteed by design. NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

LM2931, NCV2931 Series

ORDERING INFORMATION (continued)

Device	Output		Package	Shipping ${ }^{\dagger}$
	Voltage	Tolerance		
NCV2931AZ-5.0RAG*	5.0 V	$\pm 3.8 \%$	$\begin{gathered} \text { TO-92 } \\ \text { (Pb-Free) } \end{gathered}$	2000 / Tape \& Reel
NCV2931CDR2G*	Adjustable	$\pm 5.0 \%$	$\begin{gathered} \text { SOIC-8 } \\ \text { (Pb-Free) } \end{gathered}$	2500 / Tape \& Reel
NCV2931D-5.0R2G*	5.0 V	$\pm 5.0 \%$	$\begin{gathered} \text { SOIC-8 } \\ \text { (Pb-Free) } \end{gathered}$	2500 / Tape \& Reel
NCV2931ADT5.0RKG*	5.0 V	$\pm 3.8 \%$	DPAK (Pb-Free)	2500 / Tape \& Reel
NCV2931DT-5.0RKG*	5.0 V	$\pm 5.0 \%$	DPAK (Pb-Free)	2500 / Tape \& Reel
NCV2931ACD2TR4G*	Adjustable	$\pm 2.5 \%$	$\begin{gathered} \mathrm{D}^{2} \mathrm{PAK} \\ (\mathrm{~Pb}-\mathrm{Free}) \end{gathered}$	800 / VacPk Reel
NCV2931D2T5.0R4G*	5.0 V	$\pm 5.0 \%$	D2PAK (Pb-Free)	800 / VacPk Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NCV2931: $T_{\text {low }}=-40^{\circ} \mathrm{C}, \mathrm{T}_{\text {high }}=+125^{\circ} \mathrm{C}$. Guaranteed by design. NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

LM2931, NCV2931 Series

MARKING DIAGRAMS

Heatsink surface (shown as terminal 4 in case outline drawing) is connected to Pin 2.

Heatsink surface connected to Pin 2.

Heatsink surface connected to Pin 3.

Heatsink surface (shown as terminal 6 in case outline drawing) is connected to Pin 3.

TO-220, SINGLE GAUGE
CASE 221AB-01
ISSUE A
DATE 16 NOV 2010

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCHES.

DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.
4. PRODUCT SHIPPED PRIOR TO 2008 HAD DIMENSIONS $S=0.045-0.055$ INCHES ($1.143-1.397 \mathrm{MM}$)

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.570	0.620	14.48	15.75
B	0.380	0.405	9.66	10.28
C	0.160	0.190	4.07	4.82
D	0.025	0.035	0.64	0.88
F	0.142	0.147	3.61	3.73
G	0.095	0.105	2.42	2.66
H	0.110	0.155	2.80	3.93
J	0.018	0.025	0.46	0.64
K	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
N	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.020	0.024	0.508	0.61
T	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
V	0.045	---	1.15	---
Z	--	0.080	---	2.04

STYLE 4

PIN 1. MAIN TERMINAL 1
2. MAIN TERMINAL 2
3. GATE

MAIN TERMINAL 2
2. COLLECTOR
3. EMITTER
4. COLLECTOR

STYLE 5:
PIN 1. GATE
2. DRAIN
4. DRAIN

STYLE 9:
PIN 1. GATE
2. COLLECTOR
3. EMITTER
4. COLLECTOR

STYLE 2:

1. BASE

EMITTER
. COLLECTOR
EMITTER

PIN 1

1. ANODE . CATHODE
2. ANODE

STYLE 10:
PIN 1. GATE
2. SOURCE
3. DRAIN
4. SOURCE

STYLE 3:	
PIN 1.	CATHODE
2.	ANODE
3.	GATE
4.	ANODE
STYLE 7:	
PIN 1.	CATHODE
2.	ANODE
3.	CATHODE
4.	ANODE

STYLE 8:
PIN 1. CATHODE
2. ANODE
. EXTERNAL TRIP/DELAY
4. ANODE

STYLE 11:
PIN 1. DRAIN

1. DRAIN
2. SOURCE
3. GATE
4. SOURCE

| DOCUMENT NUMBER: | 98AON23085D | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TO-220, SINGLE GAUGE | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

STRAIGHT LEAD

BENT LEAD

TO-92 (TO-226) 1 WATT
CASE 29-10
ISSUE D
DATE 05 MAR 2021

END VIEW

TDP VIEW

NDTES:

1. DIMENSIDNING AND TZLERANCING PER ASME Y14.5M, 2009.
2. CDNTRULLING DIMENSIDN: MILLIMETERS
3. DIMENSIDNS D AND E DU NDT INCLUDE MILD FLASH GR GATE PRITRUSIDNS.
4. DIMENSIDN b AND b2 DDES NDT INCLUDE DAMBAR PRETRUSIDN. LEAD WIDTH INCLUDING PROTRUSIUN SHALL NOT EXCEED 0.20. DIMENSIDN b2 LDCATED ABZVE THE DAMBAR PORTIUN DF MIDDLE LEAD.

DIM	MILLIMETERS		
	MIN.	NDM.	MAX.
A	3.75	3.90	4.05
A1	1.28	1.43	1.58
b	0.38	0.465	0.55
b2	0.62	0.70	0.78
c	0.35	0.40	0.45
D	7.85	8.00	8.15
E	4.75	4.90	5.05
E2	3.90	---	---
e	1.27 BSC		
L	13.80	14.00	14.20

STYLES AND MARKING ON PAGE 3

| DOCUMENT NUMBER: | 98AON52857E | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY' in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TO-92 (TO-226) 1 WATT | PAGE 1 OF 3 |

ON Semiconductor and (ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.

TO-92 (TO-226) 1 WATT
 CASE 29-10
 ISSUE D

DATE 05 MAR 2021

FGRMED LEAD
NDTES:

1. DIMENSIUNING AND TZLERANCING PER ASME Y14.5M, 2009.
2. CDNTRDLLING DIMENSIDN: MILLIMETERS
3. DIMENSIDNS D AND E DZ NDT INCLUDE MDLD FLASH GR GATE PRDTRUSIDNS.
4. DIMENSIDN b AND b2 DDES NDT INCLUDE DAMBAR PRDTRUSIDN. LEAD WIDTH INCLUDING PRDTRUSIDN SHALL NDT EXCEED 0.20. DIMENSIUN b2 LDCATED ABZVE THE DAMBAR PGRTIDN DF MIDDLE LEAD.

DIM	MILLIMETERS		
	MIN.	NDM.	MAX.
A	3.75	3.90	4.05
A1	1.28	1.43	1.58
b	0.38	0.465	0.55
b2	0.62	0.70	0.78
c	0.35	0.40	0.45
D	7.85	8.00	8.15
E	4.75	4.90	5.05
E2	3.90	---	---
e	2.50 BSC		
L	13.80	14.00	14.20
L2	13.20	13.60	14.00
L3	3.00 REF		

STYLES AND MARKING ON PAGE 3

| DOCUMENT NUMBER: | 98AON52857E | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TO-92 (TO-226) 1 WATT | PAGE 2 OF 3 |

ON Semiconductor and (iN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

TO-92 (TO-226) 1 WATT

CASE 29-10
ISSUE D

STYLE 1:	
PIN 1.	EMITTER
2.	BASE
3.	COLLECTOR
STYLE 6:	
PIN 1.	GATE
2.	SOURCE \& SUBSTRATE
3.	DRAIN
STYLE 11:	
PIN 1.	ANODE
2.	CATHODE \& ANODE
3.	CATHODE
STYLE 16:	
PIN 1.	ANODE
2.	GATE
3.	CATHODE
STYLE 21:	
PIN 1.	COLLECTOR
2.	Emitter
3.	BASE
STYLE 26:	
PIN 1.	V_{cc}
2.	GROUND 2
3.	OUTPUT
STYLE 31:	
PIN 1.	GATE
2.	DRAIN
3.	SOURCE

STYLE 2:	
PIN 1.	BASE
2.	EMITTER
3.	COLLECTOR
STYLE 7:	
PIN 1.	SOURCE
2.	DRAIN
3.	GATE
STYLE 12:	
PIN 1. MAIN TERMINAL 1	
2.	GATE
3.	MAIN TERMINAL 2
STYLE 17:	
PIN 1.	COLLLECTOR
2.	BASE
3.	EMITTER
STYLE 22:	
PIN 1.	SOURCE
2.	GATE
3.	DRAIN
STYLE 27:	
PIN 1. MT	
2.	SUBSTRATE
3.	MT
STYLE 32:	
PIN 1.	BASE
2.	COLLECTOR
3.	

STYLE 3:	
PIN 1.	ANODE
2.	ANODE
3.	CATHODE
STYLE 8:	
PIN 1.	DRAIN
2.	GATE
3.	SOURCE \& SUBSTRATE
STYLE 13:	
PIN 1.	ANODE 1
2.	GATE
3.	CATHODE 2
STYLE 18:	
PIN 1.	ANODE
2.	CATHODE
3.	NOT CONNECTED
STYLE 23:	
PIN 1.	GATE
2.	SOURCE
3.	DRAIN
STYLE 28:	
PIN 1.	CATHODE
2.	ANODE
3.	GATE
STYLE 33:	
PIN 1.	RETURN
2.	INPUT
3.	OUTPUT

STYLE 4:		STYLE 5:	
PIN 1.	CATHODE	PIN 1.	DRAIN
2.	CATHODE	2.	SOURCE
3.	ANODE	3.	GATE
STYLE 9:		STYLE 10:	
PIN 1.	BASE 1	PIN 1.	CATHODE
2.	EMITTER	2.	
3.	BASE 2	3.	ANODE
STYLE 14		STYLE 15:	
PIN 1.	EMITTER	PIN 1.	ANODE 1
2.	COLLECTOR	2.	CATHODE
3.	BASE	3.	ANODE 2
STYLE 19:		STYLE 20:	
PIN 1.	GATE	PIN 1.	NOT CONNECTED
2.	ANODE	2.	CATHODE
3.	CATHODE	3.	ANODE
STYLE 24		STYLE 25:	
PIN 1.	EMITTER	PIN 1.	MT 1
2.	COLLECTOR/ANODE	2.	GATE
3.	CATHODE	3.	MT 2
STYLE 29:		STYLE 30:	
PIN 1.	NOT CONNECTED	PIN 1.	DRAIN
2.	ANODE	2.	GATE
3.	CATHODE	3.	SOURCE
STYLE 34		STYLE 35:	
PIN 1.	INPUT	PIN 1.	GATE
2.	GROUND	2.	COLLECTOR
3.	LOGIC	3.	Emitter

GENERIC
MARKING DIAGRAM*
XXXXX
XXXXX
ALYW•
\quad.

XXXX = Specific Device Code
A = Assembly Location
L = Wafer Lot
Y = Year
W = Work Week

- = Pb-Free Package
(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " s ", may or may not be present. Some products may not follow the Generic Marking.

| DOCUMENT NUMBER: | 98AON52857E | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TO-92 (TO-226) 1 WATT | PAGE 3 OF 3 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

SCALE 1:1

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION D DOES NOT INCLUDE

INTERCONNECT BAR (DAMBAR) PROTRUSION. DIMENSION D INCLUDING PROTRUSION SHALL NOT EXCEED 0.043 (1.092) MAXIMUM

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.572	0.613	14.529	15.570
B	0.390	0.415	9.906	10.541
C	0.170	0.180	4.318	4.572
D	0.025	0.038	0.635	0.965
E	0.048	0.055	1.219	1.397
F	0.850	0.935	21.590	23.749
G	0.067 BSC		1.702 BSC	
H	0.166 BSC		4.216 BSC	
J	0.015	0.025	0.381	0.635
K	0.900	1.100	22.860	27.940
L	0.320	0.365	8.128	9.271
N	0.320 BSC		8.128 BSC	
Q	0.140	0.153	3.556	3.886
S	---	0.620	---	15.748
U	0.468	0.505	11.888	12.827
V	---	0.735	---	18.669
W	0.090	0.110	2.286	2.794

STYLE 5:
PIN 1 GATE
2. MIRROR 2. MIRROM
4. KELVIN
5. SOURCE

DOCUMENT NUMBER:	98ASB42218B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.
DESCRIPTION:	TO-220 5 LEAD OFFSET	PAGE 10 F 1

ON Semiconductor and (iN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

SCALE 1:1

TO-220 5-LEAD
CASE 314D-04
ISSUE H
DATE 29 JAN 2010

DETAIL A-A
notes:

1. Dimensioning and tolerancing per ansi Y14.5M, 1982 .
CONTROLLING DIMENSION: INCH.
2. DIMENSION D DOES NOT INCLUDE
interconnect bar (DAMBAR) PROTRUSION. DIMENSION D INCLUDING PROTRUSION SHALL NOT EXCEED 10.92 (0.043) MAXIMUM.

	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
A	0.572	0.613	14.529	15.570	
B	0.390	0.415	9.906	10.541	
B1	0.375	0.415	9.525	10.541	
C	0.170	0.180	4.318	4.572	
D	0.025	0.038	0.635	0.965	
E	0.048	0.055	1.219	1.397	
G	0.067		BSC	1.702 BSC	
H	0.087	0.112	2.210	2.845	
J	0.015	0.025	0.381	0.635	
K	0.977	1.045	24.810	26.543	
L	0.320	0.365	8.128	9.271	
Q	0.140	0.153	3.556	3.886	
U	0.105	0.117	2.667	2.972	

STYLE 1 THRU 4:

1. OBSOLETE

GENERIC MARKING DIAGRAM*

A = Assembly Location
WL = Wafer Lot
Y = Year
WW = Work Week
G = Pb-Free Package
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, "G" or microdot " $\stackrel{\wedge}{ }$ ", may or may not be present.

| DOCUMENT NUMBER: | 98ASB42220B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TO-220 5-LEAD | PAGE 1 OF 1 |

ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

SOT-223
CASE 318H
ISSUE B
DATE 13 MAY 2020

NDTES:

1. Dimensioning and talerancing per asme Y14.5M, 2009.
2. CDNTROLLING DIMENSION: MILLIMETERS
3. DIMENSIDNS D \& E1 ARE DETERMINED AT DATUM H. DIMENSIDNS DD NDT INCLUDE MDLD FLASH, PROTRUSIONS OR GATE BURRS. SHALL NDT EXCEED 0.23 mm PER SIDE.
4. LEAD DIMENSIONS 6 AND b1 DD NDT INCLUDE dambar pratrusion. AlLIWAble dambbar PROTRUSION IS 0.08 mm PER SIDE.
5. DATUMS A AND B ARE DETERMINED AT DATUM H.
6. A1 IS DEFINED AS THE VERTICAL DISTANCE

FRIM THE SEATING PLANE TI THE LIWEST
PDINT DF THE PACKAGE BODY.
7. PISITIINAL TOLERANCE APPLIES TD DIMENSIONS b AND b1.

DIM	MILLIMETERS		
	MIN.	NIM.	MAX.
A	---	---	1.80
A1	0.02	0.06	0.11
b	0.60	0.74	0.88
b1	2.90	3.00	3.10
C	0.24	---	0.35
D	6.30	6.50	6.70
E	6.70	7.00	7.30
E1	3.30	3.50	3.70
e	2.30 BSC		
L	0.25	---	---
¿	0°	---	10°

GENERIC A = Assembly Location MARKING DIAGRAM*

$\begin{array}{ll}\text { Y } & =\text { Year } \\ \text { W } & =\text { Work Week } \\ \text { XXXXX } & =\text { Specific Device Code } \\ \text { - } & =\text { Pb-Free Package }\end{array}$

- $\quad=$ Pb-Free Package
(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, " G " or microdot " $\mathrm{\bullet}$ ", may or may not be present. Some products may not follow the Generic Marking.

PITCH

RECDMMENDED MDUNTING FIDTPRINT

* For additional information on our Pb -Free strategy and soldering details, please download the ZN Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D.

DOCUMENT NUMBER:	98ASH70634A	Electronic versions are uncontrolled exceept when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

DPAK (SINGLE GAUGE)
CASE 369C
ISSUE F
DATE 21 JUL 2015

SCALE 1:1

SOLDERING FOOTPRINT*

A	$=$ Assembly Location
L	$=$ Wafer Lot
Y	$=$ Year
WW	$=$ Work Week
G	$=$ Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking.
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

| DOCUMENT NUMBER: | 98AON10527D | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | DPAK (SINGLE GAUGE) | PAGE 1 OF 1 |

[^0] rights of others.

SOIC-8 NB
CASE 751-07
ISSUE AK
SCALE 1:1
DATE 16 FEB 2011

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. 751-01 THRU 751-06 ARE OBSOLETE. NEW
7. 751-01 THRU 751-06 AR
STANDARD IS 751-07.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
	4.80	5.00	0.189	0.197
B	3.80	4.00	0.150	0.157
C	1.35	1.75	0.053	0.069
D	0.33	0.51	0.013	0.020
G	1.27 BSC		0.050 BSC	
H	0.10	0.25	0.004	0.010
J	0.19	0.25	0.007	0.010
K	0.40	1.27	0.016	0.050
M	0	0°	8°	0
	\circ	8		
N	0.25	0.50	0.010	0.020
S	5.80	6.20	0.228	0.244

GENERIC

MARKING DIAGRAM*

XXXXX = Specific Device Code
A = Assembly Location
L = Wafer Lot
= Year
$\begin{array}{ll}\mathrm{W} & =\text { Work Week } \\ \text { - } & =\text { Pb-Free Package }\end{array}$
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " $\mathrm{=}$ ", may or may not be present. Some products may not follow the Generic Marking.
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

| DOCUMENT NUMBER: | 98ASB42564B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY' in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-8 NB | PAGE 1 OF 2 |

[^1] rights of others.

SOIC-8 NB
CASE 751-07
ISSUE AK
DATE 16 FEB 2011

STYLE

PIN 1.	EMITTER
2.	COLLECTOR
3.	COLLECTOR
4.	EMITTER
5.	EMITTER
6.	BASE
7.	BASE
8.	EMITTER
STYLE 5:	
PIN 1.	DRAIN
2.	DRAIN
3.	DRAIN
4.	DRAIN
5.	GATE
6.	GATE
7.	SOURCE
8.	SOURCE

STYLE 9:
PIN 1. EMITTER, COMMON
COLLECTOR, DIE \#1 COLLECTOR, DIE \#2 EMITTER, COMMON EMITTER, COMMON BASE, DIE \#2
BASE, DIE \#1
8. EMITTER, COMMON

STYLE 13:
PIN 1. N.C.
2. SOURCE
3. SOURCE

GATE
DRAIN
DRAIN
DRAIN
8. DRAIN

STYLE 17:
PIN 1. VCC
V2OUT
V10UT
V10UT
TXE
RXE
VEE
7. GND
8. ACC

STYLE 21:
PIN 1. CATHODE 1
2. CATHODE 2
3. CATHODE 3

CATHODE 4
CATHODE 5
6. COMMON ANODE
7. COMMON ANODE
8. CATHODE 6

STYLE 25:
PIN 1. VIN
2. N / C

REXT
GND
IOUT
IOUT
IOUT
8. IOUT

STYLE 29

PIN 1. BASE, DIE \#
EMITTER, \#1
BASE, \#2
. EMITTER, \#2
5. COLLECTOR, \#2
6. COLLECTOR, \#2
7. COLLECTOR, \#1
8. COLLECTOR, \#1

STYLE
PIN 1. COLIECTOR,
2. COLLECTOR, \#
3. COLLECTOR, \#2

COLLECTOR, \#2
BASE, \#2
. EMITTER, \#2
7. BASE, \#1
8. EMITTER, \#1

STYLE 6:
PIN 1. SOURCE
DRAIN
3. DRAIN
4. SOURCE

SOURCE
6. GATE
7. GATE
8. SOURCE

STYLE 10:
PIN 1. GROUND
2. BIAS 1
3. OUTPUT

GROUND
GROUND
BIAS 2
7. INPUT
8. GROUND

STYLE 14
PIN 1. N-SOURCE
2. N-GATE
. P-SOURCE
P-GATE
5.DRAIN
6. P-DRAIN
7. N-DRAIN
8. N -DRAIN

STYLE 18
PIN 1. ANODE
2. ANODE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. CATHODE
8. CATHODE

STYLE 22 :
PIN 1. I/O LINE
2. COMMON CATHODE/VCC
3. COMMON CATHODE/VCC
4. I/O LINE 3
5. COMMON ANODE/GND
6. I/O LINE 4
7. I/O LINE 5
8. COMMON ANODE/GND

STYLE 26:
PIN 1. GND
2. $\mathrm{dv} / \mathrm{dt}$
3. ENABLE
4. ILIMIT

SOURCE
SOURCE
SOURCE
8. VCC

STYLE 30:
PIN 1. DRAIN 1
2. DRAIN 1
. GATE 2
4. SOURCE 2
5. SOURCE 1/DRAIN 2
. SOURCE 1/DRAIN 2
SOURCE 1/DRAIN 2
8. GATE 1

STYLE 3
STYLE
2. DRAIN, DIE
2. DRAIN, \#1
2. DRAIN, \#
3. DRAIN, \#2
4. DRAIN, \#2
5. GATE, \#2
7. GATE, \#1
8. SOURCE, \#1

STYLE 7

PIN 1. INPUT
2. EXTERNAL BYPASS
3. THIRD STAGE SOURCE
4. GROUND
5. DRAIN
6. GATE 3
7. SECOND STAGE Vd
8. FIRST STAGE Vd

STYLE 11:

PIN 1. SOURCE
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN 2
6. DRAIN 2
7. DRAIN 1
8. DRAIN 1

STYLE 15:

PIN 1. ANODE 1
2. ANODE 1
3. ANODE 1
4. ANODE 1
5. CATHODE, COMMON
6. CATHODE, COMMON
7. CATHODE, COMMON
8. CATHODE, COMMON

STYLE 19:

PIN 1. SOURCE
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN
6. MIRROR 2
7. DRAIN 1
8. MIRROR 1

STYLE 23:

PIN 1. LINE 1 IN
2. COMMON ANODE/GND
3. COMMON ANODE/GND
4. LINE 2 IN
5. LINE 2 OUT
6. COMMON ANODE/GND
7. COMMON ANODE/GND
8. LINE 1 OUT

STYLE 27:
PIN 1. ILIMIT
2. OVLO
3. UVLO
4. INPUT+
5. INPUT+
5. SOURCE
6. SOURCE
7. SOURCE
8. DRAIN

STYLE 4:
PIN 1. ANODE
2. ANODE
3. ANODE
4. ANODE
5. ANODE
6. ANODE
8. COMMON CATHODE

STYLE 8:

PIN 1. COLLECTOR, DIE \#1
2. BASE, \#1
3. BASE, \#2
4. COLLECTOR, \#2
5. COLLECTOR, \#2
6. EMITTER, \#2
7. EMITTER, \#1
8. COLLECTOR, \#1

STYLE 12

PIN 1. SOURCE
2. SOURCE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE 16:

PIN 1. EMITTER, DIE \#1
2. BASE, DIE \#1
3. EMITTER, DIE \#2
3. EMITTER, DIE
4. BASE, DIE \#2
4. BASE, DIE \#2
6. COLLECTOR, DIE \#2
7. COLLECTOR, DIE \#1
8. COLLECTOR, DIE \#1

STYLE 20:

PIN 1. SOURCE (N)
2. GATE (N)
3. SOURCE (P)
4. GATE (P)
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE 24
PIN 1. BASE
2. EMITTER
3. COLLECTOR/ANODE
4. COLLECTOR/ANODE
5. CATHODE
6. CATHODE
7. COLLECTOR/ANODE
8. COLLECTOR/ANODE

STYLE 28:

PIN 1. SW_TO_GND
2. DASIC $\bar{O} F F$
3. DASIC_SW_DET
4. GND
5. V_MON
6. VBULK
7. VBULK
8. VIN

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.
DESCRIPTION:	SOIC-8 NB	PAGE 2 OF 2

ON Semiconductor and (0N) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.

SCALE 1:1

*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCHES
3. TAB CONTOUR OPTIONAL WITHIN DIMENSIONS A AND K.
4. DIMENSIONS U AND V ESTABLISH A MINIMUM MOUNTING SURFACE FOR TERMINAL 4.
5. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH OR GATE PROTRUSIONS. MOLD FLASH AND GATE PROTRUSIONS NOT TO EXCEED 0.025 (0.635) MAXIMUM.
6. SINGLE GAUGE DESIGN WILL BE SHIPPED AFTER FPCN EXPIRATION IN OCTOBER 2011

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.386	0.403	9.804	10.236
B	0.356	0.368	9.042	9.347
C	0.170	0.180	4.318	4.572
D	0.026	0.036	0.660	0.914
E_{D}	0.045	0.055	1.143	1.397
$\mathrm{E}_{\text {S }}$	0.018	0.026	0.457	0.660
F	0.051 REF		1.295 REF	
G	0.100 BSC		2.540 BSC	
H	0.539	0.579	13.691	14.707
J	0.125 MAX		3.175 MAX	
K	0.050 REF		1.270 REF	
L	0.000	0.010	0.000	0.254
M	0.088	0.102	2.235	2.591
N	0.018	0.026	0.457	0.660
P	0.058	0.078	1.473	1.981
R	$0{ }^{\circ}$	8°	$0{ }^{\circ}$	8°
S	0.116 REF		2.946 REF	
U	0.200 MIN		5.080 MIN	
V	0.250 MIN		6.350 MIN	

GENERIC
MARKING DIAGRAM*

XXXXXX = Specific Device Code
A = Assembly Location

L = Wafer Lot
Y = Year
WW = Work Week
$\mathrm{G} \quad=\mathrm{Pb}$-Free Package
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " \quad ", may or may not be present.

DOCUMENT NUMBER:	98ASH01005A	Electronic Versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	D2 PAK		PAGE 1 OF 1

ON Semiconductor and (iN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.

D2PAK 5-LEAD
CASE 936A-02
ISSUE E

SCALE 1:1

| DOCUMENT NUMBER: | 98ASH01006A | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | D2PAK 5-LEAD | PAGE 1 OF 1 |

ON Semiconductor and (ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

[^0]: ON Semiconductor and ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

[^1]: ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

