RENESAS

RL78/G14

RENESAS MCU

Datasheet

R01DS0053EJ0360 Rev. 3.60 Mar 29, 2024

True low-power platform (66 μ A/MHz, and 0.60 μ A for operation with only RTC and LVD) for the general-purpose applications, with 1.6-V to 5.5-V operation, 16- to 512-Kbyte code flash memory, and 44 DMIPS at 32 MHz

1. OUTLINE

1.1 Features

Ultra-Low Power Consumption Technology

- V_{DD} = single power supply voltage of 1.6 to 5.5 V which can operate a 1.8 V device at a low voltage
- HALT mode
- STOP mode
- SNOOZE mode

RL78 CPU Core

- CISC architecture with 3-stage pipeline
- Minimum instruction execution time: Can be changed from high speed (0.03125 µs: @ 32 MHz operation with high-speed on-chip oscillator) to ultra-low speed (30.5 µs: @ 32.768 kHz operation with subsystem clock)
- Multiply/divide/multiply & accumulate instructions are supported.
- Address space: 1 MB
- General-purpose registers: (8-bit register × 8) × 4 banks
- On-chip RAM: 2.5 to 48 KB

Code Flash Memory

- Code flash memory: 16 to 512 KB
- Block size: 1 KB
- Prohibition of block erase and rewriting (security function)
- On-chip debug function
- Self-programming with boot swapping and flash shield window

Data Flash Memory

- Data flash memory: 4 KB and 8 KB
- Back ground operation (BGO): Instructions can be executed from the program memory while rewriting the data flash memory.
- Number of rewrites: 1,000,000 times (TYP.)
- Voltage of rewrites: V_{DD} = 1.8 to 5.5 V

High-speed On-chip Oscillator

- Select from 64 MHz, 48 MHz, 32 MHz, 24 MHz, 16 MHz, 12 MHz, 8 MHz, 6 MHz, 4 MHz, 3 MHz, 2 MHz, and 1 MHz
- High accuracy: $\pm 1.0\%$ (V_{DD} = 1.8 to 5.5 V, T_A = -20 to +85°C)

Operating Ambient Temperature

- T_A = -40 to +85°C (A: Consumer applications,
- D: Industrial applications)
- T_A = -40 to +105°C (G: Industrial applications)

Power Management and Reset Function

On-chip power-on-reset (POR) circuit
On-chip voltage detector (LVD) (Select interrupt and reset from 14 levels)

Data Transfer Controller (DTC)

- Transfer modes: Normal transfer mode, repeat transfer mode, block transfer mode
- Activation sources: Activated by interrupt sources.
- Chain transfer function

Event Link Controller (ELC)

• Event signals of 19 to 26 types can be linked to the specified peripheral function.

Serial Interfaces

- Simplified SPI (CSI Note): 3 to 8 channels
- UART/UART (LIN-bus supported): 3 or 4 channels
- I²C/simplified I²C: 4 to 10 channels

Timer

- 16-bit timer: 8 to 12 channels
- (Timer Array Unit (TAU): 4 to 8 channels, Timer RJ: 1 channel, Timer RD: 2 channels, Timer RG: 1 channel)
- 12-bit interval timer: 1 channel
- Real-time clock: 1 channel (calendar for 99 years, alarm function, and clock correction function)
- Watchdog timer: 1 channel (operable with the dedicated low-speed on-chip oscillator)

A/D Converter

- 8/10-bit resolution A/D converter (VDD = 1.6 to 5.5 V)
- · Analog input: 8 to 20 channels
- Internal reference voltage (1.45 V) and temperature sensor

D/A Converter

- 8-bit resolution D/A converter (VDD = 1.6 to 5.5 V)
- Analog output: None or up to two channels
- Output voltage: 0 V to VDD
- Real-time output function

Comparator

- None or up to two channels
- Operating modes: Comparator high-speed mode, comparator low-speed mode, window mode
- The external reference voltage or internal reference voltage can be selected as the reference voltage.

I/O Port

- I/O port: 26 to 92 (N-ch open drain I/O [withstand voltage of 6 V]: 2 to 4, N-ch open drain I/O [VDD withstand voltage/EVDD withstand voltage]: 10 to 28)
- Can be set to N-ch open drain, TTL input buffer, and on-chip pull-up resistor
- Different potential interface: Can connect to a 1.8/2.5/3
 V device
- On-chip key interrupt function
- · On-chip clock output/buzzer output controller

Others

- On-chip BCD (binary-coded decimal) correction circuit
- **Note** Although the CSI function is generally called SPI, it is also called CSI in this product, so it is referred to as such in this manual.
- Remark The functions mounted depend on the product. See 1.6 Outline of Functions.

○ ROM, RAM capacities

Flash ROM	Data flash	RAM	RL78/G14				
	Data liasti		30 pins	32 pins	36 pins	40 pins	
192 KB	8 KB	20 KB	—	—	—	R5F104EH	
128 KB	8 KB	16 KB	R5F104AG	R5F104BG	R5F104CG	R5F104EG	
96 KB	8 KB	12 KB	R5F104AF	R5F104BF	R5F104CF	R5F104EF	
64 KB	4 KB	5.5 KB Note	R5F104AE	R5F104BE	R5F104CE	R5F104EE	
48 KB	4 KB	5.5 KB Note	R5F104AD	R5F104BD	R5F104CD	R5F104ED	
32 KB	4 KB	4 KB	R5F104AC	R5F104BC	R5F104CC	R5F104EC	
16 KB	4 KB	2.5 KB	R5F104AA	R5F104BA	R5F104CA	R5F104EA	

Flash ROM	Data flash	RAM	RL78/G14				
	Data hash		44 pins	48 pins	52 pins	64 pins	
512 KB	8 KB	48 KB ^{Note}	_	R5F104GL	—	R5F104LL	
384 KB	8 KB	32 KB	_	R5F104GK	_	R5F104LK	
256 KB	8 KB	24 KB Note	R5F104FJ	R5F104GJ	R5F104JJ	R5F104LJ	
192 KB	8 KB	20 KB	R5F104FH	R5F104GH	R5F104JH	R5F104LH	
128 KB	8 KB	16 KB	R5F104FG	R5F104GG	R5F104JG	R5F104LG	
96 KB	8 KB	12 KB	R5F104FF	R5F104GF	R5F104JF	R5F104LF	
64 KB	4 KB	5.5 KB Note	R5F104FE	R5F104GE	R5F104JE	R5F104LE	
48 KB	4 KB	5.5 KB ^{Note}	R5F104FD	R5F104GD	R5F104JD	R5F104LD	
32 KB	4 KB	4 KB	R5F104FC	R5F104GC	R5F104JC	R5F104LC	
16 KB	4 KB	2.5 KB	R5F104FA	R5F104GA	_	_	

Flash ROM	Data flash	RAM	RL78	3/G14
	Data liasti		80 pins	100 pins
512 KB	8 KB	48 KB ^{Note}	R5F104ML	R5F104PL
384 KB	8 KB	32 KB	R5F104MK	R5F104PK
256 KB	8 KB	24 KB Note	R5F104MJ	R5F104PJ
192 KB	8 KB	20 KB	R5F104MH	R5F104PH
128 KB	8 KB	16 KB	R5F104MG	R5F104PG
96 KB	8 KB	12 KB	R5F104MF	R5F104PF

Note

The flash library uses RAM in self-programming and rewriting of the data flash memory.

The target products and start address of the RAM areas used by the flash library are shown below.

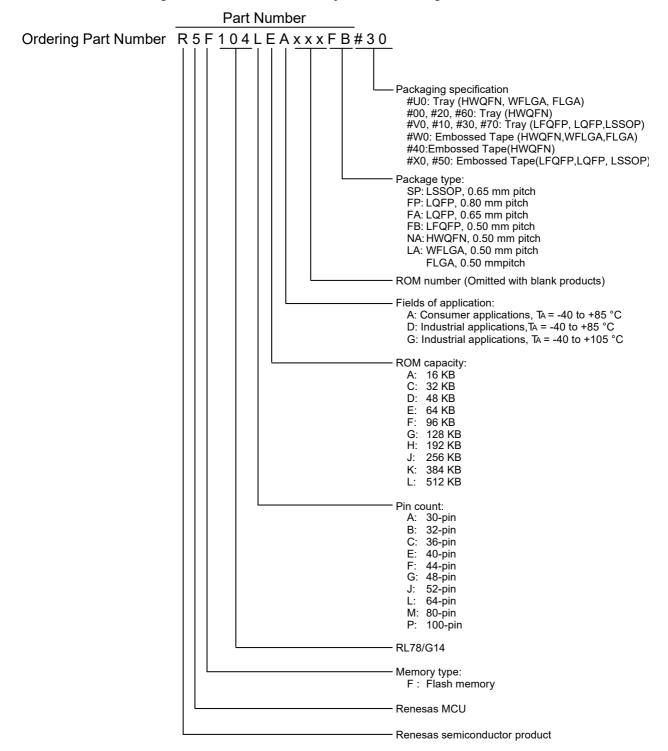
R5F104xD (x = A to C, E to G, J, L): Start address FE900H

R5F104xE (x = A to C, E to G, J, L): Start address FE900H

R5F104xJ (x = F, G, J, L, M, P): Start address F9F00H

R5F104xL (x = G, L, M, P):

Start address F3F00H


For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944).

1.2 Ordering Information

Figure 1 - 1 Part Number, Memory Size, and Package of RL78/G14

Pin	Package	Fields of	Ordering Part Number		RENESAS Cod
count		Application Note	Part Number	Packaging specification	
30 pins	30-pin plastic LSSOP (7.62 mm (300), 0.65 mm pitch)	A	R5F104AAASP, R5F104ACASP, R5F104ADASP, R5F104AEASP, R5F104AFASP, R5F104AGASP	#V0, #10, #30, #X0, #50, #70	PLSP0030JB-E
		D	R5F104AADSP, R5F104ACDSP, R5F104ADDSP, R5F104AEDSP, R5F104AFDSP, R5F104AGDSP		
		G	R5F104AAGSP, R5F104ACGSP, R5F104ADGSP, R5F104AEGSP, R5F104AFGSP, R5F104AGGSP		
32 pins	32-pin plastic HWQFN	А	R5F104BAANA, R5F104BCANA, R5F104BDANA,	#U0, #W0	PWQN0032KB
	(5 × 5 mm, 0.5 mm pitch)		R5F104BEANA, R5F104BFANA, R5F104BGANA	#00, #20, #40, #60	PWQN0032KE PWQN0032KG
		D	R5F104BADNA, R5F104BCDNA, R5F104BDDNA, R5F104BEDNA, R5F104BEDNA, R5F104BEDNA, R5F104BEDNA, R5F104BGDNA	#U0, #W0	PWQN0032KB
		G	R5F104BAGNA, R5F104BCGNA, R5F104BDGNA,	#U0, #W0	PWQN0032KB
			R5F104BEGNA, R5F104BFGNA, R5F104BGGNA	#00, #20, #40, #60	PWQN0032KE PWQN0032KG
	32-pin plastic LQFP	А	R5F104BAAFP, R5F104BCAFP, R5F104BDAFP,	#V0, #30, #X0	PLQP0032GB-
	(7 × 7, 0.8 mm pitch)		R5F104BEAFP, R5F104BFAFP, R5F104BGAFP	#10, #50, #70	PLQP0032GB- PLQP0032GE-
		D R5F104BADFP, R5F104BCDFP, R5F104BDDFP, R5F104BEDFP, R5F104BFDFP, R5F104BGDFP	#V0, #10, #30, #X0, #50, #70	PLQP0032GB	
		G		#V0, #30, #X0	PLQP0032GB
			R5F104BEGFP, R5F104BFGFP, R5F104BGGFP	#10, #50, #70	PLQP0032GB PLQP0032GE
36 pins	36-pin plastic WFLGA (4 × 4 mm, 0.5 mm pitch)	A	R5F104CAALA, R5F104CCALA, R5F104CDALA, R5F104CEALA, R5F10A, R	#U0, #W0	PWLG0036KA
		G	R5F104CAGLA, R5F104CCGLA, R5F104CDGLA, R5F104CEGLA, R5F104CEGLA, R5F104CEGLA, R5F104CEGLA, R5F104CGGLA		
40 pins	40-pin plastic HWQFN	A	R5F104EAANA, R5F104ECANA, R5F104EDANA,	#U0, #W0	PWQN0040KC
	(6 × 6 mm, 0.5 mm pitch)		R5F104EEANA, R5F104EFANA, R5F104EGANA, R5F104EHANA	#00, #20, #40, #60	PWQN0040KE PWQN0040KE
		D	R5F104EADNA, R5F104ECDNA, R5F104EDDNA, R5F104EEDNA, R5F104EFDNA, R5F104EGDNA, R5F104EHDNA	#U0, #W0	PWQN0040KC
		G	R5F104EAGNA, R5F104ECGNA, R5F104EDGNA,	#U0, #W0	PWQN0040KC
			R5F104EEGNA, R5F104EFGNA, R5F104EGGNA, R5F104EHGNA	#00, #20, #40, #60	PWQN0040KD PWQN0040KE
44 pins	44-pin plastic LQFP	А	R5F104FAAFP, R5F104FCAFP, R5F104FDAFP, R5F104FEAFP, R5F104FFAFP, R5F104FGAFP,	#V0, #X0	PLQP0044GC
	(10 × 10, 0.8 mm pitch)		R5F104FHAFP, R5F104FJAFP	#10, #50, #70	PLQP0044GC PLQP0044GC PLQP0044GE
				#30	PLQP0044GC PLQP0044GC
		D	R5F104FADFP, R5F104FCDFP, R5F104FDDFP,	#V0, #X0	PLQP0044GC
			R5F104FEDFP, R5F104FFDFP, R5F104FGDFP, R5F104FHDFP, R5F104FJDFP	#10, #30, #50, #70	PLQP0044GC PLQP0044GC
		G	R5F104FAGFP, R5F104FCGFP, R5F104FDGFP,	#V0, #X0	PLQP0044GC
			R5F104FEGFP, R5F104FFGFP, R5F104FGGFP, R5F104FHGFP, R5F104FJGFP	#10, #50, #70	PLQP0044GC PLQP0044GC PLQP0044GE
				#30	PLQP0044GC PLQP0044GC

Table 1 - 1	List of	Ordering	Part	Numbers	(1/4)
-------------	---------	----------	------	---------	-------

For the fields of application, refer to Figure 1 - 1 Part Number, Memory Size, and Package of RL78/G14. Note

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

	Pin	Package	Fields of	Ordering Part Number	RENESAS Code							
	count		Application Note	Part Number	Packaging specification							
<r></r>	48 pins	48-pin plastic LFQFP (7 × 7 mm, 0.5 mm pitch)	A	R5F104GKAFB, R5F104GLAFB	#10, #50, #70	PLQP0048KB-B PLQP0048KL-A						
					#30	PLQP0048KB-B						
				R5F104GAAFB, R5F104GCAFB, R5F104GDAFB,	#V0, #X0	PLQP0048KF-A						
<r></r>				R5F104GEAFB, R5F104GFAFB, R5F104GGAFB, R5F104GHAFB, R5F104GJAFB	#10, #50, #70	PLQP0048KB-B PLQP0048KL-A						
					#30	PLQP0048KB-B						
			D	R5F104GADFB, R5F104GCDFB, R5F104GDDFB,	#V0, #X0	PLQP0048KF-A						
<r></r>				R5F104GEDFB, R5F104GFDFB, R5F104GGDFB, R5F104GHDFB, R5F104GJDFB	#10, #30, #50, #70	PLQP0048KB-B						
<r></r>			G	R5F104GKGFB, R5F104GLGFB	#10, #50, #70	PLQP0048KB-B PLQP0048KL-A						
					#30	PLQP0048KB-B						
				R5F104GAGFB, R5F104GCGFB, R5F104GDGFB,	#V0, #X0	PLQP0048KF-A						
<r></r>				R5F104GEGFB, R5F104GFGFB, R5F104GGGFB, R5F104GHGFB, R5F104GJGFB	#10, #50, #70	PLQP0048KB-B PLQP0048KL-A						
					#30	PLQP0048KB-B						
		48-pin plastic HWQFN	А	R5F104GAANA, R5F104GCANA, R5F104GDANA,	#U0, #W0	PWQN0048KB-A						
<r></r>		(7 × 7 mm, 0.5 mm pitch)		R5F104GEANA, R5F104GFANA, R5F104GGANA, R5F104GHANA, R5F104GJANA, R5F104GKANA, R5F104GLANA	#00, #20, #40, #60	PWQN0048KE-A PWQN0048KG-A						
			D	R5F104GADNA, R5F104GCDNA, R5F104GDDNA, R5F104GEDNA, R5F104GFDNA, R5F104GGDNA, R5F104GHDNA, R5F104GJDNA	#U0, #W0	PWQN0048KB-A						
			G	R5F104GAGNA, R5F104GCGNA, R5F104GDGNA,	#U0, #W0	PWQN0048KB-A						
<r></r>				R5F104GEGNA, R5F104GFGNA, R5F104GGGNA, R5F104GHGNA, R5F104GJGNA, R5F104GKGNA, R5F104GLGNA	#00, #20, #40, #60	PWQN0048KE-A PWQN0048KG-A						
	52 pins	52-pin plastic LQFP	А	R5F104JCAFA, R5F104JDAFA, R5F104JEAFA,	#V0, #X0	PLQP0052JA-A						
<r></r>		(10 × 10 mm, 0.65 mm pitch)	< 10 mm, 0.65 mm pitch)	R5F104JFAFA, R5F104JGAFA, R5F104JHAFA, R5F104JJAFA	#10, #30, #50, #70	PLQP0052JA-A PLQP0052JD-B						
<r></r>									D	R5F104JCDFA, R5F104JDDFA, R5F104JEDFA, R5F104JFDFA, R5F104JGDFA, R5F104JHDFA, R5F104JJDFA	#V0, #10, #30, #X0, #50, #70	PLQP0052JA-A
			G	R5F104JCGFA, R5F104JDGFA, R5F104JEGFA,	#V0, #X0	PLQP0052JA-A						
<r></r>				R5F104JFGFA, R5F104JGGFA, R5F104JHGFA, R5F104JJGFA	#10, #30, #50, #70	PLQP0052JA-A PLQP0052JD-B						
<r></r>	64 pins	64-pin plastic LQFP (12 × 12 mm, 0.65 mm pitch)	A	R5F104LKAFA, R5F104LLAFA	#10, #30, #50, #70	PLQP0064JA-A PLQP0064JB-A						
				R5F104LCAFA, R5F104LDAFA, R5F104LEAFA,	#V0, #X0	PLQP0064JA-A						
<r></r>				R5F104LFAFA, R5F104LGAFA, R5F104LHAFA, R5F104LJAFA	#10, #30, #50, #70	PLQP0064JA-A PLQP0064JB-A						
<r></r>			D	R5F104LCDFA, R5F104LDDFA, R5F104LEDFA, R5F104LFDFA, R5F104LGDFA, R5F104LHDFA, R5F104LJDFA	#V0, #10, #30, #X0, #50, #70	PLQP0064JA-A						
<r></r>			G	R5F104LKGFA, R5F104LLGFA	#10, #30, #50, #70	PLQP0064JA-A PLQP0064JB-A						
				R5F104LCGFA, R5F104LDGFA, R5F104LEGFA,	#V0, #X0	PLQP0064JA-A						
<r></r>				R5F104LFGFA, R5F104LGGFA, R5F104LHGFA, R5F104LJGFA	#10, #30, #50, #70	PLQP0064JA-A PLQP0064JB-A						

For the fields of application, refer to Figure 1 - 1 Part Number, Memory Size, and Package of RL78/G14. Note

The ordering part numbers represent the numbers at the time of publication. For the latest ordering part Caution numbers, refer to the target product page of the Renesas Electronics website.

Pin		Fields of	Ordering Part Number		
count	Package	Application Note	Part Number	Packaging specification	RENESAS Code
64 pins	64-pin plastic LFQFP (10 × 10 mm, 0.5 mm pitch)	A	R5F104LKAFB, R5F104LLAFB	#10, #50, #70	PLQP0064KB-C PLQP0064KL-A
				#30	PLQP0064KB-C
			R5F104LCAFB, R5F104LDAFB, R5F104LEAFB,	#V0, #X0	PLQP0064KF-A
			R5F104LFAFB, R5F104LGAFB, R5F104LHAFB, R5F104LJAFB	#10, #50, #70	PLQP0064KB-C PLQP0064KL-A
				#30	PLQP0064KB-C
		D	R5F104LCDFB, R5F104LDDFB, R5F104LEDFB,	#V0, #X0	PLQP0064KF-A
			R5F104LFDFB, R5F104LGDFB, R5F104LHDFB, R5F104LJDFB	#10, #30, #50, #70	PLQP0064KB-C
		G	R5F104LKGFB, R5F104LLGFB	#10, #50, #70	PLQP0064KB-C PLQP0064KL-A
				#30	PLQP0064KB-C
			R5F104LCGFB, R5F104LDGFB, R5F104LEGFB,	#V0, #X0	PLQP0064KF-A
			R5F104LFGFB, R5F104LGGFB, R5F104LHGFB, R5F104LJGFB	#10, #50, #70	PLQP0064KB-C PLQP0064KL-A
				#30	PLQP0064KB-C
	64-pin plastic FLGA (5 × 5 mm, 0.5 mm pitch)	A	R5F104LCALA, R5F104LDALA, R5F104LEALA, R5F104LFALA, R5F104LGALA, R5F104LHALA, R5F104LJALA, R5F104LKALA, R5F104LLALA	#U0, #W0	PWLG0064KA-A
		G	R5F104LCGLA, R5F104LDGLA, R5F104LEGLA, R5F104LFGLA, R5F104LGGLA, R5F104LHGLA, R5F104LJGLA, R5F104LKGLA, R5F104LLGLA		
	64-pin plastic LQFP (14 × 14 mm, 0.8 mm pitch)	A	R5F104LCAFP, R5F104LDAFP, R5F104LEAFP, R5F104LFAFP, R5F104LGAFP, R5F104LHAFP, R5F104LJAFP	#V0, #10, #30, #X0, #50, #70	PLQP0064GA-A
		D	R5F104LCDFP, R5F104LDDFP, R5F104LEDFP, R5F104LFDFP, R5F104LGDFP, R5F104LHDFP, R5F104LJDFP		
		G	R5F104LCGFP, R5F104LDGFP, R5F104LEGFP, R5F104LFGFP, R5F104LGGFP, R5F104LHGFP, R5F104LJGFP		
80 pins	80-pin plastic LFQFP (12 × 12 mm, 0.5 mm pitch)	A	R5F104MKAFB, R5F104MLAFB	#10, #50, #70	PLQP0080KB-B PLQP0080KJ-A
				#30	PLQP0080KB-B
			R5F104MFAFB, R5F104MGAFB, R5F104MHAFB,	#V0, #X0	PLQP0080KE-A
			R5F104MJAFB	#10, #50, #70	PLQP0080KB-B PLQP0080KJ-A
				#30	PLQP0080KB-B
		D	R5F104MFDFB, R5F104MGDFB, R5F104MHDFB,	#V0, #X0	PLQP0080KE-A
			R5F104MJDFB	#10, #30, #50, #70	PLQP0080KB-B
		G	R5F104MKGFB, R5F104MLGFB	#10, #50, #70	PLQP0080KB-B PLQP0080KJ-A
				#30	PLQP0080KB-B
			R5F104MFGFB, R5F104MGGFB, R5F104MHGFB,	#V0, #X0	PLQP0080KE-A
			R5F104MJGFB	#10, #50, #70	PLQP0080KB-B PLQP0080KJ-A
1				#30	PLQP0080KB-B

Т	able 1 - 1 I	List of Ordering Part Numbers (3/4)
	Fields of	Ordering Part Number

Note For the fields of application, refer to Figure 1 - 1 Part Number, Memory Size, and Package of RL78/G14.

The ordering part numbers represent the numbers at the time of publication. For the latest ordering part Caution numbers, refer to the target product page of the Renesas Electronics website.

	Pin		Fields of	Ordering Part Number		
	count	Package	Application Note	Part Number	Packaging specification	RENESAS Code
<r></r>	80 pins	80-pin plastic LQFP (14 × 14 mm, 0.65 mm pitch)	A	R5F104MKAFA, R5F104MLAFA	#10, #30, #50, #70	PLQP0080JB-E
<r></r>				R5F104MFAFA, R5F104MGAFA, R5F104MHAFA, R5F104MJAFA	#V0, #10, #30, #X0, #50, #70	PLQP0080JB-E
<r></r>			D	R5F104MFDFA, R5F104MGDFA, R5F104MHDFA, R5F104MJDFA	#V0, #10, #30, #X0, #50, #70	PLQP0080JB-E
<r></r>			G	R5F104MKGFA, R5F104MLGFA	#10, #30, #50, #70	PLQP0080JB-E
<r></r>				R5F104MFGFA, R5F104MGGFA, R5F104MHGFA, R5F104MJGFA	#V0, #10, #30, #X0, #50, #70	PLQP0080JB-E
<r></r>	100 pins	100-pin plastic LFQFP (14 × 14 mm, 0.5 mm pitch)	A	R5F104PKAFB, R5F104PLAFB	#10, #50, #70	PLQP0100KB-B PLQP0100KP-A
					#30	PLQP0100KB-B
_				R5F104PFAFB, R5F104PGAFB, R5F104PHAFB,	#V0, #X0	PLQP0100KE-A
<r></r>				R5F104PJAFB	#10, #50, #70	PLQP0100KB-B PLQP0100KP-A
					#30	PLQP0100KB-B
			D	R5F104PFDFB, R5F104PGDFB, R5F104PHDFB,	#V0, #X0	PLQP0100KE-A
<r></r>			G	R5F104PJDFB	#10, #30, #50, #70	PLQP0100KB-B
<r></r>				R5F104PKGFB, R5F104PLGFB R5F104PFGFB, R5F104PGGFB, R5F104PHGFB,	#10, #50, #70	PLQP0100KB-B PLQP0100KP-A
					#30	PLQP0100KB-B
_					#V0, #X0	PLQP0100KE-A
:R>				R5F104PJGFB	#10, #50, #70	PLQP0100KB-B PLQP0100KP-A
					#30	PLQP0100KB-B
<r></r>		100-pin plastic LQFP (14 × 20 mm, 0.65 mm pitch)	A	R5F104PKAFA, R5F104PLAFA	#10, #30, #50, #70	PLQP0100JC-A
<r></r>				R5F104PFAFA, R5F104PGAFA, R5F104PHAFA, R5F104PJAFA	#V0, #10, #30, #X0, #50, #70	PLQP0100JC-A
<r></r>			D	R5F104PFDFA, R5F104PGDFA, R5F104PHDFA, R5F104PJDFA	#V0, #10, #30, #X0, #50, #70	PLQP0100JC-A
<r></r>			G	R5F104PKGFA, R5F104PLGFA	#10, #30, #50, #70	PLQP0100JC-A
				R5F104PFGFA, R5F104PGGFA, R5F104PHGFA, R5F104PJGFA	#V0, #10, #30, #X0, #50, #70	PLQP0100JC-A

Table 1 - 1 List of Ordering	Part Numbers	(4/4)
------------------------------	--------------	-------

Note For the fields of application, refer to Figure 1 - 1 Part Number, Memory Size, and Package of RL78/G14.

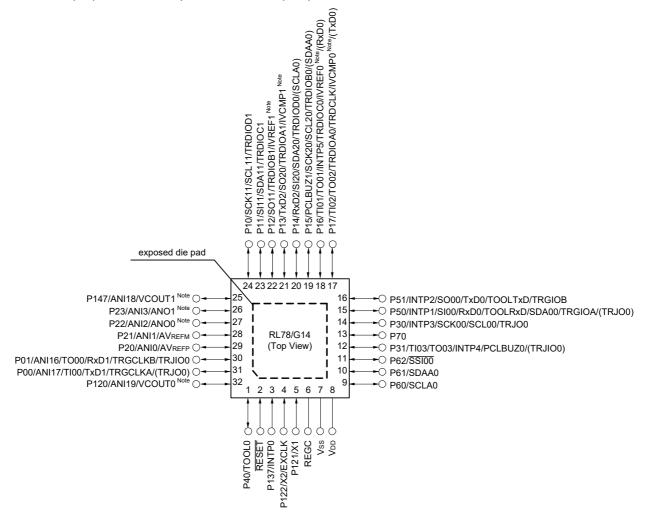
Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

1.3 Pin Configuration (Top View)

1.3.1 30-pin products

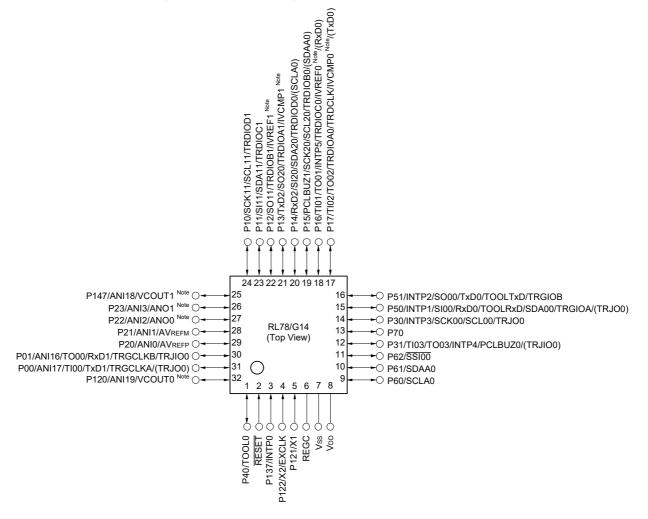
• 30-pin plastic LSSOP (7.62 mm (300), 0.65 mm pitch)

Note Mounted on the 96 KB or more code flash memory products.


Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μ F).

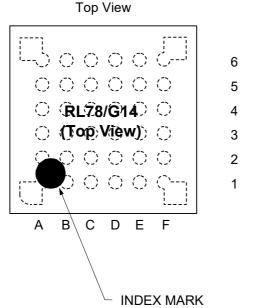
- Remark 1. For pin identification, see 1.4 Pin Identification.
- **Remark 2.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0, 1 (PIOR0, 1).

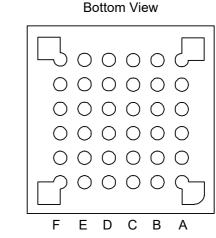
1.3.2 32-pin products


• 32-pin plastic HWQFN (5 × 5 mm, 0.5 mm pitch)

- Note Mounted on the 96 KB or more code flash memory products.
- Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μ F).
- Remark 1. For pin identification, see 1.4 Pin Identification.
- **Remark 2.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0, 1 (PIOR0, 1).
- Remark 3. It is recommended to connect an exposed die pad to Vss.

• 32-pin plastic LQFP (7 × 7 mm, 0.8 mm pitch)



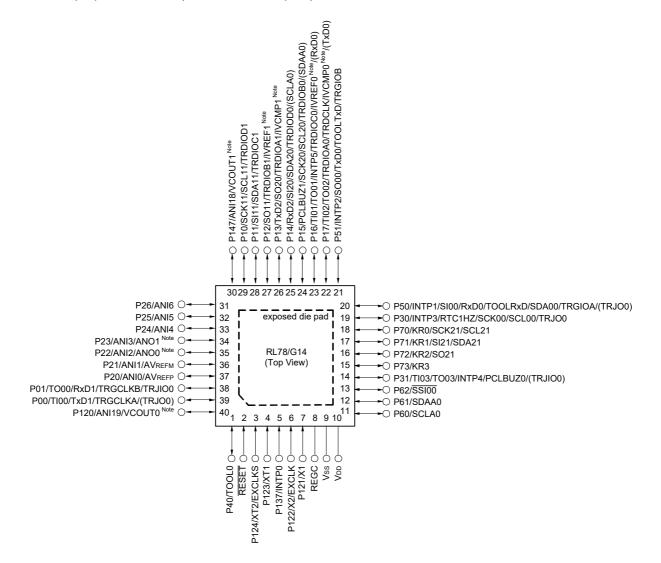

- Note Mounted on the 96 KB or more code flash memory products.
- Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μ F).
- Remark 1. For pin identification, see 1.4 Pin Identification.
- **Remark 2.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0, 1 (PIOR0, 1).

1.3.3 36-pin products

• 36-pin plastic WFLGA (4 × 4 mm, 0.5 mm pitch)

А В С D Е F P60/SCLA0 Vdd P121/X1 P122/X2/EXCLK P137/INTP0 P40/TOOL0 6 6 P61/SDAA0 REGC P120/ANI19/ Vss RESET P62/SSI00 5 5 VCOUT0 Note P72/SO21 P71/SI21/ P14/RxD2/SI20/ P31/TI03/TO03/ P00/TI00/TxD1/ P01/TO00/ 4 SDA21 SDA20/TRDIOD0/ INTP4/PCLBUZ0/ TRGCLKA/ RxD1/TRGCLKB/ 4 TRJIO0 (SCLA0) (TRJIO0) (TRJO0) P70/SCK21/ P50/INTP1/ P15/PCLBUZ1/ P22/ANI2/ P20/ANI0/ P21/ANI1/ SI00/RxD0/ SCL21 SCK20/SCL20/ ANO0 Note **AV**REFP **AV**REFM 3 TOOLRxD/ TRDIOB0/ 3 SDA00/TRGIOA/ (SDAA0) (TRJO0) P30/INTP3/ P16/TI01/TO01/ P12/SO11/ P11/SI11/ P24/ANI4 P23/ANI3/ SCK00/SCL00/ INTP5/TRDIOC0/ TRDIOB1/ SDA11/ ANO1 Note 2 2 TRJO0 IVREF0 Note/ IVREF1 Note TRDIOC1 (RxD0) P51/INTP2/ P17/TI02/TO02/ P13/TxD2/ P10/SCK11/ P147/ANI18/ P25/ANI5 SO00/TxD0/ TRDIOA0/ SO20/TRDIOA1/ SCL11/ VCOUT1 Note TOOLTxD/ TRDCLK/ TRDIOD1 1 IVCMP1 Note 1 TRGIOB IVCMP0 Note/ (TxD0) С D F А в F

Note Mounted on the 96 KB or more code flash memory products.


Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 µF).

Remark 1. For pin identification, see 1.4 Pin Identification.

Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0, 1 (PIOR0, 1).

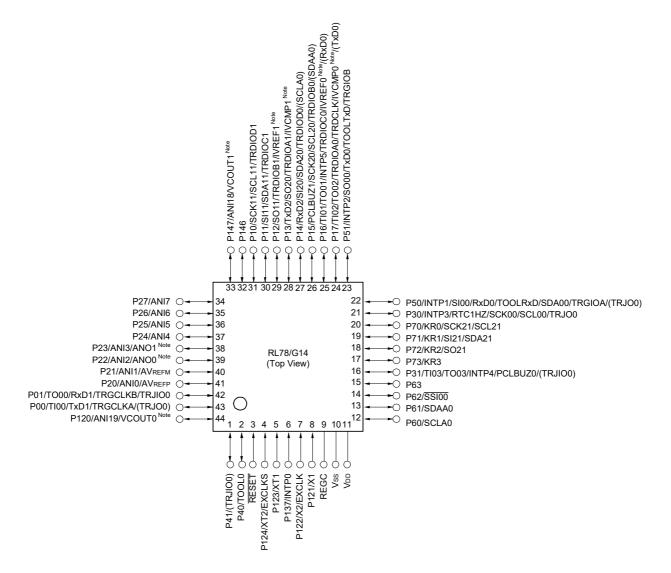
1.3.4 40-pin products

• 40-pin plastic HWQFN (6 × 6 mm, 0.5 mm pitch)

Note Mounted on the 96 KB or more code flash memory products.

Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μ F).

Remark 1. For pin identification, see 1.4 Pin Identification.


Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0, 1 (PIOR0, 1).

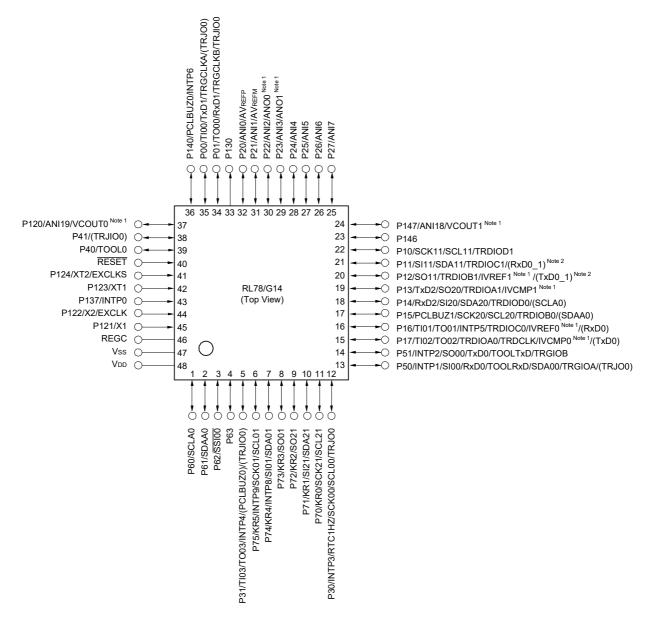
Remark 3. It is recommended to connect an exposed die pad to Vss.

1.3.5 44-pin products

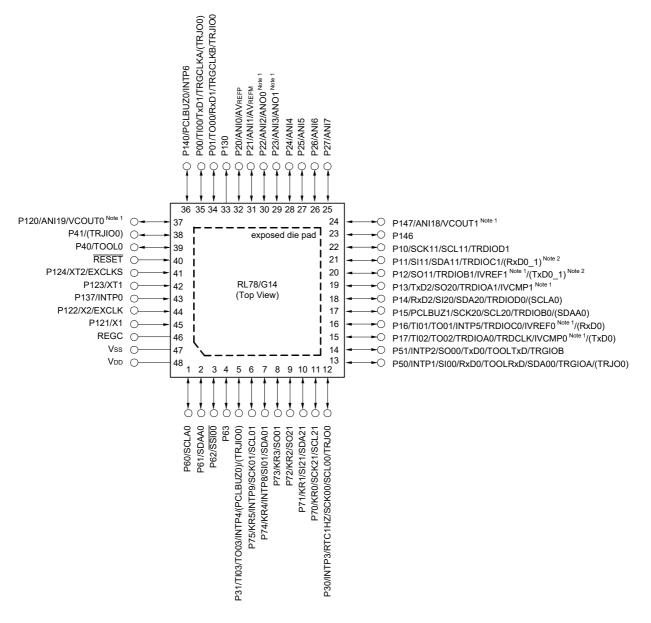
• 44-pin plastic LQFP (10 × 10 mm, 0.8 mm pitch)

Note Mounted on the 96 KB or more code flash memory products.

Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μ F).


Remark 1. For pin identification, see 1.4 Pin Identification.

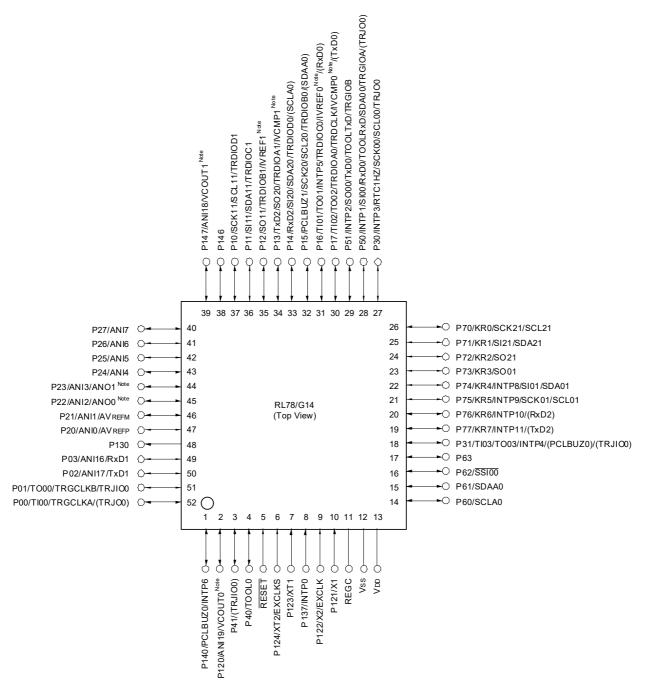
Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0, 1 (PIOR0, 1).


1.3.6 48-pin products

• 48-pin plastic LFQFP (7 × 7 mm, 0.5 mm pitch)

- **Note 1.** Mounted on the 96 KB or more code flash memory products.
- Note 2. Mounted on the 384 KB or more code flash memory products.
- Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 $\mu F).$
- Remark 1. For pin identification, see 1.4 Pin Identification.
- **Remark 2.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0, 1 (PIOR0, 1).

• 48-pin plastic HWQFN (7 × 7 mm, 0.5 mm pitch)

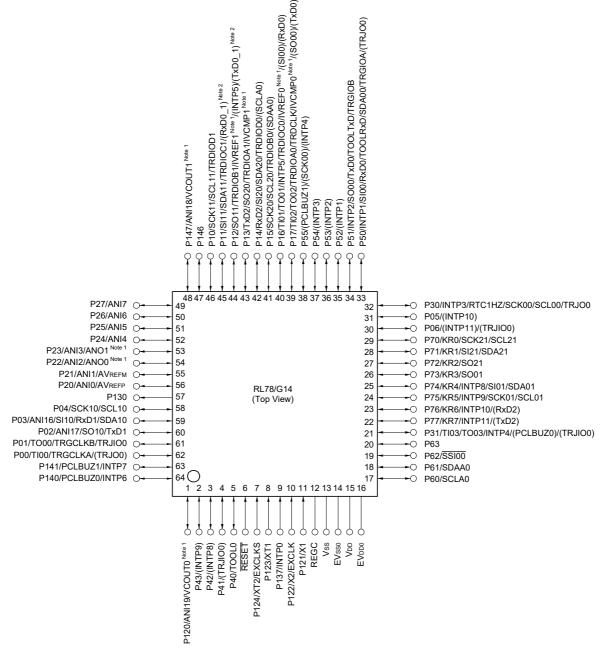


- **Note 1.** Mounted on the 96 KB or more code flash memory products.
- Note 2. Mounted on the 384 KB or more code flash memory products.
- Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μ F).
- Remark 1. For pin identification, see 1.4 Pin Identification.
- **Remark 2.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0, 1 (PIOR0, 1).
- Remark 3. It is recommended to connect an exposed die pad to Vss.

1.3.7 52-pin products

• 52-pin plastic LQFP (10 × 10 mm, 0.65 mm pitch)

Note Mounted on the 96 KB or more code flash memory products.

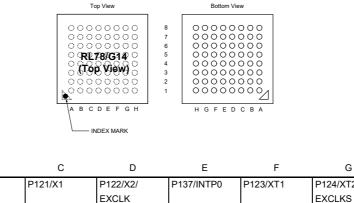

Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μ F).

Remark 1. For pin identification, see 1.4 Pin Identification.

Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0, 1 (PIOR0, 1).

1.3.8 64-pin products

- 64-pin plastic LQFP (14 × 14 mm, 0.8 mm pitch)
- 64-pin plastic LQFP (12 × 12 mm, 0.65 mm pitch)
- 64-pin plastic LFQFP (10 × 10 mm, 0.5 mm pitch)


- **Note 1.** Mounted on the 96 KB or more code flash memory products.
- Note 2. Mounted on the 384 KB or more code flash memory products.
- Caution 1. Make EVsso pin the same potential as Vss pin.
- Caution 2. Make VDD pin the same potential as EVDD0 pin, or the potential that is higher than the EVDD0 pin.
- Caution 3. Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 µF).
- Remark 1. For pin identification, see 1.4 Pin Identification.
- **Remark 2.** When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the VDD and EVDD0 pins and connect the Vss and EVss0 pins to separate ground lines.
- **Remark 3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0, 1 (PIOR0, 1).

А

н

• 64-pin plastic FLGA (5 × 5 mm, 0.5 mm pitch)

В

8	EVDD0	EVss0	P121/X1	P122/X2/	P137/INTP0	P123/XT1	P124/XT2/	P120/ANI19/	8
0				EXCLK			EXCLKS	VCOUT0 Note 1	0
	P60/SCLA0	Vdd	Vss	REGC	RESET	P01/TO00/	P00/TI00/	P140/	1
7						TRGCLKB/	TRGCLKA/	PCLBUZ0/	7
						TRJIO0	(TRJO0)	INTP6	
	P61/SDAA0	P62/SSI00	P63	P40/TOOL0	P41/(TRJIO0)	P43/(INTP9)	P02/ANI17/	P141/	
6							SO10/TxD1	PCLBUZ1/	6
								INTP7	
	P77/KR7/	P31/TI03/	P53/(INTP2)	P42/(INTP8)	P03/ANI16/	P04/SCK10/	P130	P20/ANI0/	
5	INTP11/(TxD2)	TO03/INTP4/			SI10/RxD1/	SCL10		AVREFP	5
0		(PCLBUZ0)/			SDA10				Ŭ
		(TRJIO0)							
	P75/KR5/	P76/KR6/	P52/(INTP1)	P54/(INTP3)	P16/TI01/	P21/ANI1/	P22/ANI2/	P23/ANI3/	
	INTP9/	INTP10/			TO01/INTP5/	AVREFM	ANO0 Note 1	ANO1 Note 1	
4	SCK01/	(RxD2)			TRDIOC0/				4
	SCL01				IVREF0 Note 1/				
					(SI00)/(RxD0)				
	P70/KR0/	P73/KR3/	P74/KR4/	P17/TI02/TO02/	P15/SCK20/	P12/SO11/	P24/ANI4	P26/ANI6	
	SCK21/	SO01	INTP8/SI01/	TRDIOA0/	SCL20/	TRDIOB1/			
3	SCL21		SDA01	TRDCLK/	TRDIOB0/	IVREF1 Note 1/			3
				IVCMP0 Note 1/	(SDAA0)	(INTP5)/			
				(SO00)/(TxD0)		(TxD0_1) Note 2			
	P30/INTP3/	P72/KR2/	P71/KR1/	P06/(INTP11)/	P14/RxD2/	P11/SI11/	P25/ANI5	P27/ANI7	
2	RTC1HZ/	SO21	SI21/SDA21	(TRJIO0)	SI20/SDA20/	SDA11/			2
2	SCK00/				TRDIOD0/	TRDIOC1/			2
	SCL00/TRJO0				(SCLA0)	(RxD0_1) Note 2			
	P05/(INTP10)	P50/INTP1/	P51/INTP2/	P55/	P13/TxD2/	P10/SCK11/	P146	P147/ANI18/	
		SI00/RxD0/	SO00/TxD0/	(PCLBUZ1)/	SO20/	SCL11/		VCOUT1 Note 1	
1		TOOLRxD/	TOOLTxD/	(SCK00)/	TRDIOA1/	TRDIOD1			1
•		SDA00/	TRGIOB	(INTP4)	IVCMP1 Note 1				l .
		TRGIOA/							
		(TRJO0)							
	А	В	С	D	E	F	G	н	

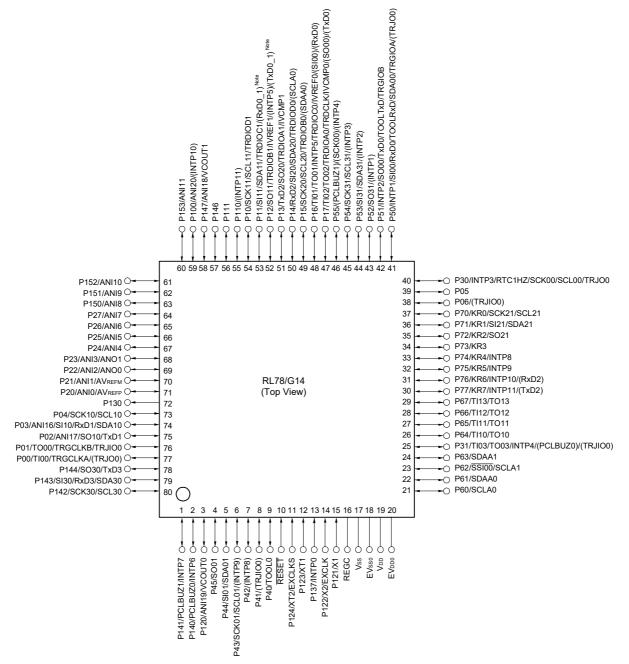
Note 1. Mounted on the 96 KB or more code flash memory products.

Note 2. Mounted on the 384 KB or more code flash memory products.

Caution 1. Make EVsso pin the same potential as Vss pin.

Caution 2. Make VDD pin the same potential as EVDD0 pin, or the potential that is higher than the EVDD0 pin.

Caution 3. Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μ F).

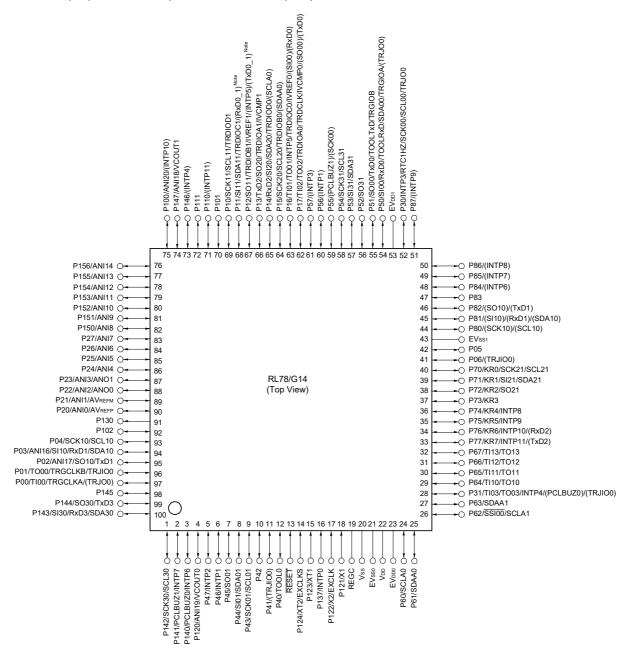

Remark 1. For pin identification, see 1.4 Pin Identification.

Remark 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the VDD and EVDD0 pins and connect the Vss and EVss0 pins to separate ground lines.

Remark 3. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0, 1 (PIOR0, 1).

1.3.9 80-pin products

- 80-pin plastic LQFP (14 × 14 mm, 0.65 mm pitch)
- 80-pin plastic LFQFP (12 × 12 mm, 0.5 mm pitch)



Note Mounted on the 384 KB or more code flash memory products.

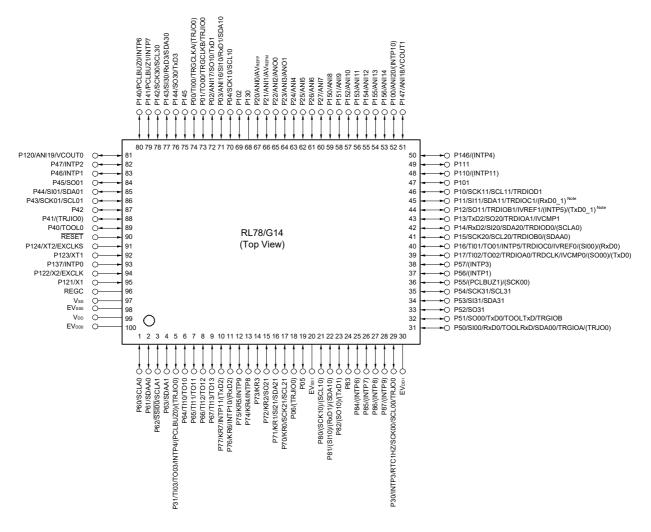
- Caution 1. Make EVsso pin the same potential as Vss pin.
- Caution 2. Make VDD pin the same potential as EVDD0 pin, or the potential that is higher than the EVDD0 pin.
- Caution 3. Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μ F).
- Remark 1. For pin identification, see 1.4 Pin Identification.
- **Remark 2.** When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the VDD and EVDD0 pins and connect the Vss and EVss0 pins to separate ground lines.
- **Remark 3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0, 1 (PIOR0, 1).

1.3.10 100-pin products

• 100-pin plastic LFQFP (14 × 14 mm, 0.5 mm pitch)

Note Mounted on the 384 KB or more code flash memory products.

Caution 1. Make EVsso, EVss1 pins the same potential as Vss pin.


- Caution 2. Make VDD pin the same potential as EVDD0, EVDD1 pins, or the potential that is higher than the EVDD0, EVDD1 pins (EVDD0 = EVDD1).
- Caution 3. Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 $\mu\text{F}).$

Remark 1. For pin identification, see 1.4 Pin Identification.

Remark 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the VDD, EVDD0 and EVDD1 pins and connect the Vss, EVss0 and EVss1 pins to separate ground lines.

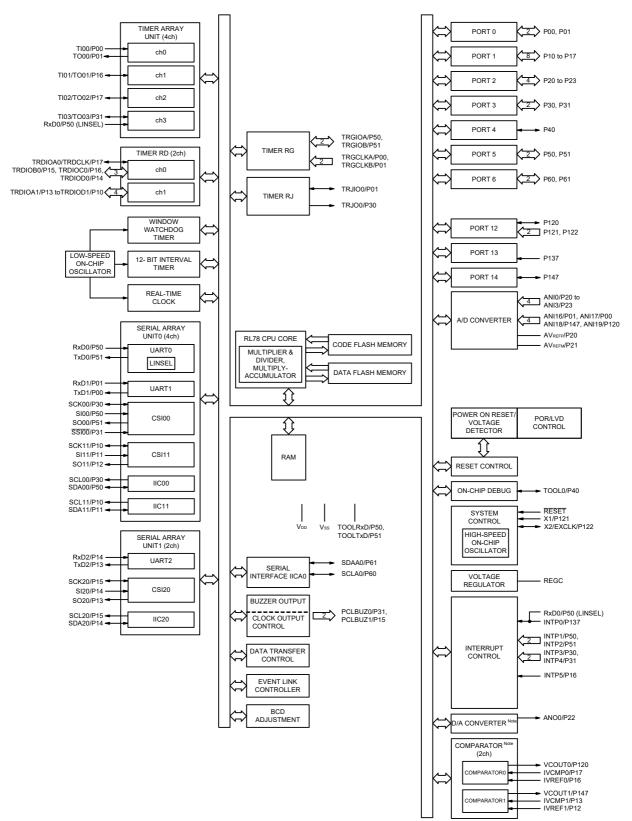
Remark 3. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0, 1 (PIOR0, 1).

• 100-pin plastic LQFP (14 × 20 mm, 0.65 mm pitch)

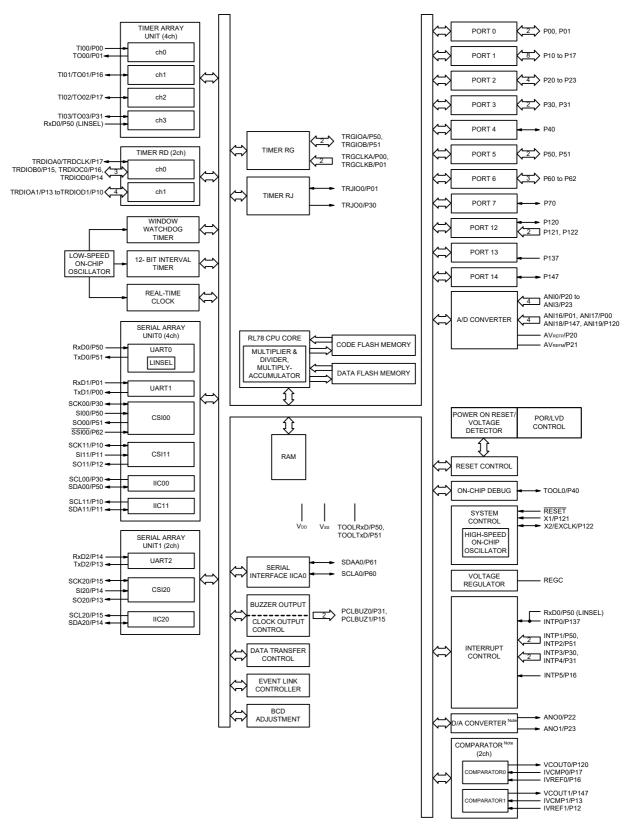
Note Mounted on the 384 KB or more code flash memory products.

Caution 1. Make EVsso, EVss1 pins the same potential as Vss pin.

- Caution 2. Make VDD pin the same potential as EVDD0, EVDD1 pins, or the potential that is higher than the EVDD0, EVDD1 pins (EVDD0 = EVDD1).
- Caution 3. Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 $\mu\text{F}).$
- Remark 1. For pin identification, see 1.4 Pin Identification.
- **Remark 2.** When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the VDD, EVDD0 and EVDD1 pins and connect the Vss, EVss0 and EVss1 pins to separate ground lines.
- **Remark 3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0, 1 (PIOR0, 1).

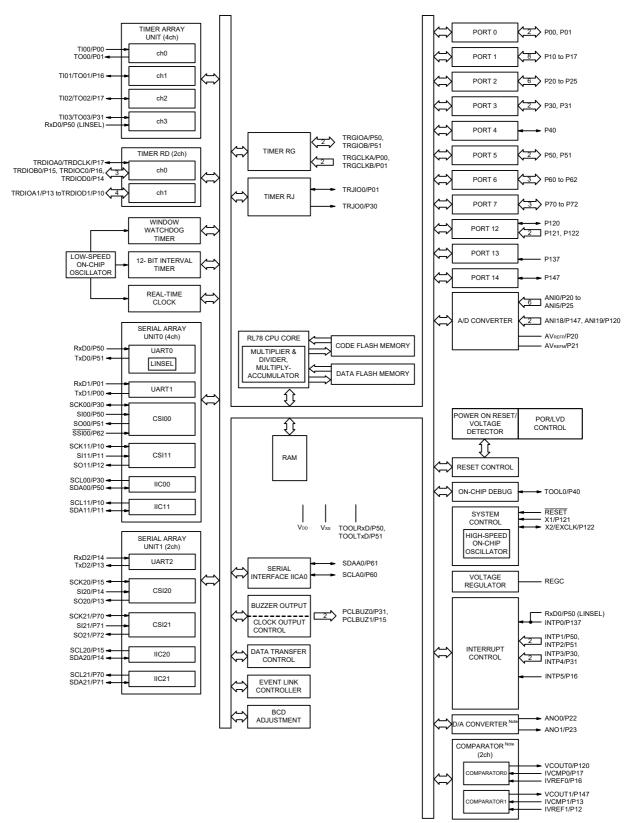

1.4 Pin Identification

ANI0 to ANI14,		RxD0 to RxD3:	Receive data
ANI16 to ANI20:	Analog output	SCK00, SCK01, SCK10,	
ANO0, ANO1:	Analog output	SCK11, SCK20, SCK21,	
AVREFM:	A/D converter reference	SCK30, SCK31,	
	voltage minus	SCLA0, SCLA1:	Serial clock input/output
AVREFP:	A/D converter reference	SCL00, SCL01, SCL10, SCL11,	
AVILLET.	voltage plus	SCL20, SCL21, SCL30,	
EVDD0, EVDD1:	Power supply for port	SCL31:	Serial clock output
EVSS0, EVSS1:	Ground for port	SDAA0, SDAA1, SDA00,	
EXCLK:	External clock input	SDA01, SDA10, SDA11,	
EXOLIC.	(main system clock)	SDA20, SDA21, SDA30,	
EXCLKS:	External clock input	SDA31:	Serial data input/output
EXCENC.	(subsystem clock)	SI00, SI01, SI10, SI11,	
INTP0 to INTP11:	External interrupt input	SI20, SI21, SI30, SI31:	Serial data input
IVCMP0, IVCMP1:	Comparator input	SO00, SO01, SO10,	
IVREF0, IVREF1:	Comparator reference input	SO11, SO20, SO21,	
KR0 to KR7:	Key return	SO30, SO31:	Serial data output
P00 to P06:	Port 0	<u>SSI00</u> :	Serial interface chip select input
P10 to P17:	Port 1	TI00 to TI03,	
P20 to P27:	Port 2	TI10 to TI13:	Timer input
P30, P31:	Port 3	TO00 to TO03,	
P40 to P47:	Port 4	TO10 to TO13, TRJO0:	Timer output
P50 to P57:	Port 5	TOOL0:	Data input/output for tool
P60 to P67:	Port 6	TOOLRxD, TOOLTxD:	Data input/output for external device
P70 to P77:	Port 7	TRDCLK, TRGCLKA,	
P80 to P87:	Port 8	TRGCLKB:	Timer external input clock
P100 to P102:	Port 10	TRDIOA0, TRDIOB0,	·
P110, P111:	Port 11	TRDIOC0, TRDIOD0,	
P120 to P124:	Port 12	TRDIOA1, TRDIOB1,	
P130, P137:	Port 13	TRDIOC1, TRDIOD1,	
P140 to P147:	Port 14	TRGIOA, TRGIOB, TRJIO0:	Timer input/output
P150 to P156:	Port 15	TxD0 to TxD3:	Transmit data
PCLBUZ0, PCLBUZ1:	Programmable clock	VCOUT0, VCOUT1:	Comparator output
	output/buzzer output	VDD:	Power supply
REGC:	Regulator capacitance	Vss:	Ground
RESET:	Reset	X1, X2:	Crystal oscillator (main system clock)
RTC1HZ:	Real-time clock correction	XT1, XT2:	Crystal oscillator (subsystem clock)
	clock (1 Hz) output		

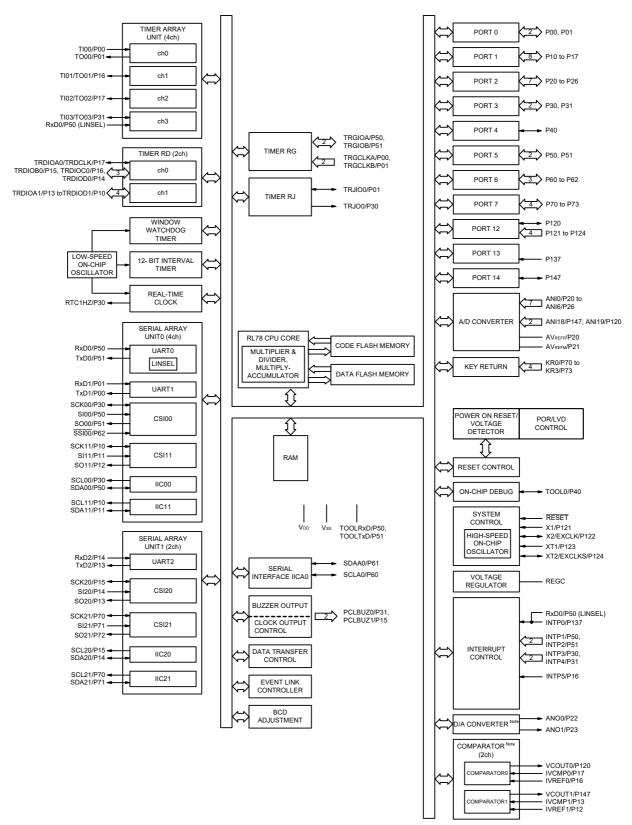


1.5 Block Diagram

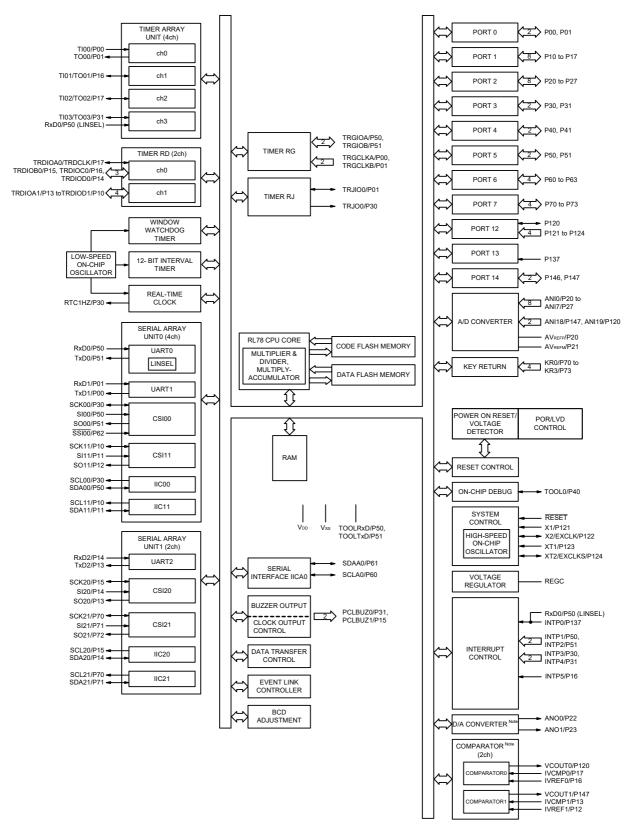
1.5.1 30-pin products



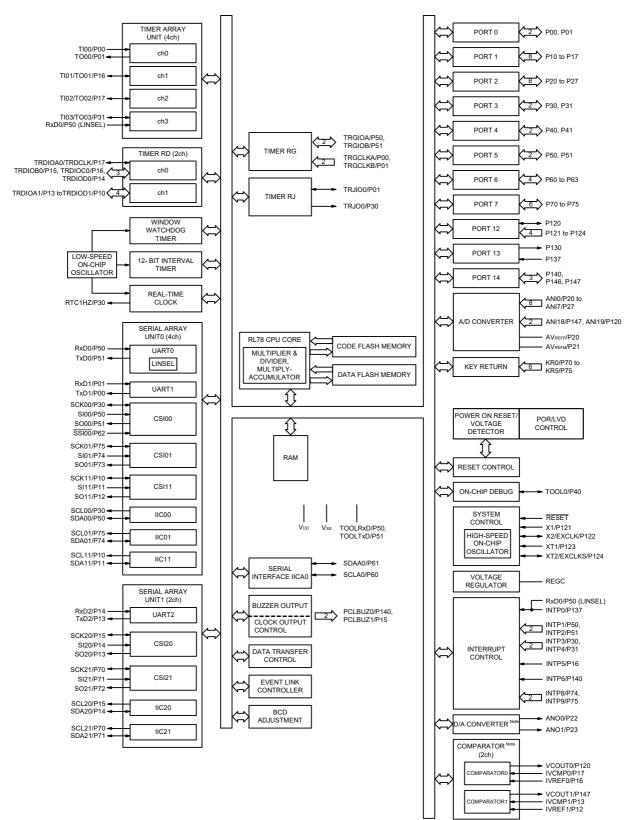
1.5.2 32-pin products



1.5.3 36-pin products



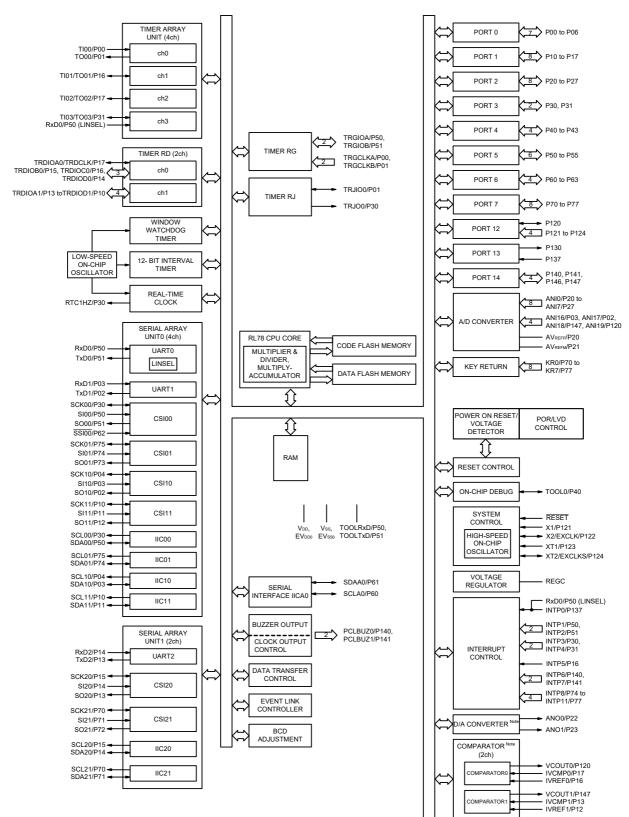
1.5.4 40-pin products



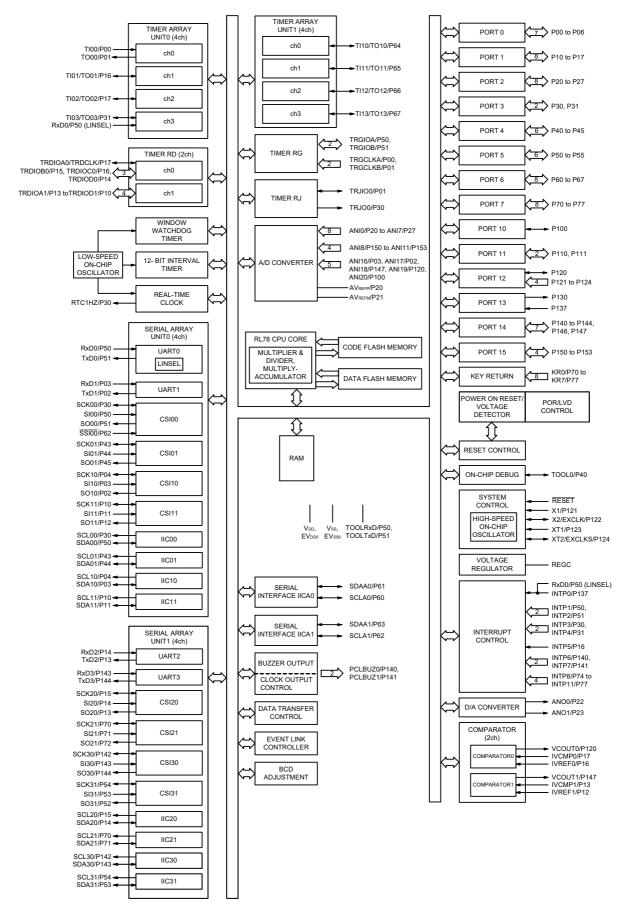
1.5.5 44-pin products



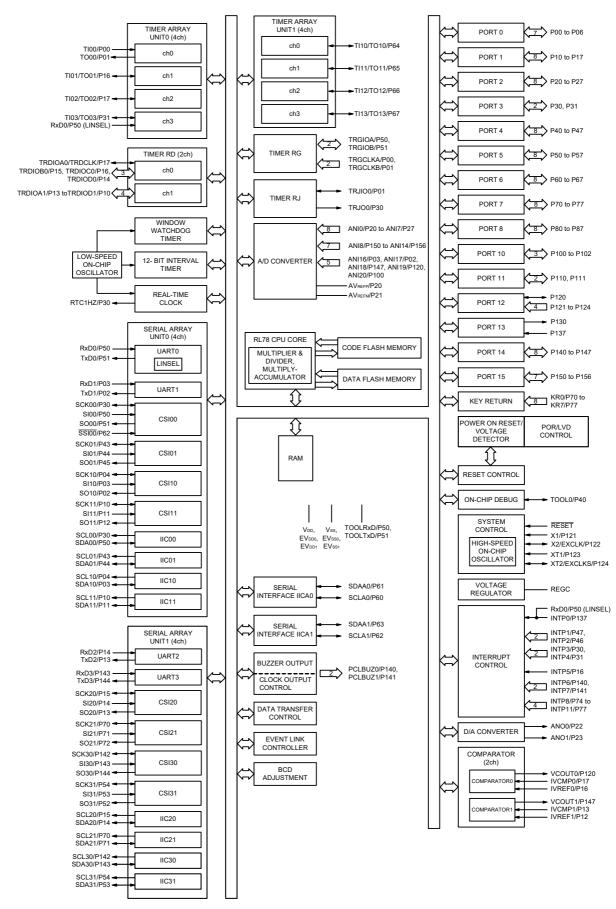
1.5.6 48-pin products



1.5.7 52-pin products



1.5.8 64-pin products



1.5.9 80-pin products

1.5.10 100-pin products

1.6 Outline of Functions

[30-pin, 32-pin, 36-pin, 40-pin products (code flash memory 16 KB to 64 KB)]

Caution This outline describes the functions at the time when Peripheral I/O redirection register 0, 1 (PIOR0, 1) are set to 00H.

		20 nin	20 nin	26 nin	(1/2		
ltem		30-pin	32-pin	36-pin	40-pin		
		R5F104Ax (x = A, C to E)	R5F104Bx (x = A, C to E)	R5F104Cx (x = A, C to E)	R5F104Ex (x = A, C to E)		
Code flash memory (KB)		16 to 64	16 to 64	16 to 64	16 to 64		
Data flash men	nory (KB)	4	4	4	4		
RAM (KB)		2.5 to 5.5 Note	2.5 to 5.5 Note	2.5 to 5.5 Note	2.5 to 5.5 Note		
Address space		1 MB					
Main system clock	High-speed system clock	X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK)HS (high-speed main) mode:1 to 20 MHz (VDD = 2.7 to 5.5 V),HS (high-speed main) mode:1 to 16 MHz (VDD = 2.4 to 5.5 V),LS (low-speed main) mode:1 to 8 MHz (VDD = 1.8 to 5.5 V),LV (low-voltage main) mode:1 to 4 MHz (VDD = 1.6 to 5.5 V)					
	High-speed on-chip oscillator clock (fiн)	HS (high-speed main) mode: 1 to 32 MHz (VDD = 2.7 to 5.5 V), HS (high-speed main) mode: 1 to 16 MHz (VDD = 2.4 to 5.5 V), LS (low-speed main) mode: 1 to 8 MHz (VDD = 1.8 to 5.5 V), LV (low-voltage main) mode: 1 to 4 MHz (VDD = 1.6 to 5.5 V)					
Subsystem cloo	ck		_		XT1 (crystal) oscillation external subsystem clock input (EXCLKS) 32.768 kHz		
Low-speed on-	chip oscillator clock	15 kHz (TYP.): Vod = 1.6 to	o 5.5 V				
General-purpos	se register	8 bits × 32 registers (8 bits × 8 registers × 4 banks)					
Minimum instru	ction execution time	0.03125 μs (High-speed on-chip oscillator clock: fiн = 32 MHz operation)					
		0.05 µs (High-speed syste	m clock: fмx = 20 MHz ор	eration)			
					30.5 μs (Subsystem clock: fsuB = 32.768 kH operation)		
Instruction set		 Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 bits) Multiplication (8 bits × 8 bits, 16 bits × 16 bits), Division (16 bits ÷ 16 bits, 32 bits ÷ 32 bits) Multiplication and Accumulation (16 bits × 16 bits + 32 bits) Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc. 					
I/O port	Total	26	28	32	36		
	CMOS I/O	21	22	26	28		
	CMOS input	3	3	3	5		
	CMOS output	—	—	—	—		
	N-ch open-drain I/O (6 V tolerance)	2	3	3	3		
Timer	16-bit timer	8 channels (TAU: 4 channels, Timer RJ: 1 channel, Timer RD: 2 channels, Timer RG: 1 channel)					
	Watchdog timer	1 channel					
	Real-time clock (RTC)	1 channel					
	12-bit interval timer	1 channel					
	Timer output	Timer outputs: 13 channels PWM outputs: 9 channels					
	RTC output		_		1 • 1 Hz (subsystem clock: fsu = 32.768 kHz)		

(**Note** is listed on the next page.)

Note	The flash library uses RAM in self-programming and rewriting of the data flash memory.
	The target products and start address of the RAM areas used by the flash library are shown below.
	R5F104xD (x = A to C, E to G, J, L): Start address FE900H
	R5F104xE (x = A to C, E to G, J, L): Start address FE900H
	For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944).
	(R20UT2944).

10101	
1 1/ 1/	

		20 min	20 min	26 min	(2/2		
ltem		30-pin	32-pin	36-pin	40-pin		
		R5F104Ax (x = A, C to E)	R5F104Bx (x = A, C to E)	R5F104Cx (x = A, C to E)	R5F104Ex (x = A, C to E)		
Clock output/buzzer output		2	2	2	2		
		 [40-pin products] 2.44 kHz, 4.88 kHz, 9.3 (Main system clock: fm. 256 Hz, 512 Hz, 1.024 	76 kHz, 1.25 MHz, 2.5 M ain = 20 MHz operation) 76 kHz, 1.25 MHz, 2.5 M ain = 20 MHz operation)	Hz, 5 MHz, 10 MHz Hz, 8.192 kHz, 16.384 kHz,	32.768 kHz		
8/10-bit resolution A	/D converter	8 channels	8 channels	8 channels	9 channels		
Serial interface		 [30-pin, 32-pin products] Simplified SPI (CSI): 1 channel/UART (UART supporting LIN-bus): 1 channel/simplified I²C: 1 channel Simplified SPI (CSI): 1 channel/UART: 1 channel/simplified I²C: 1 channel Simplified SPI (CSI): 1 channel/UART: 1 channel/simplified I²C: 1 channel [36-pin, 40-pin products] Simplified SPI (CSI): 1 channel/UART (UART supporting LIN-bus): 1 channel/simplified I²C: 1 channel Simplified SPI (CSI): 1 channel/UART (UART supporting LIN-bus): 1 channel/simplified I²C: 1 channel Simplified SPI (CSI): 1 channel/UART (UART supporting LIN-bus): 1 channel/simplified I²C: 1 channel Simplified SPI (CSI): 2 channel/UART: 1 channel/simplified I²C: 2 channels 					
	I ² C bus	1 channel	1 channel	1 channel	1 channel		
Data transfer contro	ller (DTC)	28 sources	32 sources	31 sources	29 sources		
Event link controller (ELC)		Event input: 19 Event trigger output: 7					
Vectored interrupt	Internal	24	24	24	24		
sources	External	6	6	6	7		
Key interrupt			_	_	4		
Reset		Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by viltage instruction execution ^{Note} Internal reset by RAM parity error Internal reset by illegal-memory access					
Power-on-reset circuit		• Power-on-reset: $1.51 \pm 0.04 \text{ V} (\text{TA} = -40 \text{ to } +85^{\circ}\text{C})$ $1.51 \pm 0.06 \text{ V} (\text{TA} = -40 \text{ to } +105^{\circ}\text{C})$ • Power-down-reset: $1.50 \pm 0.04 \text{ V} (\text{TA} = -40 \text{ to } +85^{\circ}\text{C})$ $1.50 \pm 0.06 \text{ V} (\text{TA} = -40 \text{ to } +105^{\circ}\text{C})$					
Voltage detector		1.63 V to 4.06 V (14 stages)					
On-chip debug function		Provided					
Power supply voltage		VDD = 1.6 to 5.5 V (TA = -40 to +85°C) VDD = 2.4 to 5.5 V (TA = -40 to +105°C)					
Operating ambient temperature		$T_A = -40 \text{ to } +85^\circ\text{C} \text{ (A: Consumer applications, D: Industrial applications),}$ $T_A = -40 \text{ to } +105^\circ\text{C} \text{ (G: Industrial applications)}$					

Note

The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution not is issued by emulation with the in-circuit emulator or on-chip debug emulator.

[30-pin, 32-pin, 36-pin, 40-pin products (code flash memory 96 KB to 256 KB)]

Caution This outline describes the functions at the time when Peripheral I/O redirection register 0, 1 (PIOR0, 1) are set to 00H.

					(1/2		
		30-pin	32-pin	36-pin	40-pin		
Item		R5F104Ax (x = F, G)	R5F104Bx (x = F, G)	R5F104Cx (x = F, G)	R5F104Ex (x = F to H)		
Code flash memory (KB)		96 to 128	96 to 128	96 to 128	96 to 192		
Data flash merr	nory (KB)	8	8	8	8		
RAM (KB)		12 to 16 Note	12 to 16 Note	12 to 16 Note	12 to 20 Note		
Address space		1 MB					
Main system clock	High-speed system clock High-speed on-chip	X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK)HS (high-speed main) mode:1 to 20 MHz (VDD = 2.7 to 5.5 V),HS (high-speed main) mode:1 to 16 MHz (VDD = 2.4 to 5.5 V),LS (low-speed main) mode:1 to 8 MHz (VDD = 1.8 to 5.5 V),LV (low-voltage main) mode:1 to 4 MHz (VDD = 1.6 to 5.5 V)HS (high-speed main) mode:1 to 32 MHz (VDD = 2.7 to 5.5 V),					
	oscillator clock (fाम)	HS (high-speed main) mode: 1 to 16 MHz (Vod = 2.4 to 5.5 V), LS (low-speed main) mode: 1 to 8 MHz (Vod = 1.8 to 5.5 V), LV (low-voltage main) mode: 1 to 4 MHz (Vod = 1.6 to 5.5 V)					
Subsystem clock			_		XT1 (crystal) oscillation external subsystem clock input (EXCLKS) 32.768 kHz		
Low-speed on-	chip oscillator clock	15 kHz (TYP.): VDD = 1.6	to 5.5 V				
General-purpos	se register	8 bits × 32 registers (8 bits × 8 registers × 4 banks)					
Minimum instru	ction execution time	0.03125 μs (High-speed on-chip oscillator clock: fiн = 32 MHz operation)					
		0.05 μs (High-speed system clock: fмx = 20 MHz operation)					
		clock:			30.5 μs (Subsystem clock: fsuB = 32.768 kHz operation)		
Instruction set		Multiplication and Accur	gical operation (8/16 bits) bits, 16 bits × 16 bits), Div	+ 32 bits)	,		
I/O port	Total	26	28	32	36		
	CMOS I/O	21	22	26	28		
	CMOS input	3	3	3	5		
	CMOS output	—		_	-		
	N-ch open-drain I/O (6 V tolerance)	2	3	3	3		
Timer	16-bit timer	8 channels (TAU: 4 channels, Timer RJ: 1 channel, Timer RD: 2 channels, Timer RG: 1 channel)					
	Watchdog timer	1 channel					
	Real-time clock (RTC)	1 channel					
	12-bit interval timer	1 channel					
	Timer output	Timer outputs: 13 channels PWM outputs: 9 channels					
	RTC output		_		1 • 1 Hz (subsystem clock: fsue = 32.768 kHz)		

(Note is listed on the next page.)

Note	The flash library uses RAM in self-programming and rewriting of the data flash memory.
	The target products and start address of the RAM areas used by the flash library are shown below.
	R5F104xJ (x = F, G, J, L, M, P): Start address F9F00H
	For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family
	(R20UT2944).

					(2/2		
		30-pin	32-pin	36-pin	40-pin		
Item		R5F104Ax (x = F, G)	R5F104Bx (x = F, G)	R5F104Cx (x = F, G)	R5F104Ex (x = F to H)		
Clock output/buzzer	output	2	2	2	2		
		 2.44 kHz, 4.88 kHz, 9.70 (Main system clock: fmai [40-pin products] 2.44 kHz, 4.88 kHz, 9.70 (Main system clock: fmai 	 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: fmain = 20 MHz operation) 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz 				
8/10-bit resolution A	/D converter	8 channels	8 channels	8 channels	9 channels		
D/A converter		1 channel	2 channels				
Comparator		2 channels	L				
		 Simplified SPI (CSI): 1 channel/UART: 1 channel/simplified l²C: 1 channel Simplified SPI (CSI): 1 channel/UART: 1 channel/simplified l²C: 1 channel [36-pin, 40-pin products] Simplified SPI (CSI): 1 channel/UART (UART supporting LIN-bus): 1 channel/simplified l²C: 1 channel Simplified SPI (CSI): 1 channel/UART: 1 channel/simplified l²C: 1 channel Simplified SPI (CSI): 2 channels/UART: 1 channel/simplified l²C: 2 channels 					
	I ² C bus	1 channel	1 channel	1 channel	1 channel		
Data transfer contro	ller (DTC)	30 sources			31 sources		
Event link controller	(ELC)	Event input: 21 Event trigger output: 8	Event input: 21, Event trigger output: 9		Event input: 22 Event trigger output: 9		
Vectored interrupt	Internal	24	24	24	24		
sources	External	6	6	6	7		
Key interrupt		—	—	—	4		
Reset		 Reset by RESET pin Internal reset by watchd Internal reset by power- Internal reset by voltage Internal reset by illegal i Internal reset by RAM p Internal reset by illegal- 	on-reset e detector nstruction execution ^{Note} arity error memory access				
Power-on-reset circuit		 Power-on-reset: 1.51 ±0.04 V (TA = -40 to +85°C) 1.51 ±0.06 V (TA = -40 to +105°C) Power-down-reset: 1.50 ±0.04 V (TA = -40 to +85°C) 1.50 ±0.06 V (TA = -40 to +105°C) 					
Voltage detector		1.63 V to 4.06 V (14 stage	1.63 V to 4.06 V (14 stages)				
On-chip debug funct	tion	Provided					
Power supply voltag	e		V _{DD} = 1.6 to 5.5 V (T _A = -40 to +85°C) V _{DD} = 2.4 to 5.5 V (T _A = -40 to +105°C)				
Operating ambient temperature		T _A = -40 to +85°C (A: Co T _A = -40 to +105°C (G: In	nsumer applications, D: In idustrial applications)	dustrial applications),			

Note Th

The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution not is issued by emulation with the in-circuit emulator or on-chip debug emulator.

[44-pin, 48-pin, 52-pin, 64-pin products (code flash memory 16 KB to 64 KB)]

Caution This outline describes the functions at the time when Peripheral I/O redirection register 0, 1 (PIOR0, 1) are set to 00H.

					(1/	
		44-pin	48-pin	52-pin	64-pin	
	Item	R5F104Fx	R5F104Gx	R5F104Jx	R5F104Lx	
		(x = A, C to E)	(x = A, C to E)	(x = C to E)	(x = C to E)	
Code flash me	emory (KB)	16 to 64	16 to 64	32 to 64	32 to 64	
Data flash me	emory (KB)	4	4	4	4	
RAM (KB)		2.5 to 5.5 Note	2.5 to 5.5 ^{Note}	4 to 5.5 Note	4 to 5.5 Note	
Address spac	e	1 MB				
Main system High-speed system clock clock		X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK) HS (high-speed main) mode: 1 to 20 MHz (VDD = 2.7 to 5.5 V), HS (high-speed main) mode: 1 to 16 MHz (VDD = 2.4 to 5.5 V), LS (low-speed main) mode: 1 to 8 MHz (VDD = 1.8 to 5.5 V), LV (low-voltage main) mode: 1 to 4 MHz (VDD = 1.6 to 5.5 V)				
	High-speed on-chip oscillator clock (fiн)	HS (high-speed main) mode: 1 to 32 MHz (VDD = 2.7 to 5.5 V), HS (high-speed main) mode: 1 to 16 MHz (VDD = 2.4 to 5.5 V), LS (low-speed main) mode: 1 to 8 MHz (VDD = 1.8 to 5.5 V), LV (low-voltage main) mode: 1 to 4 MHz (VDD = 1.6 to 5.5 V)				
Subsystem cl	ock	XT1 (crystal) oscillation	n, external subsystem cl	ock input (EXCLKS) 3	2.768 kHz	
Low-speed or	n-chip oscillator clock	15 kHz (TYP.): Vod = 1	.6 to 5.5 V			
General-purp	ose register	8 bits × 32 registers (8 bits × 8 registers × 4 banks)				
Minimum insti	ruction execution time	0.03125 μ s (High-speed on-chip oscillator clock: fi H = 32 MHz operation)				
		0.05 μ s (High-speed system clock: fMX = 20 MHz operation)				
		30.5 μs (Subsystem clock: fsub = 32.768 kHz operation)				
Instruction set		 Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 bits) Multiplication (8 bits × 8 bits, 16 bits × 16 bits), Division (16 bits ÷ 16 bits, 32 bits ÷ 32 bits) Multiplication and Accumulation (16 bits × 16 bits + 32 bits) Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc. 				
I/O port	Total	40	44	48	58	
	CMOS I/O	31	34	38	48	
	CMOS input		5	5	5	
	CiviOS input	5	5		-	
	CMOS output	5	1	1	1	
Timer	CMOS output N-ch open-drain I/O	4 8 channels	1	1 4	1	
Timer	CMOS output N-ch open-drain I/O (6 V tolerance)	4 8 channels	1 4	1 4	1	
Timer	CMOS output N-ch open-drain I/O (6 V tolerance) 16-bit timer	4 8 channels (TAU: 4 channels, Time	1 4	1 4	1	
Timer	CMOS output N-ch open-drain I/O (6 V tolerance) 16-bit timer Watchdog timer Real-time clock	4 8 channels (TAU: 4 channels, Time 1 channel	1 4	1 4	1	
Timer	CMOS output N-ch open-drain I/O (6 V tolerance) 16-bit timer Watchdog timer Real-time clock (RTC)	4 8 channels (TAU: 4 channels, Time 1 channel 1 channel	1 4 er RJ: 1 channel, Timer	1 4	1	

(Note is listed on the next page.)

RENESAS

Note	The flash library uses RAM in self-programming and rewriting of the data flash memory.
	The target products and start address of the RAM areas used by the flash library are shown below.
	R5F104xD (x = A to C, E to G, J, L): Start address FE900H
	R5F104xE (x = A to C, E to G, J, L): Start address FE900H
	For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944).

10	$\langle \alpha \rangle$
(2)	21

		44-pin	48-pin	52-pin	(2/ 64-pin	
Item		•				
		R5F104Fx (x = A, C to E)	R5F104Gx (x = A, C to E)	R5F104Jx (x = C to E)	R5F104Lx (x = C to E)	
					, ,	
Clock output/buzz	eroutput	2	2	2	2	
			9.76 KHZ, 1.25 MHZ, 2. fmain = 20 MHz operati	5 MHz, 5 MHz, 10 MHz		
		· ·		96 kHz, 8.192 kHz, 16.3	884 kHz 32 768 kHz	
			uв = 32.768 kHz opera			
8/10-bit resolution	A/D converter	10 channels	10 channels	12 channels	12 channels	
Serial interface		l ² C: 1 channel • Simplified SPI (CSI):	1 channel/UART: 1 ch	R supporting LIN-bus): annel/simplified I ² C: 1 c nannel/simplified I ² C: 2	hannel	
		I ² C: 2 channels	2 channels/UART (UA	RT supporting LIN-bus)		
		,		annel/simplified I ² C: 1 c		
			2 channels/UARI: 1 cl	nannel/simplified I ² C: 2	channels	
		 [64-pin products] Simplified SPI (CSI): 2 channels/UART (UART supporting LIN-bus): 1 channel/simplified I²C: 2 channels 				
		Simplified SPI (CSI): 2 channels/UART: 1 channel/simplified I ² C: 2 channels				
		Simplified SPI (CSI): 2 channels/UART: 1 channel/simplified I ² C: 2 channels				
	I ² C bus	1 channel	1 channel	1 channel	1 channel	
Data transfer cont	roller (DTC)	29 sources	30 sources		31 sources	
Event link controlle	er (ELC)	Event input: 20 Event trigger output: 7				
Vectored	Internal	24	24	24	24	
interrupt sources	External	7	10	12	13	
Key interrupt		4	6	8	8	
Reset		 Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution ^{Note} Internal reset by RAM parity error Internal reset by illegal-memory access 				
Power-on-reset circuit		• Power-on-reset: $1.51 \pm 0.04 \text{ V}$ (TA = -40 to +85°C) $1.51 \pm 0.06 \text{ V}$ (TA = -40 to +105°C) • Power-down-reset: $1.50 \pm 0.04 \text{ V}$ (TA = -40 to +85°C) $1.50 \pm 0.06 \text{ V}$ (TA = -40 to +105°C)				
Voltage detector		1.63 V to 4.06 V (14 stages)				
On-chip debug fur	nction	Provided				
Power supply volta	age	,	V _{DD} = 1.6 to 5.5 V (T _A = -40 to +85°C) V _{DD} = 2.4 to 5.5 V (T _A = -40 to +105°C)			
Operating ambien	t temperature		Consumer applications	s, D: Industrial applicatio इ)	ons),	

Note

The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution is not issued by emulation with the in-circuit emulator or on-chip debug emulator.

RENESAS

[44-pin, 48-pin, 52-pin, 64-pin products (code flash memory 96 KB to 256 KB)]

Caution This outline describes the functions at the time when Peripheral I/O redirection register 0, 1 (PIOR0, 1) are set to 00H.

				1	(1/:	
Item		44-pin	48-pin	52-pin	64-pin	
		R5F104Fx (x = F to H, J)	R5F104Gx (x = F to H, J)	R5F104Jx (x = F to H, J)	R5F104Lx (x = F to H, J)	
Code flash me	emory (KB)	96 to 256	96 to 256	96 to 256	96 to 256	
Data flash me	mory (KB)	8	8	8	8	
RAM (KB)		12 to 24 ^{Note}	12 to 24 Note	12 to 24 Note	12 to 24 ^{Note}	
Address space	e	1 MB				
Main system High-speed system clock clock		X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK) HS (high-speed main) mode: 1 to 20 MHz (VDD = 2.7 to 5.5 V), HS (high-speed main) mode: 1 to 16 MHz (VDD = 2.4 to 5.5 V), LS (low-speed main) mode: 1 to 8 MHz (VDD = 1.8 to 5.5 V), LV (low-voltage main) mode: 1 to 4 MHz (VDD = 1.6 to 5.5 V)				
	High-speed on-chip oscillator clock (fін)	HS (high-speed main) mode: 1 to 32 MHz (VDD = 2.7 to 5.5 V), HS (high-speed main) mode: 1 to 16 MHz (VDD = 2.4 to 5.5 V), LS (low-speed main) mode: 1 to 8 MHz (VDD = 1.8 to 5.5 V), LV (low-voltage main) mode: 1 to 4 MHz (VDD = 1.6 to 5.5 V)				
Subsystem clo	ock	XT1 (crystal) oscillation	n, external subsystem o	clock input (EXCLKS) 3	2.768 kHz	
Low-speed on	-chip oscillator clock	15 kHz (TYP.): VDD = 1	.6 to 5.5 V			
General-purpo	ose register	8 bits × 32 registers (8 bits × 8 registers × 4 banks)				
Minimum instr	ruction execution time	0.03125 μ s (High-speed on-chip oscillator clock: fi H = 32 MHz operation)				
		0.05 μ s (High-speed system clock: fMx = 20 MHz operation)				
		30.5 μs (Subsystem clock: fsub = 32.768 kHz operation)				
Instruction set		 Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 bits) Multiplication (8 bits × 8 bits, 16 bits × 16 bits), Division (16 bits ÷ 16 bits, 32 bits ÷ 32 bits) Multiplication and Accumulation (16 bits × 16 bits + 32 bits) Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc. 				
I/O port	Total	40	44	48	58	
	CMOS I/O	31	34	38	48	
	CMOS input	5	5	5	5	
	CMOS output	—	1	1	1	
	N-ch open-drain I/O (6 V tolerance)	4	4	4	4	
Timer	16-bit timer	8 channels (TAU: 4 channels, Timer RJ: 1 channel, Timer RD: 2 channels, Timer RG: 1 channel)				
	Watchdog timer	1 channel				
	Real-time clock (RTC)	1 channel				
	12-bit interval timer	1 channel				
	Timer output	Timer outputs: 13 channels PWM outputs: 9 channels				
		PWM outputs: 9 chann	els			

(Note is listed on the next page.)

Note	The flash library uses RAM in self-programming and rewriting of the data flash memory.
	The target products and start address of the RAM areas used by the flash library are shown below.
	R5F104xJ (x = F, G, J, L, M, P): Start address F9F00H
	For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family
	(R20UT2944).

12	1 2 1
(2)	Z

		1		70 1	(2/2		
ltem		44-pin	48-pin	52-pin	64-pin		
		R5F104Fx	R5F104Gx	R5F104Jx	R5F104Lx		
		(x = F to H, J)	(x = F to H, J)	(x = F to H, J)	(x = F to H, J)		
Clock output/buzz	er output	2	2	2	2		
		(Main system clock:	9.76 kHz, 1.25 MHz, 2. fmain = 20 MHz operati 24 kHz, 2.048 kHz, 4.09	on)			
		(Subsystem clock: fs	ыв = 32.768 kHz opera	tion)			
8/10-bit resolution	A/D converter	10 channels	10 channels	12 channels	12 channels		
D/A converter		2 channels					
Comparator		2 channels					
Serial interface		[44-pin products] • Simplified SPI (CSI): 1 channel/UART (UART supporting LIN-bus): 1 channel/simplified I ² C: 1 channel • Simplified SPI (CSI): 1 channel/UART: 1 channel/simplified I ² C: 1 channel • Simplified SPI (CSI): 2 channels/UART: 1 channel/simplified I ² C: 2 channels [48-pin, 52-pin products] • Simplified SPI (CSI): 2 channels/UART (UART supporting LIN-bus): 1 channel/simplified I ² C: 2 channels • Simplified SPI (CSI): 1 channel/UART: 1 channel/simplified I ² C: 1 channel · Simplified SPI (CSI): 2 channels/UART: 1 channel/simplified I ² C: 2 channels [64-pin products] • Simplified SPI (CSI): 2 channels/UART: 1 channel/simplified I ² C: 2 channels [64-pin products] • Simplified SPI (CSI): 2 channels/UART (UART supporting LIN-bus): 1 channel/simplified I ² C: 2 channels • Simplified SPI (CSI): 2 channels/UART (UART supporting LIN-bus): 1 channel/simplified I ² C: 2 channels • Simplified SPI (CSI): 2 channels/UART: 1 channel/simplified I ² C: 2 channels • Simplified SPI (CSI): 2 channels/UART: 1 channel/simplified I ² C: 2 channels • Simplified SPI (CSI): 2 channels/UART: 1 channel/simplified I ² C: 2 channels • Simplified SPI (CSI): 2 channels/UART: 1 channel/simplified I ² C: 2 channels • Simplified SPI (CSI): 2 channels/UART: 1 channel/simplified I ² C: 2 channels					
Data transfer cont	I troller (DTC)	31 sources	32 sources		33 sources		
Event link controll	()	Event input: 22 Event trigger output: 9	Event input: 22				
Vectored	Internal	24	24	24	24		
interrupt sources	External	7	10	12	13		
Key interrupt	1	4	6	8	8		
Reset		 Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution ^{Note} Internal reset by RAM parity error Internal reset by illegal-memory access 					
Power-on-reset circuit		• Power-on-reset: $1.51 \pm 0.04 \text{ V} (\text{TA} = -40 \text{ to } +85^{\circ}\text{C})$ $1.51 \pm 0.06 \text{ V} (\text{TA} = -40 \text{ to } +105^{\circ}\text{C})$ • Power-down-reset: $1.50 \pm 0.04 \text{ V} (\text{TA} = -40 \text{ to } +85^{\circ}\text{C})$ $1.50 \pm 0.06 \text{ V} (\text{TA} = -40 \text{ to } +105^{\circ}\text{C})$					
Voltage detector		1.63 V to 4.06 V (14 s	tages)				
On-chip debug fu	nction	Provided					
Power supply volt	age		VDD = 1.6 to 5.5 V (TA = -40 to +85°C) VDD = 2.4 to 5.5 V (TA = -40 to +105°C)				
Operating ambien	t temperature	$T_A = -40$ to +85°C (A: Consumer applications, D: Industrial applications), $T_A = -40$ to +105°C (G: Industrial applications)					

 Note
 The illegal instruction is generated when instruction code FFH is executed.

 Reset by the illegal instruction execution is not issued by emulation with the in-circuit emulator or on-chip debug emulator.

[48-pin, 64-pin products (code flash memory 384 KB to 512 KB)]

Caution This outline describes the functions at the time when Peripheral I/O redirection register 0, 1 (PIOR0, 1) are set to 00H.

	(0, 1) are set to 00H		(1/2	
		48-pin	64-pin	
Item		R5F104Gx	R5F104Lx	
		(x = K, L)	(x = K, L)	
Code flash memory	(КВ)	384 to 512	384 to 512	
Data flash memory (KB)	8	8	
RAM (KB)		32 to 48 ^{Note}	32 to 48 Note	
Address space		1 MB		
Main system clock High-speed system clock		X1 (crystal/ceramic) oscillation, external m HS (high-speed main) mode: 1 to 20 MHz HS (high-speed main) mode: 1 to 16 MHz LS (low-speed main) mode: 1 to 8 MHz ($(V_{DD} = 2.7 \text{ to } 5.5 \text{ V}),$ $(V_{DD} = 2.4 \text{ to } 5.5 \text{ V}),$	
	High-speed on-chip oscillator clock (fiH)	LV (low-voltage main) mode: 1 to 4 MHz (HS (high-speed main) mode: 1 to 32 MHz HS (high-speed main) mode: 1 to 16 MHz LS (low-speed main) mode: 1 to 8 MHz (VDD = 1.6 to 5.5 V) (VDD = 2.7 to 5.5 V), (VDD = 2.4 to 5.5 V), (VDD = 1.8 to 5.5 V),	
		LV (low-voltage main) mode: 1 to 4 MHz (, ,	
Subsystem clock		XT1 (crystal) oscillation, external subsyste	m clock input (EXCLKS) 32.768 kHz	
Low-speed on-chip of		15 kHz (TYP.): VDD = 1.6 to 5.5 V		
General-purpose reg	jister	8 bits × 32 registers (8 bits × 8 registers × 4 banks)		
Minimum instruction	execution time	0.03125 µs (High-speed on-chip oscillator clock: fiн = 32 MHz operation)		
		0.05 μs (High-speed system clock: fмx = 20 MHz operation)		
		30.5 μs (Subsystem clock: fsub = 32.768 kHz operation)		
Instruction set		 Data transfer (8/16 bits) Adder and subtractor/logical operation (8 Multiplication (8 bits × 8 bits, 16 bits × 16 32 bits) Multiplication and Accumulation (16 bits × Rotate, barrel shift, and bit manipulation etc. 	bits), Division (16 bits ÷ 16 bits, 32 bits ÷ < 16 bits + 32 bits)	
I/O port	Total	44	58	
	CMOS I/O	34	48	
	CMOS input	5	5	
	CMOS output	1	1	
	N-ch open-drain I/O (6 V tolerance)	4	4	
Timer	16-bit timer	8 channels (TAU: 4 channels, Timer RJ: 1 channel, Tir	ner RD: 2 channels, Timer RG: 1 channel)	
	Watchdog timer	1 channel		
	Real-time clock (RTC)	1 channel		
	12-bit interval timer	1 channel		
	Timer output	Timer outputs: 14 channels PWM outputs: 9 channels		
	RTC output	1 • 1 Hz (subsystem clock: fsue = 32.768 kH	z)	

(Note is listed on the next page.)

 Note
 The flash library uses RAM in self-programming and rewriting of the data flash memory.

 The target products and start address of the RAM areas used by the flash library are shown below.

 R5F104xL (x = G, L, M, P): Start address F3F00H

 For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944).

101	n١
(2)	2)

		10	24			
		48-pin	64-pin			
Item		R5F104Gx	R5F104Lx			
		(x = K, L)	(x = K, L)			
Clock output/buzzer out	out	2	2			
		• 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz				
		(Main system clock: fMAIN = 20 MHz operation				
		• 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.09 (Subsystem clock: fsuB = 32.768 kHz opera				
8/10-bit resolution A/D c	onverter	10 channels	12 channels			
D/A converter		2 channels				
Comparator		2 channels				
Serial interface		[48-pin products] • Simplified SPI (CSI): 2 channels/UART (UA I ² C: 2 channels	RT supporting LIN-bus): 1 channel/simplified			
		Simplified SPI (CSI): 1 channel/UART: 1 cha	annel/simplified I ² C: 1 channel			
		• Simplified SPI (CSI): 2 channels/UART: 1 ch				
		[64-pin products]				
		• Simplified SPI (CSI): 2 channels/UART (UART supporting LIN-bus): 1 channel/simplified				
		I ² C: 2 channels				
		• Simplified SPI (CSI): 2 channels/UART: 1 channel/simplified I ² C: 2 channels				
		Simplified SPI (CSI): 2 channels/UART: 1 channel/simplified I ² C: 2 channels				
	I ² C bus	1 channel	1 channel			
Data transfer controller (DTC)	32 sources	33 sources			
Event link controller (EL	C)	Event input: 22				
		Event trigger output: 9				
Vectored interrupt	Internal	24	24			
sources	External	10	13			
Key interrupt		6	8			
Reset		Reset by RESET pin				
		 Internal reset by watchdog timer 				
		Internal reset by power-on-reset				
		Internal reset by voltage detector				
		Internal reset by illegal instruction execution Note				
		 Internal reset by RAM parity error Internal reset by illegal-memory access 				
Dower on react sirewit						
Power-on-reset circuit		• Power-on-reset: 1.51 ±0.04 V (TA = -40 1.51 ±0.06 V (TA = -40	,			
		• Power-down-reset: $1.50 \pm 0.04 \text{ V}$ (TA = -40 to +85°C)				
		1.50 ±0.06 V (TA = -40 to +105°C)				
Voltage detector		1.63 V to 4.06 V (14 stages)				
On-chip debug function		Provided				
Power supply voltage		V _{DD} = 1.6 to 5.5 V (T _A = -40 to +85°C)				
-		$V_{DD} = 2.4 \text{ to } 5.5 \text{ V} (T_A = -40 \text{ to } +105^{\circ}\text{C})$				
Operating ambient temp	erature	$T_A = -40$ to +85°C (A: Consumer applications	, D: Industrial applications),			
		$T_A = -40 \text{ to } +105^{\circ}\text{C}$ (G: Industrial applications)				

Note

The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution is not issued by emulation with the in-circuit emulator or on-chip debug emulator.

RENESAS

[80-pin, 100-pin products (code flash memory 96 KB to 256 KB)]
 Caution This outline describes the functions at the time when Peripheral I/O redirection register 0, 1 (PIOR0, 1) are set to 00H.

	(PIORU, 1) are set to		(1/2)			
		80-pin	100-pin			
	Item	R5F104Mx	R5F104Px			
		(x = F to H, J)	(x = F to H, J)			
Code flash me	emory (KB)	96 to 256	96 to 256			
Data flash me	mory (KB)	8	8			
RAM (KB)		12 to 24 Note	12 to 24 Note			
Address space	е	1 MB				
Main system clock clock		X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK) HS (high-speed main) mode: 1 to 20 MHz (VDD = 2.7 to 5.5 V), HS (high-speed main) mode: 1 to 16 MHz (VDD = 2.4 to 5.5 V), LS (low-speed main) mode: 1 to 8 MHz (VDD = 1.8 to 5.5 V), LV (low-voltage main) mode: 1 to 4 MHz (VDD = 1.6 to 5.5 V)				
	High-speed on-chip oscillator clock (fiH)	HS (high-speed main) mode: 1 to 32 MHz (VDD = 2.7 to 5.5 V), HS (high-speed main) mode: 1 to 16 MHz (VDD = 2.4 to 5.5 V), LS (low-speed main) mode: 1 to 8 MHz (VDD = 1.8 to 5.5 V), LV (low-voltage main) mode: 1 to 4 MHz (VDD = 1.6 to 5.5 V)				
Subsystem clo	ock	XT1 (crystal) oscillation, external subsystem clo	ock input (EXCLKS) 32.768 kHz			
Low-speed on-chip oscillator clock		15 kHz (TYP.): VDD = 1.6 to 5.5 V				
General-purpo	ose register	8 bits × 32 registers (8 bits × 8 registers × 4 banks)				
Minimum instr	ruction execution time	0.03125 μs (High-speed on-chip oscillator clock: fiн = 32 MHz operation)				
		0.05 μ s (High-speed system clock: f _{MX} = 20 MHz operation)				
		30.5 µs (Subsystem clock: fsub = 32.768 kHz operation)				
Instruction set		 Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 bits) Multiplication (8 bits × 8 bits, 16 bits × 16 bits), Division (16 bits ÷ 16 bits, 32 bits ÷ 32 bits) Multiplication and Accumulation (16 bits × 16 bits + 32 bits) Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc. 				
I/O port	Total	74	92			
	CMOS I/O	64	82			
	CMOS input	5	5			
	CMOS output	1	1			
	N-ch open-drain I/O (6 V tolerance)	4	4			
Timer	16-bit timer	12 channels (TAU: 8 channels, Timer RJ: 1 channel, Timer RD: 2 channels, Timer RG: 1 channel)				
Watchdog timer		1 channel				
	Real-time clock (RTC)	1 channel				
	12-bit interval timer	1 channel				
	Timer output	Timer outputs: 18 channels PWM outputs: 12 channels				
	RTC output	1 • 1 Hz (subsystem clock: fs∪B = 32.768 kHz)				

Note

In the case of the 24 KB, this is about 23 KB when the self-programming function and data flash function are used (For details, see **CHAPTER 3** in the RL78/G14 User's Manual).

RENESAS

C	21	2)
- 14	_/	~	,

		80-pin	100-pin			
It	em	R5F104Mx	R5F104Px			
		(x = F to H, J)	(x = F to H, J)			
Clock output/buzzer output		2	2			
		 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: fMAIN = 20 MHz operation) 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz (Subsystem clock: fsuB = 32.768 kHz operation) 				
8/10-bit resolution	A/D converter	17 channels	20 channels			
D/A converter		2 channels	2 channels			
Comparator		2 channels	2 channels			
Serial interface		 [80-pin, 100-pin products] Simplified SPI (CSI): 2 channels/UART (UART supporting LIN-bus): 1 channel/simplified l²C: 2 channels Simplified SPI (CSI): 2 channels/UART: 1 channel/simplified l²C: 2 channels Simplified SPI (CSI): 2 channels/UART: 1 channel/simplified l²C: 2 channels Simplified SPI (CSI): 2 channels/UART: 1 channel/simplified l²C: 2 channels Simplified SPI (CSI): 2 channels/UART: 1 channel/simplified l²C: 2 channels 				
	I ² C bus	2 channels	2 channels			
Data transfer controller (DTC)		39 sources	39 sources			
Event link controller (ELC)		Event input: 26 Event trigger output: 9				
Vectored	Internal	32	32			
interrupt sources	External	13	13			
Key interrupt		8	8			
Reset		 Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution ^{Note} Internal reset by RAM parity error Internal reset by illegal-memory access 				
Power-on-reset circuit		• Power-on-reset: $1.51 \pm 0.04 \text{ V}$ (TA = -40 to +85°C) $1.51 \pm 0.06 \text{ V}$ (TA = -40 to +105°C) • Power-down-reset: $1.50 \pm 0.04 \text{ V}$ (TA = -40 to +85°C) $1.50 \pm 0.06 \text{ V}$ (TA = -40 to +105°C)				
Voltage detector		1.63 V to 4.06 V (14 stages)				
On-chip debug fur	nction	Provided				
Power supply volt	age	V _{DD} = 1.6 to 5.5 V (T _A = -40 to +85°C) V _{DD} = 2.4 to 5.5 V (T _A = -40 to +105°C)				
Operating ambient temperature		$T_A = -40$ to +85°C (A: Consumer applications, D: Industrial applications), $T_A = -40$ to +105°C (G: Industrial applications)				

Note The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution is not issued by emulation with the in-circuit emulator or on-chip debug emulator.

[80-pin, 100-pin products (code flash memory 384 KB to 512 KB)]

Caution This outline describes the functions at the time when Peripheral I/O redirection register 0, 1 (PIOR0, 1) are set to 00H.

			(1/2)			
		80-pin	100-pin			
	Item	R5F104Mx	R5F104Px			
		(x = K, L)	(x = K, L)			
Code flash me	emory (KB)	384 to 512	384 to 512			
Data flash me	mory (KB)	8	8			
RAM (KB)		32 to 48 Note	32 to 48 Note			
Address space	e	1 MB				
Main system clock clock		LS (low-speed main) mode: 1 to 8 MHz (VD				
	High-speed on-chip oscillator clock (fін)	HS (high-speed main) mode: 1 to 32 MHz (VDD = 2.7 to 5.5 V), HS (high-speed main) mode: 1 to 16 MHz (VDD = 2.4 to 5.5 V), LS (low-speed main) mode: 1 to 8 MHz (VDD = 1.8 to 5.5 V), LV (low-voltage main) mode: 1 to 4 MHz (VDD = 1.6 to 5.5 V)				
Subsystem clo	ock	XT1 (crystal) oscillation, external subsystem c	lock input (EXCLKS) 32.768 kHz			
Low-speed on-chip oscillator clock		15 kHz (TYP.): VDD = 1.6 to 5.5 V				
General-purpo	ose register	8 bits × 32 registers (8 bits × 8 registers × 4 banks)				
Minimum instr	uction execution time	0.03125 μs (High-speed on-chip oscillator clock: fiн = 32 MHz operation)				
		0.05 μs (High-speed system clock: fмx = 20 MHz operation)				
		30.5 μs (Subsystem clock: fsuв = 32.768 kHz operation)				
Instruction set		 Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 bits) Multiplication (8 bits × 8 bits, 16 bits × 16 bits), Division (16 bits ÷ 16 bits, 32 bits ÷ 32 bits) Multiplication and Accumulation (16 bits × 16 bits + 32 bits) Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc. 				
I/O port	Total	74	92			
	CMOS I/O	64	82			
	CMOS input	5	5			
	CMOS output	1	1			
	N-ch open-drain I/O (6 V tolerance)	4	4			
Timer	16-bit timer	12 channels (TAU: 8 channels, Timer RJ: 1 channel, Timer RD: 2 channels, Timer RG: 1 channel)				
Watchdog timer		1 channel				
	Real-time clock (RTC)	1 channel				
	12-bit interval timer	1 channel				
	Timer output	Timer outputs: 18 channels PWM outputs: 12 channels				
RTC output		1 • 1 Hz (subsystem clock: fsuв = 32.768 kHz)				

Note

In the case of the 48 KB, this is about 47 KB when the self-programming function and data flash function are used (For details, see **CHAPTER 3** in the RL78/G14 User's Manual).

12	121
(2)	12)

		80-pin	(2/2) 100-pin		
It	em	R5F104Mx	R5F104Px		
		(x = K, L)	(x = K, L)		
Clock output/buzzer output		2	2		
		 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: fMAIN = 20 MHz operation) 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz (Subsystem clock: fsuB = 32.768 kHz operation) 			
8/10-bit resolution	A/D converter	17 channels	20 channels		
D/A converter		2 channels	2 channels		
Comparator		2 channels	2 channels		
Serial interface		I ² C: 2 channels • Simplified SPI (CSI): 2 channels/UART: 1 c • Simplified SPI (CSI): 2 channels/UART: 1 c	• Simplified SPI (CSI): 2 channels/UART (UART supporting LIN-bus): 1 channel/simplified		
	I ² C bus	2 channels	2 channels		
Data transfer controller (DTC)		39 sources	39 sources		
Event link controll	er (ELC)	Event input: 26 Event trigger output: 9			
Vectored	Internal	32	32		
interrupt sources	External	13	13		
Key interrupt		8	8		
Reset		 Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution ^{Note} Internal reset by RAM parity error Internal reset by illegal-memory access 			
Power-on-reset circuit		• Power-on-reset: $1.51 \pm 0.04 \text{ V}$ (Ta = -40 to +85°C) $1.51 \pm 0.06 \text{ V}$ (Ta = -40 to +105°C)• Power-down-reset: $1.50 \pm 0.04 \text{ V}$ (Ta = -40 to +85°C) $1.50 \pm 0.06 \text{ V}$ (Ta = -40 to +105°C)			
Voltage detector		1.63 V to 4.06 V (14 stages)			
On-chip debug fu	nction	Provided			
Power supply volt	age	V _{DD} = 1.6 to 5.5 V (T _A = -40 to +85°C) V _{DD} = 2.4 to 5.5 V (T _A = -40 to +105°C)			
Operating ambient temperature		$T_A = -40$ to +85°C (A: Consumer applications, D: Industrial applications), $T_A = -40$ to +105°C (G: Industrial applications)			

Note The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution is not issued by emulation with the in-circuit emulator or on-chip debug emulator.

2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85°C)

This chapter describes the following electrical specifications.

Target products A: Consumer applications $T_A = -40$ to $+85^{\circ}C$

R5F104xxAxx

- D: Industrial applications TA = -40 to +85°C R5F104xxDxx
- G: Industrial applications when TA = -40 to +105°C products is used in the range of TA = -40 to +85°C R5F104xxGxx
- Caution 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
- Caution 2. With products not provided with an EVDD0, EVDD1, EVSS0, or EVSS1 pin, replace EVDD0 and EVDD1 with VDD, or replace EVSS0 and EVSS1 with VSS.
- Caution 3. The pins mounted depend on the product. Refer to 2.1 Port Functions to 2.2.1 Functions for each product in the RL78/G14 User's Manual.

(1/2)

2.1 Absolute Maximum Ratings

Absolute Maximum Ratings

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	Vdd		-0.5 to +6.5	V
	EVDD0, EVDD1 EVDD0 = EVDD1		-0.5 to +6.5	V
	EVsso, EVss1	EVsso = EVss1	-0.5 to +0.3	V
REGC pin input voltage	VIREGC	REGC	-0.3 to +2.8	V
			and -0.3 to V _{DD} +0.3 $^{\rm Note\ 1}$	
Input voltage	VI1	P00 to P06, P10 to P17, P30, P31,	-0.3 to EVDD0 +0.3	V
		P40 to P47, P50 to P57, P64 to P67,	and -0.3 to V _{DD} +0.3 ^{Note 2}	
		P70 to P77, P80 to P87, P100 to P102,		
		P110, P111, P120, P140 to P147		
	VI2	P60 to P63 (N-ch open-drain)	-0.3 to +6.5	V
	Vı3	P20 to P27, P121 to P124, P137,	-0.3 to V _{DD} +0.3 Note 2	V
		P150 to P156, EXCLK, EXCLKS, RESET		
Output voltage	V01	P00 to P06, P10 to P17, P30, P31,	-0.3 to EVDD0 +0.3	V
		P40 to P47, P50 to P57, P60 to P67,	and -0.3 to V _{DD} +0.3 ^{Note 2}	
		P70 to P77, P80 to P87, P100 to P102,		
		P110, P111, P120, P130, P140 to P147		
	Vo2	P20 to P27, P150 to P156	-0.3 to VDD +0.3 Note 2	V
Analog input voltage	VAI1	ANI16 to ANI20	-0.3 to EVDD0 +0.3	
			and -0.3 to AVREF(+) +0.3 Notes 2, 3	V
	VAI2	ANI0 to ANI14	-0.3 to VDD +0.3	v
			and -0.3 to AVREF(+) +0.3 Notes 2, 3	v

Note 1. Connect the REGC pin to Vss via a capacitor (0.47 to 1 µF). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.

Note 2. Must be 6.5 V or lower.

Note 3. Do not exceed AVREF (+) + 0.3 V in case of A/D conversion target pin.

- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- Remark 1. Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Remark 2. AVREF (+): + side reference voltage of the A/D converter.

Remark 3. Vss: Reference voltage

Absolute Maximum Ratings

(2/2)

					(2/
Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Іон1	Per pin	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147	-40	mA
		Total of all pins	P00 to P04, P40 to P47, P102, P120, P130, P140 to P145	-70	mA
		-170 mA	P05, P06, P10 to P17, P30, P31, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100, P101, P110, P111, P146, P147	-100	mA
	Іон2	Per pin	P20 to P27, P150 to P156	-0.5	mA
		Total of all pins		-2	mA
Output current, low	IOL1	Per pin	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147	40	mA
		Total of all pins	P00 to P04, P40 to P47, P102, P120, P130, P140 to P145	70	mA
		170 mA	P05, P06, P10 to P17, P30, P31, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P100, P101, P110, P111, P146, P147	100	mA
	IOL2	Per pin	P20 to P27, P150 to P156	1	mA
		Total of all pins		5	mA
Operating ambient	Та	In normal c	pperation mode	-40 to +85	°C
temperature		In flash me	mory programming mode		
Storage temperature	Tstg			-65 to +150	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

2.2 Oscillator Characteristics

2.2.1 X1, XT1 characteristics

(TA = -40 to +85°C, 1.6 V \leq VDD \leq 5.5 V, Vss = 0 V)

Resonator	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation frequency (fx) Note	lock oscillation frequency (fx) Note Ceramic resonator/	$2.7~V \leq V \text{DD} \leq 5.5~V$	1.0		20.0	MHz
	crystal resonator	$2.4~\text{V} \leq \text{V}_{\text{DD}} < 2.7~\text{V}$	1.0		16.0	
		$1.8 \text{ V} \le \text{V}_{\text{DD}} < 2.4 \text{ V}$	1.0		8.0	
		$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$	1.0		4.0	
XT1 clock oscillation frequency (fxT) Note	Crystal resonator		32	32.768	35	kHz

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

- Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.
- Remark When using the X1 oscillator and XT1 oscillator, refer to 5.4 System Clock Oscillator in the RL78/G14 User's Manual.

2.2.2 On-chip oscillator characteristics

(TA = -40 to +85°C, 1.6 V \leq VDD \leq 5.5 V, Vss = 0 V)

Oscillators	Parameters	Conditions		MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Notes 1, 2	fін			1		32	MHz
High-speed on-chip oscillator clock frequency		-20 to +85°C	$1.8 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$	-1.0		+1.0	%
accuracy			$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$	-5.0		+5.0	%
		-40 to -20°C	$1.8 \text{ V} \le \text{Vdd} < 5.5 \text{ V}$	-1.5		+1.5	%
			$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$	-5.5		+5.5	%
Low-speed on-chip oscillator clock frequency	fı∟				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

Note 1. High-speed on-chip oscillator frequency is selected with bits 0 to 4 of the option byte (000C2H) and bits 0 to 2 of the HOCODIV register.

Note 2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

2.3 DC Characteristics

2.3.1 Pin characteristics

$(T_{A} = -40 \text{ to } +85^{\circ}\text{C})$	1.6 V < FVDD0 = FVDD1 < VDD < 9	5.5 V, Vss = EVsso = EVss1 = 0 V)
(1 - 40) = 40 = 40 = 00 = 0		$0.0^{\circ}, 0.0^{\circ} = 10000 = 10001 = 0^{\circ}$

(1/5)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Dutput current, high ^{Note 1}	Іон1	Per pin for P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147	$1.6 \text{ V} \le \text{EVDD0} \le 5.5 \text{ V}$			-10.0 Note 2	mA
		Total of P00 to P04, P40 to P47,	$4.0~V \leq EV \text{DD0} \leq 5.5~V$			-55.0	mA
		P102, P120, P130, P140 to P145	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 4.0 \text{ V}$			-10.0	mA
		(When duty \leq 70% ^{Note 3})	$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$			-5.0	mA
			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$			-2.5	mA
		Total of P05, P06, P10 to P17,	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$			-80.0	mA
		P30, P31, P50 to P57,	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 4.0 \text{ V}$			-19.0	mA
		P64 to P67, P70 to P77, P80 to P87, P100, P101, P110,	$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$			-10.0	mA
		P111, P146, P147 (When duty \leq 70% ^{Note 3})	1.6 V ≤ EVDD0 < 1.8 V			-5.0	mA
		Total of all pins (When duty \leq 70% ^{Note 3})	$1.6 \text{ V} \leq \text{EVDD0} \leq 5.5 \text{ V}$			-135.0 Note 4	mA
	Іон2	Per pin for P20 to P27, P150 to P156	$1.6 \text{ V} \le \text{Vdd} \le 5.5 \text{ V}$			-0.1 Note 2	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})	$1.6 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$			-1.5	mA

Note 1. Value of current at which the device operation is guaranteed even if the current flows from the EVDD0, EVDD1, VDD pins to an output pin.

Note 2. Do not exceed the total current value.

Note 3. Specification under conditions where the duty factor ≤ 70%. The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins = $(IOH \times 0.7)/(n \times 0.01)$ <Example> Where n = 80% and IOH = -10.0 mA Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Note 4. -100 mA for industrial applications (R5F104xxDxx, R5F104xxGxx).

Caution P00, P02 to P04, P10, P11, P13 to P15, P17, P30, P43 to P45, P50 to P55, P71, P74, P80 to P82, and P142 to P144 do not output high level in N-ch open-drain mode.

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, low ^{Note 1}	IOL1	Per pin for P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147				20.0 Note 2	mA
		Per pin for P60 to P63				15.0 Note 2	mA
		Total of P00 to P04, P40 to P47,	$4.0~\text{V} \leq E\text{V}\text{DD0} \leq 5.5~\text{V}$			70.0	mA
		P102, P120, P130, P140 to P145	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}$			15.0	mA
		(When duty \leq 70% ^{Note 3})	$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$			9.0	mA
			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$			4.5	mA
		Total of P05, P06, P10 to P17,	$4.0~V \leq EV_{DD0} \leq 5.5~V$			80.0	mA
		P30, P31, P50 to P57,	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}$			35.0	mA
		P60 to P67, P70 to P77, P80 to P87, P100, P101, P110,	$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$			20.0	mA
		P111, P146, P147 (When duty ≤ 70% ^{Note 3})	1.6 V ≤ EVDD0 < 1.8 V			10.0	mA
		Total of all pins (When duty \leq 70% ^{Note 3})				150.0	mA
	IOL2	Per pin for P20 to P27, P150 to P156				0.4 Note 2	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})	$1.6 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$			5.0	mA

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

(2/5)

Note 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the EVss0, EVss1, and Vss pins.

Note 2. Do not exceed the total current value.

Note 3. Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = (IoL \times 0.7)/(n \times 0.01)
- <Example> Where n = 80% and IoL = 10.0 mA
 - Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \approx 8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor.

A current higher than the absolute maximum rating must not flow into one pin.

ltama	Symbol	Conditions		MINI	TVD	MAX	, L Init
Items	Symbol	Conditions	i	MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P140 to P147	Normal input buffer	0.8 EVDD0		EVddo	V
	Vih2	P01, P03, P04, P10, P14 to P17, P30, P43, P44, P50, P53 to P55,	TTL input buffer $4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	2.2		EVDD0	V
		P80, P81, P142, P143	TTL input buffer $3.3 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}$	2.0		EVDD0	V
			TTL input buffer 1.6 V ≤ EVppo < 3.3 V	1.5		EVDD0	V
	Vінз	P20 to P27, P150 to P156	P20 to P27, P150 to P156			Vdd	V
	VIH4	P60 to P63	0.7 EVDD0		6.0	V	
	Vih5	P121 to P124, P137, EXCLK, EX	0.8 Vdd		Vdd	V	
Input voltage, low	VIL1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P140 to P147	Normal input buffer	0		0.2 EVDD0	V
	VIL2	P01, P03, P04, P10, P14 to P17, P30, P43, P44, P50, P53 to P55,	TTL input buffer $4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	0		0.8	V
		P80, P81, P142, P143	TTL input buffer $3.3 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}$	0		0.5	V
			TTL input buffer 1.6 V ≤ EVpdo < 3.3 V	0		0.32	V
	VIL3	P20 to P27, P150 to P156	L	0		0.3 Vdd	V
	VIL4	P60 to P63		0		0.3 EVDD0	V
	VIL5	P121 to P124, P137, EXCLK, EX	CLKS, RESET	0		0.2 Vdd	V

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

(3/5)

Caution The maximum value of VIH of pins P00, P02 to P04, P10, P11, P13 to P15, P17, P30, P43 to P45, P50 to P55, P71, P74, P80 to P82, and P142 to P144 is EVDD0, even in the N-ch open-drain mode.

Items	Symbol	Condition	IS	MIN.	TYP.	MAX.	Unit
Output voltage, high	Voh1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57,	4.0 V ≤ EVDD0 ≤ 5.5 V, Іон1 = -10.0 mA	EVDD0 - 1.5			V
		P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P120, P140 to P147,	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ IOH1 = -3.0 mA	EVDD0 - 0.7			V
		P111, P120, P130, P140 to P147	$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ IOH1 = -1.5 mA	EVDD0 - 0.5			V
			1.6 V ≤ EVDD0 < 1.8 V, Іон1 = -1.0 mA	EVDD0 - 0.5			V
	Voh2	P20 to P27, P150 to P156	1.6 V ≤ Vdd ≤ 5.5 V, Іон2 = -100 µА	Vdd - 0.5			V
Output voltage, low	VOL1	P31, P40 to P47, P50 to P57, I P64 to P67, P70 to P77, Z P80 to P87, P100 to P102, P110, I P111, P120, P130, Z P140 to P147 I	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ IOL1 = 20.0 mA			1.3	V
			$\begin{array}{l} 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ I_{OL1} = 8.5 \ mA \end{array}$			0.7	V
			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ IOL1 = 3.0 mA			0.6	V
			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ IOL1 = 1.5 mA			0.4	V
			$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ IOL1 = 0.6 mA			0.4	V
			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ IOL1 = 0.3 mA			0.4	V
	Vol2	P20 to P27, P150 to P156	$1.6 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V},$ Iol2 = 400 µA			0.4	V
	Vol3	P60 to P63	4.0 V ≤ EVDD0 ≤ 5.5 V, IOL3 = 15.0 mA			2.0	V
			$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ IOL3 = 5.0 mA			0.4	V
			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ IOL3 = 3.0 mA			0.4	V
			$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ IOL3 = 2.0 mA			0.4	V
			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ IOL3 = 1.0 mA			0.4	V

(TA = -40 to +85°C. 1.)	$.6 V \leq EVDD0 = EVDD1$	< VDD < 5.5 V. V	ss = EVsso = EVss1 = 0 V)

(4/5)

Caution P00, P02 to P04, P10, P11, P13 to P15, P17, P30, P43 to P45, P50 to P55, P71, P74, P80 to P82, P142 to P144 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

RENESAS

Items	Symbol	Condit	ions		MIN.	TYP.	MAX.	Unit
Input leakage current, high	ILIH1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P140 to P147	0 to P47, P50 to P57, 67, P70 to P77, 87, P100 to P102, P110,				1	μΑ
	ILIH2	P20 to P27, P137, P150 to P156, VI = VDD RESET				1	μA	
	Іцінз	P121 to P124 (X1, X2, EXCLK, XT1, XT2, EXCLKS)	VI = VDD	In input port or external clock input			1	μA
				In resonator connection			10	μA
Input leakage current, low	ILIL1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P140 to P147	VI = EVsso	VI = EVSS0			-1	μA
	ILIL2	P20 to P27, P137, P150 to P156, RESET	VI = VSS				-1	μA
	ILIL3	P121 to P124 (X1, X2, EXCLK, XT1, XT2, EXCLKS)	VI = VSS	In input port or external clock input			-1	μA
			In resonator connection				-10	μA
On-chip pull-up resistance	Ru	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P140 to P147	VI = EVsso, In input port		10	20	100	kΩ

(TA = -40 to +85°C	, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)
--------------------	--

(5/5)

(1/2)

2.3.2 Supply current characteristics

(1) Flash ROM: 16 to 64 KB of 30- to 64-pin products

(TA = -40 to +85°C, 1.6 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVsso = 0 V)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply	IDD1	Operating	HS (high-speed main)	fносо = 64 MHz,	Basic	VDD = 5.0 V		2.4		mA
current Note 1		mode	mode Note 5	fiH = 32 MHz Note 3	operation	VDD = 3.0 V		2.4		
NOLE I				fносо = 32 MHz,	Basic	V _{DD} = 5.0 V		2.1		
				fiн = 32 MHz Note 3	operation	V _{DD} = 3.0 V		2.1		
			HS (high-speed main)	fносо = 64 MHz,	Normal	VDD = 5.0 V		5.1	8.7	mA
			mode Note 5	fiн = 32 MHz Note 3	operation	VDD = 3.0 V		5.1	8.7	
				fносо = 32 MHz,	Normal	VDD = 5.0 V		4.8	8.1	1
				fiH = 32 MHz Note 3	operation	VDD = 3.0 V		4.8	8.1	
				fносо = 48 MHz,	Normal	VDD = 5.0 V		4.0	6.9	1
				fiH = 24 MHz Note 3	operation	VDD = 3.0 V		4.0	6.9	
				fносо = 24 MHz,	Normal	VDD = 5.0 V		3.8	6.3	1
			fiн = 24 MHz Note 3	operation	VDD = 3.0 V		3.8	6.3	1	
			fносо = 16 MHz,	Normal	VDD = 5.0 V		2.8	4.6	1	
			fiH = 16 MHz Note 3	operation	VDD = 3.0 V		2.8	4.6	1	
		LS (low-speed main)	fносо = 8 MHz,	Normal	VDD = 3.0 V		1.3	2.0	mA	
			mode Note 5	fiн = 8 MHz Note 3	operation	VDD = 2.0 V		1.3	2.0	1
			LV (low-voltage main)	fносо = 4 MHz,	Normal	VDD = 3.0 V		1.3	1.8	mA
			mode Note 5	fiH = 4 MHz Note 3	operation	VDD = 2.0 V		1.3	1.8	
			HS (high-speed main) mode Note 5		Normal	Square wave input		3.3	5.3	mA
					operation	Resonator connection		3.4	5.5	-
				f _{MX} = 20 MHz ^{Note 2} , V _{DD} = 3.0 V	Normal	Square wave input		3.3	5.3	
					operation	Resonator connection		3.4	5.5	
				f _{MX} = 10 MHz ^{Note 2} , V _{DD} = 5.0 V	Normal operation	Square wave input		2.0	3.1	
						Resonator connection		2.1	3.2	
				f _{MX} = 10 MHz ^{Note 2} ,	Normal	Square wave input		2.0	3.1	
				VDD = 3.0 V	operation	Resonator connection		2.1	3.2	
			LS (low-speed main)	fmx = 8 MHz Note 2,	Normal	Square wave input		1.2	1.9	mA
			mode Note 5	VDD = 3.0 V	operation	Resonator connection		1.2	2.0	1
				fmx = 8 MHz Note 2,	Normal	Square wave input		1.2	1.9	1
				VDD = 2.0 V	operation	Resonator connection		1.2	2.0	1
			Subsystem clock	fsue = 32.768 kHz Note 4	Normal	Square wave input		4.7	6.1	μA
			operation	TA = -40°C	operation	Resonator connection		4.7	6.1	1
				fsue = 32.768 kHz Note 4	Normal	Square wave input		4.7	6.1	1
				TA = +25°C	operation	Resonator connection		4.7	6.1	1
				fsue = 32.768 kHz Note 4	Normal	Square wave input		4.8	6.7	1
				TA = +50°C	operation	Resonator connection	1	4.8	6.7	1
				fsue = 32.768 kHz Note 4	Normal	Square wave input		4.8	7.5	1
				TA = +70°C	operation	Resonator connection		4.8	7.5	1
				fsue = 32.768 kHz Note 4	Normal	Square wave input	l	5.4	8.9	1
				TA = +85°C	operation	Resonator connection		5.4	8.9	1

(Notes and Remarks are listed on the next page.)

Note 1. Total current flowing into VDD and EVDDO, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0 or Vss, EVss0. The following points apply in the HS (high-speed main), LS (low-speed main), and LV (low-voltage main) modes. • The currents in the "TYP." column do not include the operating currents of the peripheral modules. • The currents in the "MAX." column include the operating currents of the peripheral modules, except for those flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten. In the subsystem clock operation, the currents in both the "TYP." and "MAX." columns do not include the operating currents of the peripheral modules. However, in HALT mode, including the current flowing into the RTC. Note 2. When high-speed on-chip oscillator and subsystem clock are stopped. Note 3. When high-speed system clock and subsystem clock are stopped. Note 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). Note 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}_{@}1 \text{ MHz}$ to 32 MHz $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}_{@}1 \text{ MHz}$ to 16 MHz LS (low-speed main) mode: $1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}_{@}1 \text{ MHz}$ to 8 MHzLV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}_{@}1 \text{ MHz}$ to 4 MHz Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency) Remark 2. fHoco: High-speed on-chip oscillator clock frequency (64 MHz max.)

Remark 3. fil: High-speed on-chip oscillator clock frequency (32 MHz max.)

Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)

Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

(1) Flash ROM: 16 to 64 KB of 30- to 64-pin products

(2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply current	IDD2	HALT mode	HS (high-speed main)	fносо = 64 MHz,	VDD = 5.0 V		0.80	3.09	mA
Note 1	Note 2		mode Note 6	fiн = 32 MHz Note 4	VDD = 3.0 V		0.80	3.09	1
				fносо = 32 MHz,	VDD = 5.0 V		0.49	2.40	1
				fiн = 32 MHz Note 4	VDD = 3.0 V		0.49	2.40	1
				fносо = 48 MHz,	VDD = 5.0 V		0.62	2.40	1
				fiн = 24 MHz Note 4	VDD = 3.0 V		0.62	2.40	1
				fносо = 24 MHz,	VDD = 5.0 V		0.4	1.83	1
				fiн = 24 MHz ^{Note 4}	VDD = 3.0 V		0.4	1.83	1
				fносо = 16 MHz,	VDD = 5.0 V		0.37	1.38	1
				fiн = 16 MHz Note 4	VDD = 3.0 V		0.37	1.38	
			mode Note 6	fносо = 8 MHz,	VDD = 3.0 V		260	710	μA
				fiH = 8 MHz Note 4	VDD = 2.0 V		260	710	1
				A LANK NAME A	VDD = 3.0 V		420	700	μA
					VDD = 2.0 V		420	700	
			HS (high-speed main) mode ^{Note 6}		Square wave input		0.28	1.55	mA
					Resonator connection		0.40	1.74	
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.28	1.55	
				VDD = 3.0 V	Resonator connection		0.40	1.74	
				fмx = 10 MHz ^{Note 3} , Vpd = 5.0 V	Square wave input		0.19	0.86	
					Resonator connection		0.25	0.93	
				fmx = 10 MHz Note 3,	Square wave input		0.19	0.86	
				VDD = 3.0 V	Resonator connection		0.25	0.93	
			LS (low-speed main)	fmx = 8 MHz Note 3,	Square wave input		95	550	μA
			mode ^{Note 6}	VDD = 3.0 V	Resonator connection		140	590	
				f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		95	550	
				VDD = 2.0 V	Resonator connection		140	590	
			Subsystem clock	fsue = 32.768 kHz Note 5,	Square wave input		0.25	0.57	μA
			operation	TA = -40°C	Resonator connection		0.44	0.76	
				fsue = 32.768 kHz ^{Note 5} ,	Square wave input		0.30	0.57	
				TA = +25°C	Resonator connection		0.49	0.76	
				fsue = 32.768 kHz ^{Note 5} ,	Square wave input		0.36	1.17	
				TA = +50°C	Resonator connection		0.59	1.36	
				fsue = 32.768 kHz ^{Note 5} ,	Square wave input		0.49	1.97	
				TA = +70°C	Resonator connection		0.72	2.16	1
				fsue = 32.768 kHz ^{Note 5} ,	Square wave input		0.97	3.37	
				TA = +85°C	Resonator connection		1.16	3.56	
	IDD3	STOP mode	TA = -40°C				0.18	0.51	μA
		Note 7	TA = +25°C				0.24	0.51	
			TA = +50°C				0.29	1.10	-
			T _A = +70°C				0.41	1.90	1
		1	TA = +85°C				0.90	3.30	

(Notes and Remarks are listed on the next page.)

- Note 1. Total current flowing into VDD and EVDD0, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0 or Vss, EVss0. The following points apply in the HS (high-speed main), LS (low-speed main), and LV (low-voltage main) modes.
 - The currents in the "TYP." column do not include the operating currents of the peripheral modules.
 - The currents in the "MAX." column include the operating currents of the peripheral modules, except for those flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.

In the subsystem clock operation, the currents in both the "TYP." and "MAX." columns do not include the operating currents of the peripheral modules. However, in HALT mode, including the current flowing into the RTC.

In the STOP mode, the currents in both the "TYP." and "MAX." columns do not include the operating currents of the peripheral modules.

- **Note 2.** During HALT instruction execution by flash memory.
- Note 3. When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 4. When high-speed system clock and subsystem clock are stopped.
- **Note 5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1).
- **Note 6.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 - HS (high-speed main) mode: $2.7~\text{V} \leq \text{V}\text{DD} \leq 5.5~\text{V}\text{@1}$ MHz to 32 MHz
 - 2.4 V \leq VDD \leq 5.5 V@1 MHz to 16 MHz
 - LS (low-speed main) mode: $$1.8~V \le V \mbox{DD} \le 5.5~V \ensuremath{\textcircled{0}}1~\mbox{MHz} to 8~\mbox{MHz}$
 - LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}_{\textcircled{O}}1 \text{ MHz}$ to 4 MHz
- Note 7. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHOCO: High-speed on-chip oscillator clock frequency (64 MHz max.)
- Remark 3. fill: High-speed on-chip oscillator clock frequency (32 MHz max.)
- **Remark 4.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply	IDD1	Operating	HS (high-speed main)	fносо = 64 MHz,	Basic	VDD = 5.0 V		2.6		mA
current		mode	mode Note 5	fiн = 32 MHz Note 3	operation	VDD = 3.0 V		2.6		
lote 1				fносо = 32 MHz,	Basic	VDD = 5.0 V		2.3		
				fiн = 32 MHz Note 3	operation	VDD = 3.0 V		2.3		
			HS (high-speed main)	fносо = 64 MHz,	Normal	VDD = 5.0 V		5.4	10.2	mA
			mode Note 5	fiH = 32 MHz Note 3	operation	VDD = 3.0 V		5.4	10.2	1
				fносо = 32 MHz,	Normal	VDD = 5.0 V		5.0	9.6	-
				fiн = 32 MHz Note 3	operation	VDD = 3.0 V		5.0	9.6	1
				fносо = 48 MHz,	Normal	VDD = 5.0 V		4.2	7.8	1
				fiH = 24 MHz Note 3	operation	VDD = 3.0 V		4.2	7.8	1
				fносо = 24 MHz,	Normal	VDD = 5.0 V		4.0	7.4	-
				fih = 24 MHz Note 3	operation	VDD = 3.0 V		4.0	7.4	-
				fносо = 16 MHz,	Normal	VDD = 5.0 V		3.0	5.3	-
				fiн = 16 MHz Note 3	operation	V _{DD} = 3.0 V		3.0	5.3	-
			LS (low-speed main)	fносо = 8 MHz,	Normal	VDD = 3.0 V		1.4	2.3	m
			mode Note 5	$f_{\rm IH} = 8 \text{ MHz} \text{ Note } 3$	operation	V _{DD} = 2.0 V		1.4	2.3	
			LV (low-voltage main)	fносо = 4 MHz,	Normal	VDD = 3.0 V		1.3	1.9	m
			mode Note 5	$f_{\text{IH}} = 4 \text{ MHz} \text{ Note } 3$	operation	VDD = 2.0 V		1.3	1.9	
			HS (high-speed main)	f _{MX} = 20 MHz ^{Note 2} .	Normal	Square wave input		3.4	6.2	m
			mode Note 5	$V_{DD} = 5.0 V$	operation	Resonator connection		3.6	6.4	
				f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		3.4	6.2	
				$V_{DD} = 3.0 V$	operation	Resonator connection		3.4	6.4	
				f _{MX} = 10 MHz ^{Note 2} , Norr V _{DD} = 5.0 V oper					-	
					operation	Square wave input		2.1	3.6	
				f _{MX} = 10 MHz ^{Note 2} , V _{DD} = 3.0 V	Normal operation	Resonator connection		2.2	3.7	
						Square wave input		2.1	3.6	
						Resonator connection		2.2	3.7	
			LS (low-speed main) mode ^{Note 5}	fмx = 8 MHz ^{Note 2} , Vpp = 3.0 V	Normal operation	Square wave input		1.2	2.2	m,
			mode note o		-	Resonator connection		1.2	2.3	
				$f_{MX} = 8 MHz Note 2,$	Normal operation	Square wave input		1.2	2.2	
				VDD = 2.0 V	-	Resonator connection		1.2	2.3	
			Subsystem clock	fsub = 32.768 kHz Note 4	Normal	Square wave input		4.9	7.1	μA
			operation	TA = -40°C	operation	Resonator connection		4.9	7.1	
				fsuB = 32.768 kHz Note 4		Square wave input		4.9	7.1	-
				T _A = +25°C	operation	Resonator connection		4.9	7.1	
				fsue = 32.768 kHz Note 4	Normal	Square wave input		5.1	8.8	
				T _A = +50°C	operation	Resonator connection		5.1	8.8	
				fsub = 32.768 kHz Note 4	Normal	Square wave input		5.5	10.5	
				TA = +70°C	operation	Resonator connection		5.5	10.5	
				fsub = 32.768 kHz Note 4	Normal	Square wave input		6.5	14.5	1
				TA = +85°C	operation	Resonator connection		6.5	14.5	1

(2) Flash ROM: 96 to 256 KB of 30- to 100-pin products

(Notes and Remarks are listed on the next page.)

- **Note 1.** Total current flowing into VDD, EVDD0, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0, and EVDD1, or VSS, EVSS0, and EVSS1. The following points apply in the HS (high-speed main), LS (low-speed main), and LV (low-voltage main) modes.
 - The currents in the "TYP." column do not include the operating currents of the peripheral modules.
 - The currents in the "MAX." column include the operating currents of the peripheral modules, except for those flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.

In the subsystem clock operation, the currents in both the "TYP." and "MAX." columns do not include the operating currents of the peripheral modules. However, in HALT mode, including the current flowing into the RTC.

- **Note 2.** When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 3. When high-speed system clock and subsystem clock are stopped.
- **Note 4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation).
- **Note 5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

 $\begin{array}{ll} \text{HS (high-speed main) mode:} & 2.7 \ \text{V} \leq \text{VDD} \leq 5.5 \ \text{V@1 MHz to 32 MHz} \\ 2.4 \ \text{V} \leq \text{VDD} \leq 5.5 \ \text{V@1 MHz to 36 MHz} \\ \text{LS (low-speed main) mode:} & 1.8 \ \text{V} \leq \text{VDD} \leq 5.5 \ \text{V@1 MHz to 8 MHz} \\ \text{LV (low-voltage main) mode:} & 1.6 \ \text{V} \leq \text{VDD} \leq 5.5 \ \text{V@1 MHz to 4 MHz} \\ \end{array}$

- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHOCO: High-speed on-chip oscillator clock frequency (64 MHz max.)
- Remark 3. fin: High-speed on-chip oscillator clock frequency (32 MHz max.)
- **Remark 4.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	IDD2	HALT mode	HS (high-speed main)	fносо = 64 MHz,	V _{DD} = 5.0 V		0.79	3.32	mA
current Note 1	Note 2		mode Note 6	fiн = 32 MHz ^{Note 4}	V _{DD} = 3.0 V		0.79	3.32	1
				fносо = 32 MHz,	V _{DD} = 5.0 V		0.49	2.63	1
				fiн = 32 MHz ^{Note 4}	V _{DD} = 3.0 V		0.49	2.63	1
				fносо = 48 MHz,	V _{DD} = 5.0 V		0.62	2.57	1
				fiн = 24 MHz Note 4	VDD = 3.0 V		0.62	2.57	1
				fносо = 24 MHz,	VDD = 5.0 V		0.4	2.00	1
				fiн = 24 MHz ^{Note 4}	VDD = 3.0 V		0.4	2.00	1
				fносо = 16 MHz,	Vdd = 5.0 V		0.38	1.49	1
				fiн = 16 MHz ^{Note 4}	VDD = 3.0 V		0.38	1.49	1
			LS (low-speed main)	fносо = 8 MHz,	VDD = 3.0 V		250	800	μA
			mode Note 6	fiH = 8 MHz Note 4	VDD = 2.0 V		250	800	1
			LV (low-voltage main)	fносо = 4 MHz,	VDD = 3.0 V		420	755	μA
			mode Note 6	fiн = 4 MHz Note 4	VDD = 2.0 V		420	755	1
			HS (high-speed main) mode ^{Note 6}	f _{MX} = 20 MHz ^{Note 3} , V _{DD} = 5.0 V	Square wave input		0.30	1.63	mA
					Resonator connection		0.40	1.85	1
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.30	1.63	1
				V _{DD} = 3.0 V	Resonator connection		0.40	1.85	-
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.20	0.89	
				Vdd = 5.0 V	Resonator connection		0.25	0.97	
				f _{MX} = 10 MHz Note 3,	Square wave input		0.20	0.89	
				VDD = 3.0 V	Resonator connection		0.25	0.97	
			LS (low-speed main) mode ^{Note 6}	f _{MX} = 8 MHz ^{Note 3} , V _{DD} = 3.0 V	Square wave input		110	580	μA
					Resonator connection		140	630	
				f _{MX} = 8 MHz ^{Note 3} , V _{DD} = 2.0 V	Square wave input		110	580	
					Resonator connection		140	630	
			Subsystem clock	fsue = 32.768 kHz ^{Note 5} ,	Square wave input		0.28	0.66	μA
			operation	TA = -40°C	Resonator connection		0.47	0.85	
				fsue = 32.768 kHz ^{Note 5} ,	Square wave input		0.34	0.66]
				TA = +25°C	Resonator connection		0.53	0.85]
				fs∪в = 32.768 kHz ^{Note 5} ,	Square wave input		0.37	2.35	
				TA = +50°C	Resonator connection		0.56	2.54]
				fs∪в = 32.768 kHz ^{Note 5} ,	Square wave input		0.61	4.08	
				TA = +70°C	Resonator connection		0.80	4.27	
				fs∪в = 32.768 kHz ^{Note 5} ,	Square wave input		1.55	8.09	
				TA = +85°C	Resonator connection		1.74	8.28	
	Idd3	STOP mode	TA = -40°C				0.19	0.57	μA
		Note 7	TA = +25°C				0.25	0.57	-
			TA = +50°C				0.33	2.26	
			T _A = +70°C				0.52	3.99]
			TA = +85°C				1.46	8.00	

(2) Flash ROM: 96 to 256 KB of 30- to 100-pin products

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

(2/2)

(Notes and Remarks are listed on the next page.)

- Note 1. Total current flowing into VDD, EVDD0, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0, and EVDD1, or Vss, EVss0, and EVss1. The following points apply in the HS (high-speed main), LS (low-speed main), and LV (low-voltage main) modes.
 - The currents in the "TYP." column do not include the operating currents of the peripheral modules.
 - The currents in the "MAX." column include the operating currents of the peripheral modules, except for those flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.

In the subsystem clock operation, the currents in both the "TYP." and "MAX." columns do not include the operating currents of the peripheral modules. However, in HALT mode, including the current flowing into the RTC.

In the STOP mode, the currents in both the "TYP." and "MAX." columns do not include the operating currents of the peripheral modules.

- **Note 2.** During HALT instruction execution by flash memory.
- Note 3. When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 4. When high-speed system clock and subsystem clock are stopped.
- **Note 5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1).

Note 6. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

- HS (high-speed main) mode: $2.7~\text{V} \leq \text{V}\text{DD} \leq 5.5~\text{V}\text{@1}$ MHz to 32 MHz
 - 2.4 V \leq VDD \leq 5.5 V@1 MHz to 16 MHz
- LS (low-speed main) mode: $1.8~V \le V \mbox{DD} \le 5.5~V \ensuremath{\textcircled{@}1}$ MHz to 8 MHz
- LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}_{\textcircled{O}}1 \text{ MHz}$ to 4 MHz
- Note 7. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHOCO: High-speed on-chip oscillator clock frequency (64 MHz max.)
- Remark 3. fill: High-speed on-chip oscillator clock frequency (32 MHz max.)
- **Remark 4.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply	IDD1	Operating	HS (high-speed main)	fносо = 64 MHz,	Basic	VDD = 5.0 V		2.9		mA
current Note 1		mode	mode Note 5	fiн = 32 MHz ^{Note 3}	operation	VDD = 3.0 V		2.9		
				fносо = 32 MHz, fiн = 32 MHz ^{Note 3}	Basic operation	VDD = 5.0 V		2.5		
						VDD = 3.0 V		2.5		
			HS (high-speed main) mode ^{Note 5}	fносо = 64 MHz, fiн = 32 MHz ^{Note 3}	Normal operation	VDD = 5.0 V		6.0	11.2	
						VDD = 3.0 V		6.0	11.2	
				fносо = 32 MHz, fiн = 32 MHz ^{Note 3}	Normal operation	VDD = 5.0 V		5.5	10.6	
						VDD = 3.0 V		5.5	10.6	
				fносо = 48 MHz, fiн = 24 MHz ^{Note 3}	Normal operation	VDD = 5.0 V		4.7	8.6	
						VDD = 3.0 V		4.7	8.6	
				fносо = 24 MHz, fiн = 24 MHz ^{Note 3}	Normal operation	VDD = 5.0 V		4.4	8.2	
						VDD = 3.0 V		4.4	8.2	
				fносо = 16 MHz, fiн = 16 MHz ^{Note 3}	Normal operation	VDD = 5.0 V		3.3	5.9	
						VDD = 3.0 V		3.3	5.9	
			LS (low-speed main) mode Note 5	fносо = 8 MHz, fiн = 8 MHz ^{Note 3}	Normal operation	VDD = 3.0 V		1.5	2.5	mA
						VDD = 2.0 V		1.5	2.5	
			LV (low-voltage main) mode ^{Note 5}	fHOCO = 4 MHz, fIH = 4 MHz Note 3	Normal operation	VDD = 3.0 V		1.5	2.1	mA
						VDD = 2.0 V		1.5	2.1	
			HS (high-speed main) mode ^{Note 5}	f _{MX} = 20 MHz ^{Note 2} , V _{DD} = 5.0 V	Normal operation	Square wave input		3.7	6.8	mA
						Resonator connection		3.9	7.0	
				f _{MX} = 20 MHz ^{Note 2} , V _{DD} = 3.0 V	Normal operation	Square wave input		3.7	6.8	
						Resonator connection		3.9	7.0	
				f _{MX} = 10 MHz ^{Note 2} ,	Normal	Square wave input		2.3	4.1	
				Vdd = 5.0 V	operation	Resonator connection		2.3	4.2	
				f _{MX} = 10 MHz ^{Note 2} , V _{DD} = 3.0 V	Normal operation	Square wave input		2.3	4.1	
						Resonator connection		2.3	4.2	
			LS (low-speed main) mode ^{Note 5}	f _{MX} = 8 MHz ^{Note 2} , V _{DD} = 3.0 V	Normal operation	Square wave input		1.4	2.4	
						Resonator connection		1.4	2.5	
				fmx = 8 MHz ^{Note 2} , V _{DD} = 2.0 V	Normal operation	Square wave input		1.4	2.4	
						Resonator connection		1.4	2.5	
			Subsystem clock operation	fsuв = 32.768 kHz ^{Note 4} TA = -40°С	Normal operation	Square wave input		5.2		Α - -
						Resonator connection		5.2		
				fsub = 32.768 kHz ^{Note 4} TA = +25°C	Normal operation	Square wave input		5.3	7.7	
						Resonator connection		5.3	7.7	
				fsub = 32.768 kHz ^{Note 4} TA = +50°C	Normal operation	Square wave input		5.5	10.6	
						Resonator connection		5.5	10.6	
				fsub = 32.768 kHz Note 4	Normal	Square wave input		5.9	13.2	
				T _A = +70°C	operation	Resonator connection		6.0	13.2	
				fsue = 32.768 kHz Note 4	Normal	Square wave input		6.8	17.5	
				TA = +85°C	operation	Resonator connection		6.9	17.5	1

(3) Flash ROM: 384 to 512 KB of 48- to 100-pin products

(Notes and Remarks are listed on the next page.)

- Note 1. Total current flowing into VDD, EVDD0, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0, and EVDD1, or Vss, EVss0, and EVss1. The following points apply in the HS (high-speed main), LS (low-speed main), and LV (low-voltage main) modes.
 - The currents in the "TYP." column do not include the operating currents of the peripheral modules.
 - The currents in the "MAX." column include the operating currents of the peripheral modules, except for those flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.

In the subsystem clock operation, the currents in both the "TYP." and "MAX." columns do not include the operating currents of the peripheral modules. However, in HALT mode, including the current flowing into the RTC.

- **Note 2.** When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 3. When high-speed system clock and subsystem clock are stopped.
- **Note 4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation).
- **Note 5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

 $\begin{array}{ll} \text{HS (high-speed main) mode:} & 2.7 \ \text{V} \leq \text{VDD} \leq 5.5 \ \text{V@1 MHz to 32 MHz} \\ 2.4 \ \text{V} \leq \text{VDD} \leq 5.5 \ \text{V@1 MHz to 36 MHz} \\ \text{LS (low-speed main) mode:} & 1.8 \ \text{V} \leq \text{VDD} \leq 5.5 \ \text{V@1 MHz to 8 MHz} \\ \text{LV (low-voltage main) mode:} & 1.6 \ \text{V} \leq \text{VDD} \leq 5.5 \ \text{V@1 MHz to 4 MHz} \\ \end{array}$

- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHOCO: High-speed on-chip oscillator clock frequency (64 MHz max.)
- Remark 3. fin: High-speed on-chip oscillator clock frequency (32 MHz max.)
- **Remark 4.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

(3)	Flash ROM: 384 to 512 KB of 48- to 100-pin products	
-----	---	--

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

(2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	IDD2	HALT mode	HS (high-speed main)	fносо = 64 MHz,	VDD = 5.0 V		0.93	3.32	mA
current Note 1	Note 2		mode Note 6	fiн = 32 MHz Note 4	VDD = 3.0 V		0.93	3.32	
		mode Note 6		fносо = 32 MHz, fін = 32 MHz ^{Note 4}	VDD = 5.0 V		0.5	2.63	
					VDD = 3.0 V		0.5	2.63	
				fносо = 48 MHz, fін = 24 MHz ^{Note 4}	VDD = 5.0 V		0.72	2.60	
					VDD = 3.0 V		0.72	2.60	
				fносо = 24 MHz, fiн = 24 MHz ^{Note 4}	VDD = 5.0 V		0.42	2.03	-
					VDD = 3.0 V		0.42	2.03	
				fносо = 16 MHz, fiн = 16 MHz ^{Note 4}	VDD = 5.0 V		0.39	1.50	
					VDD = 3.0 V		0.39	1.50	
			,	fносо = 8 MHz, fін = 8 MHz ^{Note 4}	VDD = 3.0 V		270	800	μA
					VDD = 2.0 V		270	800	
			LV (low-voltage main) mode ^{Note 6}	fносо = 4 MHz, fiн = 4 MHz ^{Note 4}	VDD = 3.0 V		450	755	μA
					VDD = 2.0 V		450	755	
			HS (high-speed main) mode Note 6	f _{MX} = 20 MHz ^{Note 3} , V _{DD} = 5.0 V	Square wave input		0.31	1.69	mA
					Resonator connection		0.41	1.91	
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.31	1.69	
			VDD = 3.0 V	Resonator connection		0.41	1.91	-	
				f _{MX} = 10 MHz ^{Note 3} , V _{DD} = 5.0 V	Square wave input		0.21	0.94	-
					Resonator connection		0.26	1.02	
				f _{MX} = 10 MHz ^{Note 3} , V _{DD} = 3.0 V	Square wave input		0.21	0.94	
					Resonator connection		0.26	1.02	
				f _{MX} = 8 MHz ^{Note 3} , V _{DD} = 3.0 V	Square wave input		110	610	μA
					Resonator connection		150	660	
				f _{MX} = 8 MHz ^{Note 3} , V _{DD} = 2.0 V	Square wave input		110	610	
					Resonator connection		150	660	
			Subsystem clock	fs∪в = 32.768 kHz ^{Note 5} ,	Square wave input		0.31		μΑ
			operation	TA = -40°C	Resonator connection		0.50		
				fs∪B = 32.768 kHz ^{Note 5} , TA = +25°C	Square wave input		0.38	0.76	
					Resonator connection		0.57	0.95	
				fs∪B = 32.768 kHz ^{Note 5} , T _A = +50°C	Square wave input		0.47	3.59	
					Resonator connection		0.70	3.78	
				fs∪B = 32.768 kHz ^{Note 5} , TA = +70°C	Square wave input		0.80	6.20	
					Resonator connection		1.00	6.39	
				fs∪B = 32.768 kHz ^{Note 5} , TA = +85°C	Square wave input		1.65	10.56	
					Resonator connection		1.84	10.75	
	Idd3	STOP mode Note 7	T _A = -40°C				0.19		μA
			TA = +25°C				0.30	0.59	
			$T_A = +50^{\circ}C$ $T_A = +70^{\circ}C$				0.41	3.42	
							0.80	6.03	
			TA = +85°C			1	1.53	10.39	1

(Notes and Remarks are listed on the next page.)

- Note 1. Total current flowing into VDD, EVDD0, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0, and EVDD1, or Vss, EVss0, and EVss1. The following points apply in the HS (high-speed main), LS (low-speed main), and LV (low-voltage main) modes.
 - The currents in the "TYP." column do not include the operating currents of the peripheral modules.
 - The currents in the "MAX." column include the operating currents of the peripheral modules, except for those flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.

In the subsystem clock operation, the currents in both the "TYP." and "MAX." columns do not include the operating currents of the peripheral modules. However, in HALT mode, including the current flowing into the RTC.

In the STOP mode, the currents in both the "TYP." and "MAX." columns do not include the operating currents of the peripheral modules.

- **Note 2.** During HALT instruction execution by flash memory.
- Note 3. When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 4. When high-speed system clock and subsystem clock are stopped.
- **Note 5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1).
- **Note 6.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 - HS (high-speed main) mode: $2.7~\text{V} \leq \text{V}\text{DD} \leq 5.5~\text{V}\text{@1}$ MHz to 32 MHz
 - 2.4 V \leq Vdd \leq 5.5 V@1 MHz to 16 MHz
 - LS (low-speed main) mode: $$1.8~V \le V \mbox{DD} \le 5.5~V \ensuremath{@}1~\mbox{MHz}\xspace to 8~\mbox{MHz}\xspace$
 - LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}_{\textcircled{O}}1 \text{ MHz}$ to 4 MHz
- Note 7. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHOCO: High-speed on-chip oscillator clock frequency (64 MHz max.)
- Remark 3. fill: High-speed on-chip oscillator clock frequency (32 MHz max.)
- **Remark 4.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

(4) Peripheral Functions (Common to all products)

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Parameter	Symbol	Condit	ions	MIN.	0.20 0.02 0.02 0.02 0.02 0.02 0.22 0.22		
Low-speed on-chip oscillator operating current	IFIL Note 1				0.20		μA
RTC operating current	IRTC Notes 1, 2, 3				0.02		μA
12-bit interval timer operating current	IIT Notes 1, 2, 4				0.02		μA
Watchdog timer operating current	I _{WDT} Notes 1, 2, 5	fi∟ = 15 kHz			0.22		μA
A/D converter operating current	IADC Notes 1, 6	When conversion at maximum speed	Normal mode, AVREFP = VDD = 5.0 V		1.3	1.7	mA
			Low voltage mode, AVREFP = VDD = 3.0 V		0.5	0.7	mA
A/D converter reference voltage current	IADREF Note 1				75.0		μA
Temperature sensor operating current	ITMPS Note 1				75.0		μA
D/A converter operating current	IDAC Notes 1, 11, 13	Per D/A converter channel				1.5	mA
Comparator operating	I _{CMP} Notes 1, 12, 13	VDD = 5.0 V,	Window mode		12.5		μA
current		Regulator output voltage = 2.1 V	Comparator high-speed mode		6.5		μA
			Comparator low-speed mode		1.7		μA
		VDD = 5.0 V,	Window mode		8.0		μA
		Regulator output voltage = 1.8 V	Comparator high-speed mode		4.0		μA
			Comparator low-speed mode		1.3		μA
LVD operating current	ILVD Notes 1, 7				0.08		μA
Self-programming operating current	IFSP Notes 1, 9				2.50	12.20	mA
BGO operating current	IBGO Notes 1, 8				2.50	12.20	mA
SNOOZE operating current	Isnoz Note 1	ADC operation	The mode is performed Note 10		0.50	0.60	mA
NOOZE operating current			The A/D conversion operations are performed, Low voltage mode, AV _{REFP} = V _{DD} = 3.0 V		1.20	1.44	
	s	Simplified SPI (CSI)/UART operation			0.70	0.84	
		DTC operation			3.10		

Note 1. Current flowing to VDD.

Note 2. When high speed on-chip oscillator and high-speed system clock are stopped.

- Note 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock.
- Note 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
- Note 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer is in operation.

Note 7. Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.

RENESAS

Note 6. Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.

- Note 8. Current flowing during programming of the data flash.
- **Note 9.** Current flowing during self-programming.
- Note 10. For shift time to the SNOOZE mode, see 23.3.3 SNOOZE mode in the RL78/G14 User's Manual.
- **Note 11.** Current flowing only to the D/A converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IDAC when the D/A converter operates in an operation mode or the HALT mode.
- **Note 12.** Current flowing only to the comparator circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2, or IDD3 and ICMP when the comparator circuit is in operation.
- Note 13. A comparator and D/A converter are provided in products with 96 KB or more code flash memory.
- Remark 1. fil: Low-speed on-chip oscillator clock frequency
- Remark 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 3. fcLK: CPU/peripheral hardware clock frequency
- Remark 4. Temperature condition of the TYP. value is TA = 25°C

2.4 **AC Characteristics**

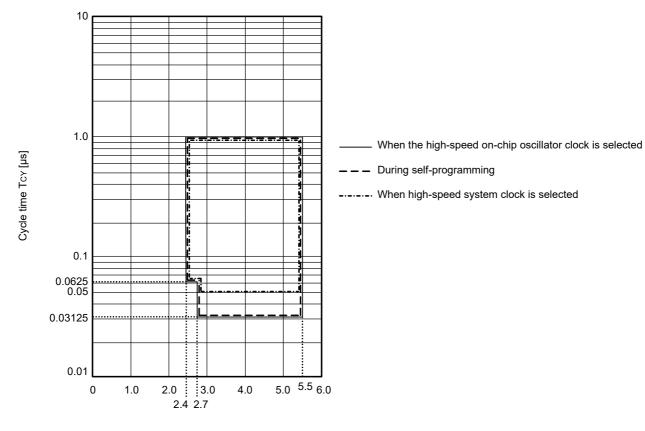
Items	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Instruction cycle	Тсү	Main system	HS (high-speed main)	$2.7 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	0.03125		1	μs
(minimum instruction		clock (fmain)	mode	$2.4 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$	0.0625		1	μs
execution time)		operation	LS (low-speed main) mode	$1.8 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$	0.125		1	μs
			LV (low-voltage main) mode	$1.6 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$	0.25		1	μs
		Subsystem clo	ock (fs∪в) operation	$1.8 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$	28.5	30.5	31.3	μs
		In the self-	HS (high-speed main)	$2.7~V \leq V_{DD} \leq 5.5~V$	0.03125		1	μs
		programming	mode	$2.4 \text{ V} \leq \text{V}_{DD} < 2.7 \text{ V}$	0.0625		1	μs
		mode	LS (low-speed main) mode	$1.8 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$	0.125		1	μs
			LV (low-voltage main) mode	$1.8 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$	0.25		1	μs
External system clock	fEX	$2.7~V \leq V \text{DD} \leq$	5.5 V		1.0		20.0	MHz
requency		$2.4~V \leq V \text{DD} \leq$	2.7 V		1.0		16.0	MHz
		$1.8 \text{ V} \le \text{V}_{\text{DD}}$ <	2.4 V		1.0		8.0	MHz
		$1.6 \text{ V} \le \text{V}_{\text{DD}}$ <	1.8 V		1.0		4.0	MHz
	fexs				32		35	kHz
External system clock	texн,	$2.7~V \leq V \text{DD} \leq$	5.5 V		24			ns
input high-level width,	t EXL	$2.4~V \leq V_{DD} \leq$	2.7 V		30			ns
low-level width		$1.8 \text{ V} \le \text{Vdd} <$	2.4 V		60			ns
		$1.6 \text{ V} \le \text{Vdd} <$	1.8 V		120			ns
	texhs, texls				13.7			μs
TI00 to TI03, TI10 to TI13 input high-level width, low-level width	ttiH, tti∟				1/fмск + 10 Note			ns
Timer RJ input cycle	fc	TRJIO		$2.7~V \leq EV_{DD0} \leq 5.5~V$	100			ns
				$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$	300			ns
				$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$	500			ns
Timer RJ input high-	tтjiн,	TRJIO		$2.7~V \leq EV_{DD0} \leq 5.5~V$	40			ns
level width, low-level	t⊤JIL			$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$	120			ns
width				1.6 V ≤ EVDD0 < 1.8 V	200			ns

-... ., E E V/ V/ -... **~** \ / -. . - . .

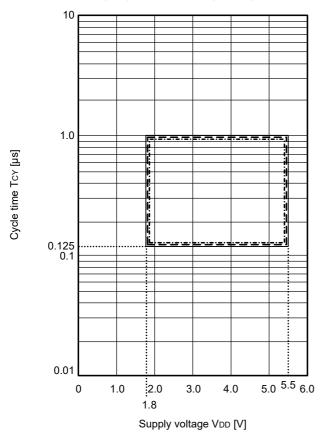
The following conditions are required for low voltage interface when EVDD0 < VDDNote $1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$: MIN. 125 ns 1.6 V ≤ EVDD0 < 1.8 V: MIN. 250 ns

fмск: Timer array unit operation clock frequency Remark (Operation clock to be set by the CKSmn bit of timer mode register mn (TMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3))

Items	Symbol	Conditio	ons	MIN.	TYP.	MAX.	Unit
Timer RD input high-level width, low-level width	tтdiн, tтdi∟	TRDIOA0, TRDIOA1, TRDIOE TRDIOC0, TRDIOC1, TRDIOI		3/fclк			ns
Timer RD forced cutoff signal	TDSIL	P130/INTP0	$2MHz < fclk \le 32 MHz$	1			μs
input low-level width			fclk ≤ 2 MHz	1/fclk + 1			
Timer RG input high-level width, low-level width	tтGін, tтGі∟	TRGIOA, TRGIOB		2.5/fclk			ns
TO00 to TO03,	fтo	HS (high-speed main) mode	$4.0~V \leq EV_{DD0} \leq 5.5~V$			16	MHz
TO10 to TO13,			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}$			8	MHz
TRJIO0, TRJO0, TRDIOA0, TRDIOA1,			$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$			4	MHz
TRDIOB0, TRDIOB1,			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$			2	MHz
TRDIOC0, TRDIOC1,		LS (low-speed main) mode	$1.8 \text{ V} \leq EV_{DD0} \leq 5.5 \text{ V}$			4	MHz
TRDIOD0, TRDIOD1,			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$			2	MHz
TRGIOA, TRGIOB output frequency		LV (low-voltage main) mode	$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$			2	MHz
PCLBUZ0, PCLBUZ1 output	f PCL	HS (high-speed main) mode	$4.0~V \leq EV_{DD0} \leq 5.5~V$			16	MHz
frequency			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}$			8	MHz
			$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$			4	MHz
			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$			2	MHz
		LS (low-speed main) mode	$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$			4	MHz
			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$			2	MHz
		LV (low-voltage main) mode	$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$			4	MHz
			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$			2	MHz
Interrupt input high-level	tinth,	INTP0	$1.6~V \le V_{DD} \le 5.5~V$	1			μs
width, low-level width	tintl	INTP1 to INTP11	$1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	1			μs
Key interrupt input low-level	tĸĸ	KR0 to KR7	$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	250			ns
width			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$	1			μs
RESET low-level width	tRSL			10			μs

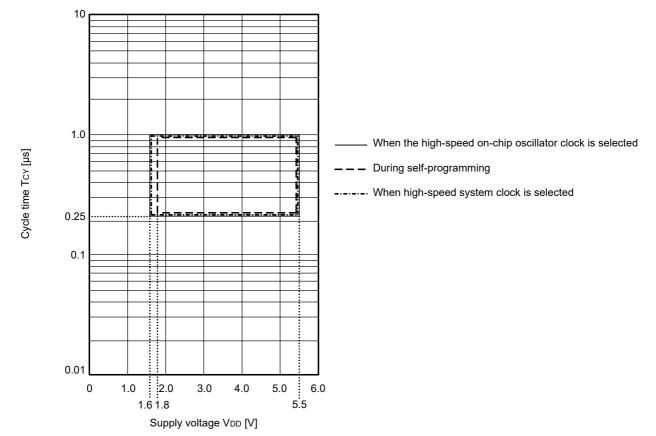

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(2/2)

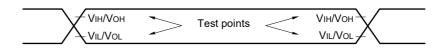

Minimum Instruction Execution Time during Main System Clock Operation

Tcy vs VDD (HS (high-speed main) mode)

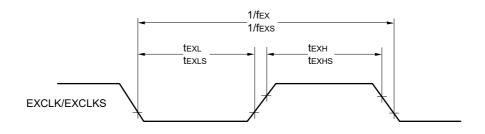
Supply voltage VDD [V]

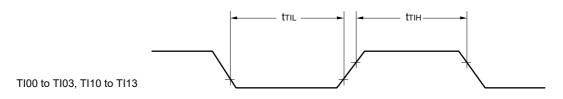


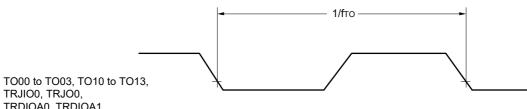
TCY vs VDD (LS (low-speed main) mode)


- —— When the high-speed on-chip oscillator clock is selected
- During self-programming
- ----- When high-speed system clock is selected

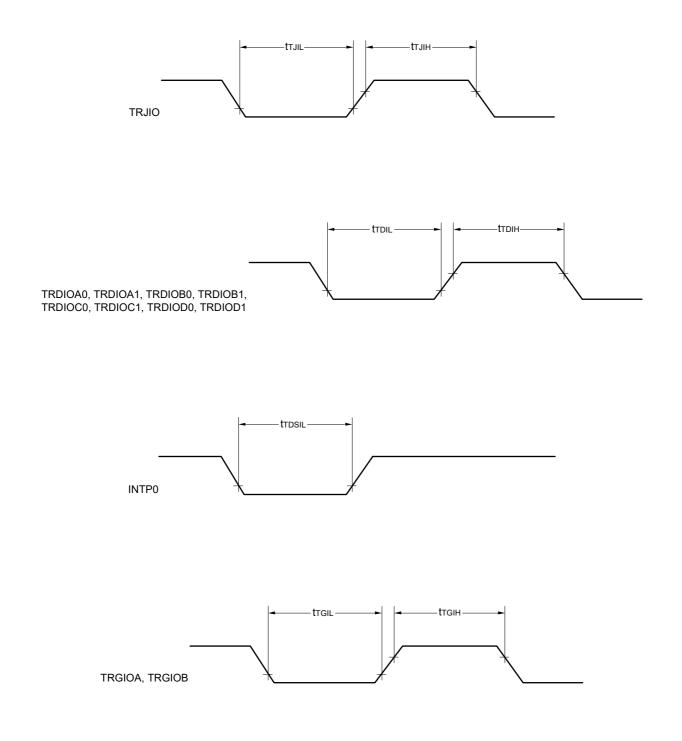
TCY vs VDD (LV (low-voltage main) mode)

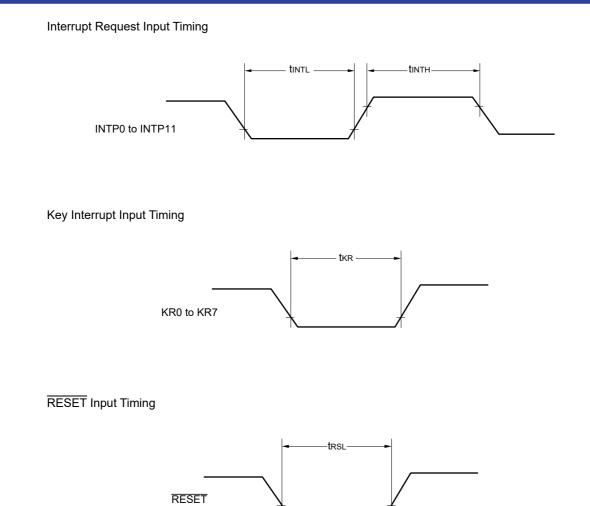



AC Timing Test Points

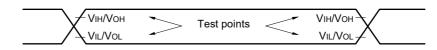


External System Clock Timing


TI/TO Timing



TO00 to TO03, TO10 to TO13 TRJIO0, TRJO0, TRDIOA0, TRDIOA1, TRDIOB0, TRDIOB1, TRDIOC0, TRDIOC1, TRDIOC0, TRDIOC1, TRDIOD0, TRDIOD1, TRGIOA, TRGIOB



2.5 Peripheral Functions Characteristics

AC Timing Test Points

2.5.1 Serial array unit

(1) During communication at same potential (UART mode) (TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

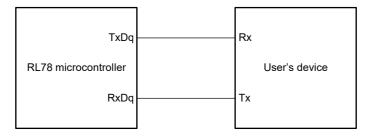
Parameter	Symbol		Conditions	、 U	n-speed main) Mode	``	-speed main) Mode	`	oltage main) <i>l</i> ode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		2.	$4 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		fMCK/6 Note 2		fмск/6		fмск/6	bps
Note 1	1		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}$ Note 3		5.3		1.3		0.6	Mbps
		1.	$8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		fMCK/6 Note 2		fмск/6		fмск/6	bps
			Theoretical value of the maximum transfer rate fMCK = fcLK ^{Note 3}		5.3		1.3		0.6	Mbps
		1.	$7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		fMCK/6 Note 2		fMCK/6 Note 2		fмск/6	bps
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK} Note 3$		5.3		1.3		0.6	Mbps
		1.	$6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		_		fMCK/6 Note 2		fмск/6	bps
			Theoretical value of the maximum transfer rate fMCK = fCLK Note 3		_		1.3		0.6	Mbps

Note 1. Transfer rate in the SNOOZE mode is 4800 bps only.

However, the SNOOZE mode cannot be used when FRQSEL4 = 1.

- Note 2.The following conditions are required for low voltage interface when EVDD0 < VDD. $2.4 V \le EVDD0 < 2.7 V$: MAX. 2.6 Mbps
 - $2.4 V \le EVDD0 < 2.7 V: MAX. 2.6 MBps$
 - 1.8 V ≤ EVDD0 < 2.4 V: MAX. 1.3 Mbps 1.6 V ≤ EVDD0 < 1.8 V: MAX. 0.6 Mbps

Note 3. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are:


HS (high-speed main) mode:	32 MHz (2.7 V \leq VDD \leq 5.5 V)
	16 MHz (2.4 V \leq VDD \leq 5.5 V)
LS (low-speed main) mode:	8 MHz (1.8 V \leq VDD \leq 5.5 V)
LV (low-voltage main) mode:	$4 \text{ MHz} (1.6 \text{ V} \le \text{Vpp} \le 5.5 \text{ V})$

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

(Remarks are listed on the next page.)

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

- **Remark 1.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 5, 14)
- Remark 2. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

(2) During communication at same potential (Simplified SPI (CSI) mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

Parameter	ameter Symbol Conditions		Conditions	HS (high-speed main) mode		LS (low-speed main) mode		LV (low-voltage main) mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	t КСҮ1	tkcy1 ≥ 2/fclk	$4.0~V \leq EV_{DD0} \leq 5.5~V$	62.5		250		500		ns
			$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	83.3		250		500		ns
SCKp high-/low-level	tкнı,	$4.0 \text{ V} \leq EV_{DD0}$	$4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$			tксү1/2 - 50		tксү1/2 - 50		ns
width	$t_{KL1} = \frac{1}{2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}} t_{KCY1/2} - 10 t_{KCY1/2} - 50$		tксү1/2 - 50		ns					
SIp setup time (to SCKp↑)	tsiĸ1	$4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		23		110		110		ns
Note 1		$2.7 \text{ V} \leq EV_{DD0}$	≤ 5.5 V	33		110		110		ns
SIp hold time (from SCKp↑) ^{Note 2}	tksi1	2.7 V ≤ EVDD0	≤ 5.5 V	10		10		10		ns
Delay time from SCKp↓ to SOp output ^{Note 3}	tkso1	C = 20 pF Note	: 4		10		10		10	ns

(TA = -40 to +85°C, 2.7 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. This value is valid only when CSI00's peripheral I/O redirect function is not used.

Remark 2. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0),

g: PIM and POM numbers (g = 1)

Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))

RL78/G14

(3) During communication at same potential (Simplified SPI (CSI) mode) (master mode, SCKp... internal clock output)

Parameter	Symbol	(Conditions	HS (high-s main) mo	•	LS (low-speed mode	,	LV (low-vol main) mo	•	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkCY1	tkcy1 ≥ 4/fclk	$2.7~\text{V} \leq \text{Evdd0} \leq 5.5~\text{V}$	125		500		1000		ns
			$2.4~\text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5~\text{V}$	250		500		1000		ns
			$1.8~V \leq EV_{DD0} \leq 5.5~V$	500		500		1000		ns
			$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	1000		1000		1000		ns
			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	—		1000		1000		ns
SCKp high-/low-level	tкнı,	$4.0 \text{ V} \leq \text{EV}_{\text{DD0}}$	≤ 5.5 V	tксү1/2 - 12		tксү1/2 - 50		tксү1/2 - 50		ns
width	tĸ∟1	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}}$	≤ 5.5 V	tксү1/2 - 18		tксү1/2 - 50		tксү1/2 - 50		ns
		$2.4 \text{ V} \leq \text{EV}_{\text{DD0}}$	≤ 5.5 V	tксү1/2 - 38		tксү1/2 - 50		tксү1/2 - 50		ns
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}}$	≤ 5.5 V	tксү1/2 - 50		tксү1/2 - 50		tксү1/2 - 50		ns
		$1.7 \text{ V} \leq \text{EV}_{\text{DD0}}$	≤ 5.5 V	tксү1/2 - 100		tксү1/2 - 100		tксү1/2 - 1 00		ns
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}}$	≤ 5.5 V	_		tксү1/2 - 100		tксү1/2 - 1 00		ns
SIp setup time	tsik1	$4.0 \text{ V} \leq \text{EV}_{\text{DD0}}$	≤ 5.5 V	44		110		110		ns
(to SCKp↑) ^{Note 1}		$2.7 \text{ V} \leq \text{EV}_{\text{DD0}}$	≤ 5.5 V	44		110		110		ns
		$2.4 \text{ V} \leq \text{EV}_{\text{DD0}}$	≤ 5.5 V	75		110		110		ns
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}}$	≤ 5.5 V	110		110		110		ns
		$1.7 \text{ V} \leq \text{EV}_{\text{DD0}}$	≤ 5.5 V	220		220		220		ns
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}}$	≤ 5.5 V	—		220		220		ns
SIp hold time	tksi1	$1.7 \text{ V} \leq \text{EV}_{\text{DD0}}$	≤ 5.5 V	19		19		19		ns
(from SCKp↑) Note 2		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}}$	≤ 5.5 V	_		19		19		ns
Delay time from SCKp↓ to SOp output Note 3	tkso1	$1.7 V \le EV_{DD0}$ C = 30 pF Note			25		25		25	ns
11016 3		$1.6 V \le EV_{DD0}$ C = 30 pF Note			—		25		25	ns

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 3 to 5, 14)

Remark 2. fMck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

(1/2)

(4) During communication at same potential (Simplified SPI (CSI) mode) (slave mode, SCKp... external clock input)

Parameter	Symbol	Cond	ditions	HS (high-spee mode	'	LS (low-speed mode	d main)	LV (low-voltage main) mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle	tксү2	$4.0~V \leq EV_{DD0} \leq 5.5~V$	20 MHz < fмск	8/fмск		—		_		ns
time Note 5			fмск ≤ 20 MHz	6/fмск		6/fмск		6/fмск		ns
		$2.7~V \leq EV_{DD0} \leq 5.5~V$	16 MHz < fмск	8/fмск		—		_		ns
			fмск ≤ 16 MHz	6/fмск		6/fмск		6/fмск		ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		6/fмск and 500		6/fмск and 500		6/fмск and 500		ns
		$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		6/fмск and 750		6/fмск and 750		6/fмск and 750		ns
		$1.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		6/fмск and 1500		6/fмск and 1500		6/fмск and 1500		ns
		$1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		_		6/fмск and 1500		6/fмск and 1500		ns
SCKp high-/	tкн2,	$4.0~V \leq EV_{DD0} \leq 5.5~V$		tkcy2/2 - 7		tксү2/2 - 7		tксү2/2 - 7		ns
low-level width	txL2 $2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$ txcr2/2 - 8 $1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$ txcr2/2 - 18 $1.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$ txcr2/2 - 66	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$		tkcy2/2 - 8		tkcy2/2 - 8		tkcy2/2 - 8		ns
		$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		tксү2/2 - 18		tксү2/2 - 18		tксү2/2 - 18		ns
			tkcy2/2 - 66		tксү2/2 - 66		ns			
		$1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		—		tксү2/2 - 66		tkcy2/2 - 66		ns
SIp setup time	tsik2	$2.7~\text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5~\text{V}$		1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
(to SCKp↑) _{Note 1}		$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
		$1.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		1/fмск + 40		1/fмск + 40		1/fмск + 40		ns
		$1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		—		1/fмск + 40		1/fмск + 40		ns
SIp hold time	tksi2	$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
(from SCKp↑) Note 2		$1.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		1/fмск + 250		1/fмск + 250		1/fмск + 250		ns
		$1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		—		1/fмск + 250		1/fмск + 250		ns
Delay time from SCKp↓ to	tĸso2	C = 30 pF Note 4	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		2/fмск + 44		2/fмск + 110		2/fмск + 110	ns
SOp output Note 3			$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		2/fмск + 75		2/fмск + 110		2/fмск + 110	ns
			$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		2/fмск + 100		2/fмск + 110		2/fмск + 110	ns
			$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		2/fмск + 220		2/fмск + 220		2/fмск + 220	ns
			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		-		2/fмск + 220		2/fмск + 220	ns

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when

DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SOp output lines.

Note 5. The maximum transfer rate when using the SNOOZE mode is 1 Mbps.

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

(**Remarks** are listed on the next page.)

Remark 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1),

n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 3 to 5, 14)

Remark 2. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00 to 03, 10 to 13))

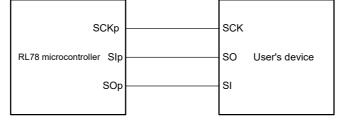
(2/2)

Caution

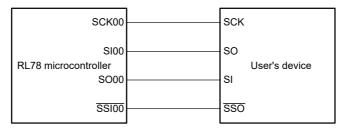
During communication at same potential (Simplified SPI (CSI) mode) (slave mode, SCKp... external clock (4)

•				-						•
Parameter	Symbol		Conditions	HS (high-speed mode	d main)	LS (low-speed mode	main)	LV (low-voltage main) mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SSI00 setup time	tssik	DAPmn = 0	$2.7~V \leq EV_{DD0} \leq 5.5~V$	120		120		120		ns
			$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	200		200		200		ns
			$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	400		400		400		ns
			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	—		400		400		ns
		DAPmn = 1	$2.7~V \leq EV_{DD0} \leq 5.5~V$	1/fмск + 120		1/fмск + 120		1/fмск + 120		ns
			$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	1/fмск + 200		1/fмск + 200		1/fмск + 200		ns
			$1.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	1/fмск + 400		1/fмск + 400		1/fмск + 400		ns
			$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	_		1/fмск + 400		1/fмск + 400		ns
SSI00 hold time	tĸssi	DAPmn = 0	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	1/fмск + 120		1/fмск + 120		1/fмск + 120		ns
			$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	1/fмск + 200		1/fмск + 200		1/fмск + 200		ns
			$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	1/fмск + 400		1/fмск + 400		1/fмск + 400		ns
			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	—		1/fмск + 400		1/fмск + 400		ns
		DAPmn = 1	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	120		120		120		ns
			$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	200		200		200		ns
			$1.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	400		400		400		ns
			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	_		400		400		ns

input)

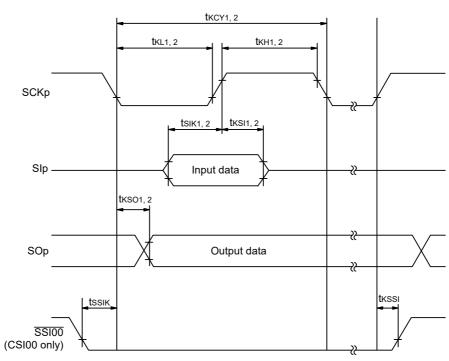

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

port input mode register g (PIMg) and port output mode register g (POMg).

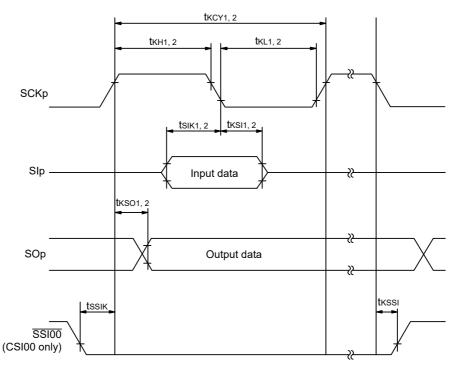

Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using

p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM number (g = 3, 5) Remark

Simplified SPI (CSI) mode connection diagram (during communication at same potential)



Simplified SPI (CSI) mode connection diagram (during communication at same potential) (Slave Transmission of slave select input function (CSI00))


Remark 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31) Remark 2. m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

Simplified SPI (CSI) mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Simplified SPI (CSI) mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remark 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31) **Remark 2.** m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

Parameter	Symbol	Conditions		speed main) ode		speed main) iode		oltage main) ode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fsc∟	$\begin{array}{l} 2.7 \ \text{V} \leq EV_{\text{DD0}} \leq 5.5 \ \text{V}, \\ C_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$		1000 Note 1		400 Note 1		400 Note 1	kHz
		$\label{eq:loss} \begin{array}{l} 1.8 \mbox{ V} \leq EV_{DD0} \leq 5.5 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 3 \mbox{ k}\Omega \end{array}$		400 Note 1		400 Note 1		400 Note 1	kHz
		$\label{eq:loss} \begin{array}{l} 1.8 \mbox{ V} \leq EV_{\mbox{DD0}} < 2.7 \mbox{ V}, \\ C_{\mbox{b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 5 k\Omega \end{array}$		300 Note 1		300 Note 1		300 Note 1	kHz
		$\label{eq:bound} \begin{array}{l} 1.7 \mbox{ V} \leq EV_{DD0} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$		250 Note 1		250 Note 1		250 Note 1	kHz
		$\label{eq:bound} \begin{array}{l} 1.6 \mbox{ V} \leq EV_{\mbox{DD0}} < 1.8 \mbox{ V}, \\ C_{\mbox{b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 5 \mbox{ k}\Omega \end{array}$		—		250 Note 1		250 Note 1	kHz
Hold time when SCLr = "L"	tLow	$\begin{array}{l} 2.7 \ \text{V} \leq EV_{\text{DD0}} \leq 5.5 \ \text{V}, \\ C_b = 50 \ \text{pF}, \ R_b = 2.7 \ \text{k}\Omega \end{array}$	475		1150		1150		ns
		$\label{eq:linear} \begin{array}{l} 1.8 \mbox{ V} \leq EV_{DD0} \leq 5.5 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 3 \mbox{ k}\Omega \end{array}$	1150		1150		1150		ns
		$\label{eq:linear} \begin{array}{l} 1.8 \mbox{ V} \leq EV_{DD0} < 2.7 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	1550		1550		1550		ns
		$\label{eq:bound} \begin{array}{l} 1.7 \mbox{ V} \leq EV_{\mbox{DD0}} < 1.8 \mbox{ V}, \\ C_{\mbox{b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 5 \mbox{ k}\Omega \end{array}$	1850		1850		1850		ns
		$\label{eq:bound} \begin{array}{l} 1.6 \mbox{ V} \leq EV_{\mbox{DD0}} < 1.8 \mbox{ V}, \\ C_{\mbox{b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 5 \mbox{ k}\Omega \end{array}$	_		1850		1850		ns
Hold time when SCLr = "H"	tнigн	$\begin{array}{l} 2.7 \ \text{V} \leq EV_{\text{DD0}} \leq 5.5 \ \text{V}, \\ \text{C}_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	475		1150		1150		ns
		$\begin{array}{l} 1.8 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}, \\ \text{C}_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 3 \text{ k}\Omega \end{array}$	1150		1150		1150		ns
		$\label{eq:loss} \begin{array}{l} 1.8 \mbox{ V} \leq EV_{\mbox{DD0}} < 2.7 \mbox{ V}, \\ C_{\mbox{b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 5 \mbox{ k}\Omega \end{array}$	1550		1550		1550		ns
		$\label{eq:bound} \begin{array}{l} 1.7 \mbox{ V} \leq EV_{\mbox{DD0}} < 1.8 \mbox{ V}, \\ C_{\mbox{b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 5 \mbox{ k}\Omega \end{array}$	1850		1850		1850		ns
		$\label{eq:bound} \begin{array}{l} 1.6 \mbox{ V} \leq EV_{\mbox{DD0}} < 1.8 \mbox{ V}, \\ C_{\mbox{b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 5 \mbox{ k}\Omega \end{array}$	—		1850		1850		ns

(5) During communication at same potential (simplified I²C mode)

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

(1/2)

(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)

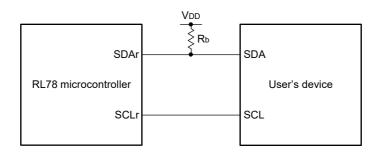
Parameter	Symbol	Conditions	HS (high-speed r mode	nain)	LS (low-speed n mode	nain)	LV (low-voltage r mode	nain)	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Data setup time (reception)	tsu: dat	$\begin{array}{l} 2.7 \ \text{V} \leq E V_{\text{DD0}} \leq 5.5 \ \text{V}, \\ \text{Cb} = 50 \ \text{pF}, \ \text{Rb} = 2.7 \ \text{k}\Omega \end{array}$	1/fмск + 85 Note 2		1/fмск + 145 Note 2		1/fмск + 145 Note 2		ns
		$\begin{array}{l} 1.8 \text{ V} \leq E V_{\text{DD0}} \leq 5.5 \text{ V}, \\ \text{Cb} = 100 \text{ pF}, \text{ Rb} = 3 \text{ k}\Omega \end{array}$	1/fмск + 145 Note 2		1/fмск + 145 Note 2		1/fmck + 145 Note 2		ns
		$\begin{array}{l} 1.8 \ \text{V} \leq EV_{\text{DD0}} < 2.7 \ \text{V}, \\ C_{b} = 100 \ \text{pF}, \ R_{b} = 5 \ \text{k}\Omega \end{array}$	1/fмск + 230 Note 2		1/fмск + 230 Note 2		1/fMCK + 230 Note 2		ns
		$\label{eq:linear} \begin{array}{l} 1.7 \mbox{ V} \leq EV_{DD0} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	1/fмск + 290 Note 2		1/fмск + 290 Note 2		1/fMCK + 290 Note 2		ns
		$\label{eq:linear} \begin{array}{l} 1.6 \mbox{ V} \leq EV_{DD0} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	_		1/fмск + 290 Note 2		1/fмск + 290 Note 2		ns
Data hold time (transmission)	thd: dat	$\begin{array}{l} 2.7 \ \text{V} \leq E V_{\text{DD0}} \leq 5.5 \ \text{V}, \\ \text{C}_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	0	305	0	305	0	305	ns
		$\begin{array}{l} 1.8 \text{ V} \leq E V_{\text{DD0}} \leq 5.5 \text{ V}, \\ \text{C}_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 3 \text{ k}\Omega \end{array}$	0	355	0	355	0	355	ns
		$\label{eq:loss} \begin{array}{l} 1.8 \mbox{ V} \leq EV_{DD0} < 2.7 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	0	405	0	405	0	405	ns
		$\begin{array}{l} 1.7 \ V \leq EV_{DD0} < 1.8 \ V, \\ C_b = 100 \ pF, \ R_b = 5 \ k\Omega \end{array}$	0	405	0	405	0	405	ns
		$\label{eq:linear} \begin{array}{l} 1.6 \mbox{ V} \leq EV_{DD0} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	—		0	405	0	405	ns

(5) During communication at same potential (simplified I²C mode)

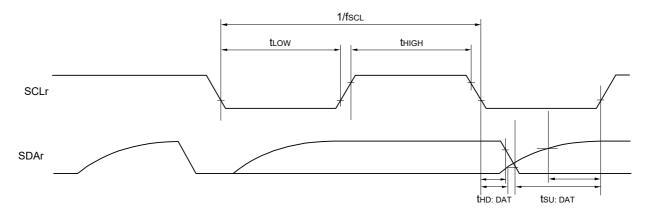
(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

(2/2)

Note 1. The value must also be equal to or less than fMCK/4.


Note 2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).


(**Remarks** are listed on the next page.)

Simplified I²C mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

- Remark 1. $Rb[\Omega]$: Communication line (SDAr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance
- **Remark 2.** r: IIC number (r = 00, 01, 10, 11, 20, 21, 30, 31), g: PIM number (g = 0, 1, 3 to 5, 14),
- h: POM number (h = 0, 1, 3 to 5, 7, 14)
- Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), mn = 00 to 03, 10 to 13)

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

(1/2)

Parameter	Symbol		Conditions		-speed main) node	LS (low-speed main) mode		LV (low-voltage main) mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		reception	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V \end{array}$		fмск/6 Note 1		f _{MCK} /6 Note 1		f _{MCK} /6 Note 1	bps
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK} N^{ote 4}$		5.3		1.3		0.6	Mbps
			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V}$		fмск/6 Note 1		f _{MCK} /6 Note 1		f _{MCK} /6 Note 1	bps
			Theoretical value of the maximum transfer rate fMCK = fCLK Note 4		5.3		1.3		0.6	Mbps
			$\begin{array}{l} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \end{array}$		fмск/6 Notes 1, 2, 3		fмск/6 Notes 1, 2		fмск/6 Notes 1, 2	bps
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK} Note 4$		5.3		1.3		0.6	Mbps

Note 1. Transfer rate in the SNOOZE mode is 4800 bps only.

However, the SNOOZE mode cannot be used when FRQSEL4 = 1.

Note 3.The following conditions are required for low voltage interface when EVDD0 < VDD. $2.4 V \le EVDD0 < 2.7 V$: MAX. 2.6 Mbps $1.8 V \le EVDD0 < 2.4 V$: MAX. 1.3 Mbps

Note 4. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are:

HS (high-speed main) mode:	32 MHz (2.7 V \leq VDD \leq 5.5 V)
	16 MHz (2.4 V \leq VDD \leq 5.5 V)
LS (low-speed main) mode:	8 MHz (1.8 V \leq VDD \leq 5.5 V)
LV (low-voltage main) mode:	4 MHz (1.6 V \leq VDD \leq 5.5 V)

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

Remark 1. Vb [V]: Communication line voltage

Remark 2. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 5, 14)

Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

Remark 4. UART2 cannot communicate at different potential when bit 1 (PIOR01) of peripheral I/O redirection register 0 (PIOR0) is 1.

Note 2. Use it with $EV_{DD0} \ge V_b$.

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

(2/2)

Parameter	Symbol		Conditions		-speed main) node	`	-speed main) mode		voltage main) node	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		transmission	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V \end{array}$		Note 1		Note 1		Note 1	bps
			Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 1.4 k Ω , V_b = 2.7 V		2.8 Note 2		2.8 Note 2		2.8 Note 2	Mbps
			$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V},$ $2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}$		Note 3		Note 3		Note 3	bps
			Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 2.7 k Ω , V_b = 2.3 V		1.2 Note 4		1.2 Note 4		1.2 Note 4	Mbps
			$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V},$ $1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V}$		Notes 5, 6		Notes 5, 6		Notes 5, 6	bps
			Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 5.5 k Ω , V_b = 1.6 V		0.43 Note 7		0.43 Note 7		0.43 Note 7	Mbps

Note 1. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when $4.0 \text{ V} \le \text{EV}\text{DD0} \le 5.5 \text{ V}$ and $2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V}$

Maximum transfer rate = ----

$$\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3$$

1

Baud rate error (theoretical value) =

$$\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.2}{V_b})\}$$

$$(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}$$

 * This value is the theoretical value of the relative difference between the transmission and reception sides.

Note 2. This value as an example is calculated when the conditions described in the "Conditions" column are met.

- Refer to **Note 1** above to calculate the maximum transfer rate under conditions of the customer.
- **Note 3.** The smaller maximum transfer rate derived by using fMck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq EVDD0 < 4.0 V and 2.3 V \leq Vb \leq 2.7 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$
Baud rate error (theoretical value) =
$$\frac{\frac{1}{Transfer rate \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\}}{1 + 100} \times 100 [\%]$$

(1)× Number of transferred bits

* This value is the theoretical value of the relative difference between the transmission and reception sides.

Note 4. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.

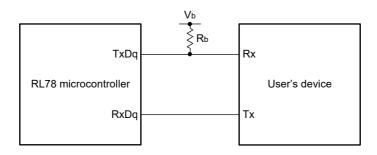
Note 5. Use it with $EVDD0 \ge Vb$.

Note 6. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

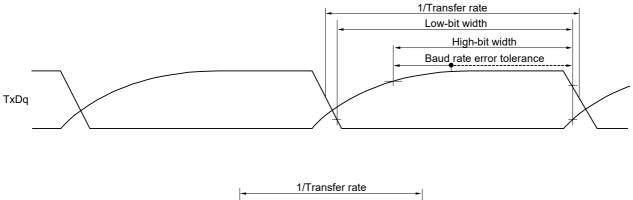
Expression for calculating the transfer rate when 1.8 V \leq EVDD0 < 3.3 V and 1.6 V \leq Vb \leq 2.0 V

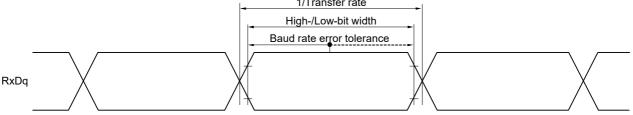
.

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}}$$


* This value is the theoretical value of the relative difference between the transmission and reception sides.

- Note 7.This value as an example is calculated when the conditions described in the "Conditions" column are met.Refer to Note 6 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.


(Remarks are listed on the next page.)



UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

Remark 1. Rb[Ω]: Communication line (TxDq) pull-up resistance, Cb[F]: Communication line (TxDq) load capacitance, Vb[V]: Communication line voltage
Remark 2. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 5, 14)
Remark 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).

m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

Remark 4. UART2 cannot communicate at different potential when bit 1 (PIOR01) of peripheral I/O redirection register 0 (PIOR0) is 1.

(1/2)

(7) Communication at different potential (2.5 V, 3 V) (Simplified SPI (CSI) mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

Parameter	Symbol		Conditions	HS (high-s main) mo		LS (low-speed mode	,	LV (low-voltage main) mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tксү1	tксү1 ≥ 2/fc∟к	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 20 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$	200		1150		1150		ns
			$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 20 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	300		1150		1150		ns
SCKp high-level width	vidth 2.7 \		$\begin{array}{l} 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 20 \ pF, \ R_b = 1.4 \ k\Omega \end{array}$			tксү1/2 - 50		tксү1/2 - 50		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \\ 2.3 \ V \leq V_{b} \leq 2 \\ C_{b} = 20 \ pF, \ R_{b} \end{array}$	2.7 V,	tксү1/2 - 120		tксү1/2 - 120		tксү1/2 - 120	¹ 2 - 50 ¹ 2 - 50	ns
SCKp low-level width	tĸ∟1	$\begin{array}{l} 4.0 \ V \leq EV_{DDC} \\ 2.7 \ V \leq V_{b} \leq V_{b} \\ C_{b} = 20 \ pF, \ R_{b} \end{array}$	4.0 V,	tксү1/2 - 7	tkcy1/2 - 7 tkcy1/2 - 50 tkcy1/2 - 50			ns		
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \\ 2.3 \ V \leq V_{b} \leq 1 \\ C_{b} = 20 \ pF, \ R_{b} \end{array}$	2.7 V,	tксү1/2 - 10		tксү1/2 - 50		tkcy1/2 - 50		ns
SIp setup time (to SCKp↑) ^{Note 1}	tsıκı	$\begin{array}{l} 4.0 \ V \leq EV_{DD0} \\ 2.7 \ V \leq V_b \leq V_b \\ C_b = 20 \ pF, \ R_b \end{array}$	4.0 V,	58		479		479		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \\ 2.3 \ V \leq V_{b} \leq 1 \\ C_{b} = 20 \ pF, \ R_{b} \end{array}$	2.7 V,	121		479		479	MAX.	ns
SIp hold time (from SCKp†) ^{Note 1}	tksi1	$\begin{array}{l} 4.0 \ V \leq EV_{DD}\\ 2.7 \ V \leq V_{b} \leq V\\ C_{b} = 20 \ pF, \ R_{b} \end{array}$	4.0 V,	10		10		10		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \\ 2.3 \ V \leq V_{b} \leq 1 \\ C_{b} = 20 \ pF, \ R_{b} \end{array}$	2.7 V,	10		10		10		ns
Delay time from SCKp↓ to SOp output ^{Note 1}	tkso1	$\begin{array}{l} 4.0 \ V \leq EV_{DD}\\ 2.7 \ V \leq V_{b} \leq V\\ C_{b} = 20 \ pF, \ R_{b} \end{array}$	4.0 V,		60		60		60	ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \\ 2.3 \ V \leq V_{b} \leq 1 \\ C_{b} = 20 \ pF, \ R_{b} \end{array}$	2.7 V,		130		130		130	ns

(TA = -40 to +85°C, 2.7 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

 $(\ensuremath{\textit{Notes}}, \ensuremath{\textit{Caution}}, \ensuremath{\textit{and}} \ensuremath{\textit{Remarks}} \ensuremath{\textit{are}} \ensuremath{\textit{listed}} \ensuremath{\textit{on}} \ensuremath{\textit{trans}} \ensuremath{\textit{listed}} \ensuremath{\textit{next}} \ensuremath{\textit{page.}} \ensuremath{\textit{listed}} \ensuremath{\textit{next}} \ensuremath{\textit{page.}} \ensuremath{\textit{listed}} \ensuremath{\textit{next}} \ensuremath{\textit{page.}} \ensuremath{\textit{listed}} \ensuremath{\textit{next}} \ensuremath{next} \ensuremath{\textit{next}} \ensuremath{\textit{next}} \ensuremath{\textit{next}} \ensuremath{\textit{next}} \ensuremath{\textit{next}} \ensuremath{next} \ensuremath{ne$

(7) Communication at different potential (2.5 V, 3 V) (Simplified SPI (CSI) mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

Parameter	Symbol	Conditions	HS (high-speed main) mode		LS (low-speed main) mode		LV (low-voltage main) mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↓) ^{Note 2}	tsıĸ1	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 20 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$	23		110		110		ns
		$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 20 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	33		110		110		ns
Slp hold time (from SCKp↓) ^{Note 2}	tĸsıı	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 20 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$	10		10		10		ns
		$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 20 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	10		10		10		ns
Delay time from SCKp↑ to SOp output ^{Note 2}	tkso1	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 20 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$		10		10		10	ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 20 \ p\text{F}, \ R_b = 2.7 \ k\Omega \end{array}$		10		10		10	ns

(TA = -40 to +85°C, 2.7 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

(2/2)

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

Note 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

Remark 1. Rb[Ω]: Communication line (SCKp, SOp) pull-up resistance, Cb[F]: Communication line (SCKp, SOp) load capacitance, Vb[V]: Communication line voltage

Remark 2. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM number (g = 3, 5)

Remark 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number

(mn = 00)) **Remark 4.** This value is valid only when CSI00's peripheral I/O redirect function is not used.

(1/3)

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (Simplified SPI (CSI) mode) (master mode, SCKp... internal clock output)

Parameter	Symbol		Conditions	HS (high-s main) mo	•	LS (low-speed mode		LV (low-vol main) mo	•	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tксү1	tксү1 ≥ 4/fclк		300		1150		1150		ns
			$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	500		1150		1150		ns
			$ \begin{split} 1.8 \ V &\leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V \ ^{Note}, \\ C_b &= 30 \ pF, \ R_b = 5.5 \ k\Omega \end{split} $	1150		1150		1150		ns
SCKp high-level width	tкнı			tксү1/2 - 75		tксү1/2 - 75		tксү1/2 - 75		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \\ 2.3 \ V \leq V_{b} \leq 2 \\ C_{b} = 30 \ pF, \ R_{b} \end{array}$.7 V,	tксү1/2 - 170		tксү1/2 - 170		1150 tксу1/2 - 75 tксу1/2 - 170 tксу1/2 - 458 tксу1/2 - 50	ns	
		$\begin{array}{l} 1.8 \ V \leq EV_{DD0} \\ 1.6 \ V \leq V_b \leq 2 \\ C_b = 30 \ pF, \ R_b \end{array}$	0 V ^{Note} ,	tксү1/2 - 45 8		tксү1/2 - 458		tксү1/2 - 458		ns
SCKp low-level width	tĸ∟1	$\begin{array}{l} 4.0 \ V \leq EV_{DD0} \\ 2.7 \ V \leq V_{b} \leq 4 \\ C_{b} = 30 \ pF, \ R_{b} \end{array}$.0 V,	tксү1/2 - 12		tксү1/2 - 50		tксү1/2 - 50		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \\ 2.3 \ V \leq V_{b} \leq 2. \\ C_{b} = 30 \ pF, \ R_{b} \end{array}$.7 V,	tксү1/2 - 18		tксү1/2 - 50		tксү1/2 - 50		ns
		$\begin{array}{l} 1.8 \ V \leq EV_{DD0} \\ 1.6 \ V \leq V_b \leq 2. \\ C_b = 30 \ pF, \ R_b \end{array}$	0 V ^{Note} ,	tксү1/2 - 50		tксү1/2 - 50		tксү1/2 - 50		ns

(TA = -40 to +85°C, 1.8 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Note Use it with $EVDD0 \ge V_b$.

(Remarks are listed two pages after the next page.)

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (Simplified SPI (CSI) mode) (master mode, SCKp...

Parameter	Symbol	Conditions		speed main) ode	•	peed main) ode		oltage main) ode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↑) ^{Note 1}	tsıĸı		81		479		479		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	177		479		479		ns
		$\label{eq:linear} \begin{array}{l} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \ \text{Note} \ 2, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	479		479		479		ns
SIp hold time (from SCKp↑) ^{Note 1}	tksi1		19		19		19		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	19		19		19		ns
		$\label{eq:linear} \begin{array}{l} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \ \text{Note} \ 2, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	19		19		19		ns
Delay time from SCKp↓ to SOp output ^{Note 1}	tkso1	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 30 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$		100		100		100	ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		195		195		195	ns
		$ \begin{split} & 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ & 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{Note \ 2}, \\ & C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{split} $		483		483		483	ns

internal clock output) (TA = -40 to +85°C, 1.8 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V) (2/3)

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

Note 2. Use it with $EVDD0 \ge Vb$.

(Remarks are listed on the page after the next page.)

Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin Caution products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V⊮ and VIL, see the DC characteristics with TTL input buffer selected.

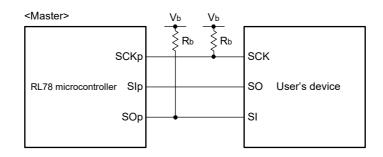
(3/3)

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (Simplified SPI (CSI) mode) (master mode, SCKp... internal clock output)

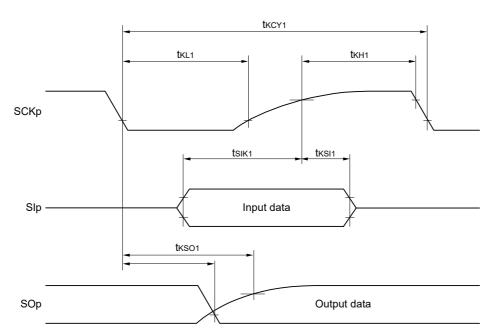
Parameter	Symbol	Conditions		speed main) ode		peed main) ode		ltage main) ode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↓) ^{Note 1}	tsıκı		44		110		110		ns
		$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	44		110		110		ns
		$\begin{array}{l} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \ \text{Note 2}, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	110		110		110		ns
SIp hold time (from SCKp↓) ^{Note 1}	n SCKp↓) ^{Note 1} 2.7 V		19		19		19		ns
		$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	19		19		19		ns
		$ \begin{split} & 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ & 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{Note \ 2}, \\ & C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{split} $	19		19		19		ns
Delay time from SCKp↑ to SOp output ^{Note 1}	tkso1			25		25		25	ns
		$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$		25		25		25	ns
		$ \begin{split} & 1.8 \; V \leq EV_{DD0} < 3.3 \; V, \\ & 1.6 \; V \leq V_b \leq 2.0 \; V \; ^{Note \; 2}, \\ & C_b = 30 \; pF, \; R_b = 5.5 \; k\Omega \end{split} $		25		25		25	ns

(TA = -40 to +85°C, 1.8 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

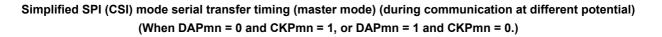
Note 1. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

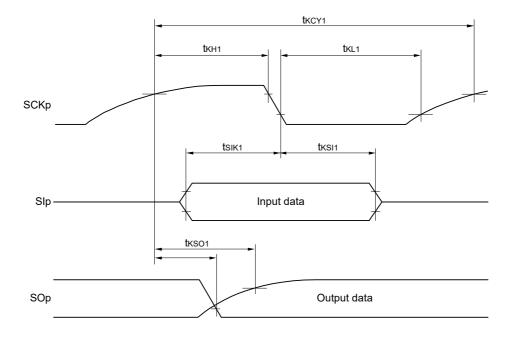

Note 2. Use it with $EV_{DD0} \ge V_b$.

(**Remarks** are listed on the next page.)


Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

Simplified SPI (CSI) mode connection diagram (during communication at different potential



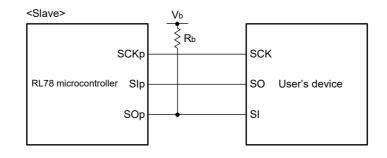

- **Remark 1.** Rb[Ω]: Communication line (SCKp, SOp) pull-up resistance, Cb[F]: Communication line (SCKp, SOp) load capacitance, Vb[V]: Communication line voltage
- Remark 2. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3 to 5, 14)
- Remark 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))
- Remark 4. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

Simplified SPI (CSI) mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

- **Remark 1.** p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3 to 5, 14)
- **Remark 2.** CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

RENESAS

RL78/G14

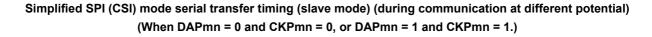

(9) Communication at different potential (1.8 V, 2.5 V, 3 V) (Simplified SPI (CSI) mode) (slave mode, SCKp... external clock input)

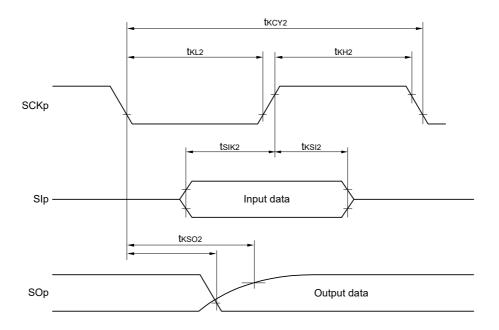
Parameter	Symbol	Cor	nditions		h-speed mode		/-speed mode	LV (low-voltage main) mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	-
SCKp cycle time	tксү2	$4.0~V \leq EV_{DD0} \leq 5.5~V,$	24 MHz < fмск	14/fмск		—		—		ns
Note 1		$2.7~V \leq V_b \leq 4.0~V$	20 MHz < fмcк \leq 24 MHz	12/fмск		_		—		ns
			$8 \text{ MHz} < \text{fmck} \le 20 \text{ MHz}$	10/fмск		_		_		ns
			$4 \text{ MHz} < \text{fmck} \le 8 \text{ MHz}$	8/fмск		16/fмск		—		ns
			fмск ≤ 4 MHz	6/fмск		10/fмск		10/fмск		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$	24 MHz < fмск	20/fмск		-		—		ns
			$20 \text{ MHz} < f_{MCK} \leq 24 \text{ MHz}$	16/fмск		_		—		ns
			16 MHz < fмск ≤ 20 MHz	14/fмск		_		_		ns
			8 MHz < fмск \leq 16 MHz	12/fмск		_		—		ns
			$4 \text{ MHz} < \text{fmck} \le 8 \text{ MHz}$	8/fмск		16/fмск		—		ns
		$\label{eq:VDD0} \begin{array}{l} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \\ \ \text{Note 2} \end{array}$	fмск ≤ 4 MHz	6/fмск		10/fмск		10/fмск		ns
			24 MHz < fмск	48/fмск		_		—		ns
			20 MHz < fмск ≤ 24 MHz	36/fмск		—		—		ns
			16 MHz < fмск ≤ 20 MHz	32/fмск		_		—		ns
			8 MHz < fмск \leq 16 MHz	26/fмск		—		—		ns
			$4 \text{ MHz} < \text{fmck} \le 8 \text{ MHz}$	16/fмск		16/fмск		—		ns
		fмск ≤ 4 MHz	10/fмск		10/fмск		10/fмск		ns	
SCKp high-/ low-level width	tкн2, tкL2	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}, 2$	$2.7 \text{ V} \leq \text{V}_b \leq 4.0 \text{ V}$	tксү2/2 - 12		tксү2/2 - 50		tксү2/2 - 50		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}, 2$	$2.3~V \leq V_b \leq 2.7~V$	tксү2/2 - 18		tксү2/2 - 50		tксү2/2 - 50		ns
		$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V}, T$	$1.6~V \leq V_b \leq 2.0~V$ Note 2	tксү2/2 - 50		tксү2/2 - 50		tксү2/2 - 50		ns
SIp setup time (to SCKp↑) ^{Note 3}	tsık2	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}, 2$	$2.7 \text{ V} \leq V_b \leq 4.0 \text{ V}$	1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}, 2$	$7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}, 2.3 \text{ V} \leq \text{V}_{b} \leq 2.7 \text{ V}$			1/fмск + 30		1/fмск + 30		ns
		$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V}, T$	$1.6 \text{ V} \leq V_b \leq 2.0 \text{ V} \text{ Note } 2$	1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
SIp hold time (from SCKp↑) _{Note 4}	tĸsı2			1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
Delay time from SCKp↓ to SOp	tĸso2	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}, 2$ C _b = 30 pF, R _b = 1.4 kΩ			2/fмск + 120		2/fмск + 573		2/fмск + 573	ns
output ^{Note 5}		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}, 2$ $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			2/fмск + 214		2/fмск + 573		2/fмск + 573	ns
		$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V},$ $C_{\text{b}} = 30 \text{ pF}, \text{Rv} = 5.5 \text{ kG}$	1.6 V \leq V _b \leq 2.0 V Note 2,		2/fмск + 573		2/fмск + 573		2/fмск + 573	ns

(Notes, Caution, and Remarks are listed on the next page.)

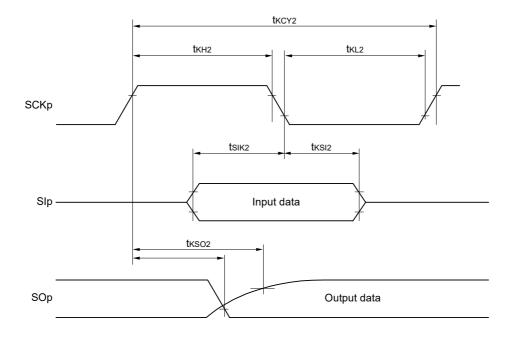
- Note 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
- Note 2. Use it with $EVDD0 \ge Vb$.
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 5. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and SCKp pin, and the N-ch open drain output (VoD tolerance (for the 30- to 52-pin products)/EVoD tolerance (for the 64- to 100-pin products)) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For ViH and ViL, see the DC characteristics with TTL input buffer selected.

Simplified SPI (CSI) mode connection diagram (during communication at different potential)




- **Remark 1.** Rb[Ω]: Communication line (SOp) pull-up resistance, Cb[F]: Communication line (SOp) load capacitance, Vb[V]: Communication line voltage
- **Remark 2.** p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3 to 5, 14)
- Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13))
- Remark 4. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.
 Also, communication at different potential cannot be performed during clock synchronous serial communication with the

R01DS0053EJ0360 Rev. 3.60 Mar 29, 2024


slave select function.

Simplified SPI (CSI) mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remark 1. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3 to 5, 14)

Remark 2. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.
 Also, communication at different potential cannot be performed during clock synchronous serial communication with the

slave select function.

RENESAS

(10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified l²C mode) (TA = -40 to +85°C, 1.8 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

(1/2)

Parameter	Symbol	Conditions		speed main) node	•	speed main) node		oltage main) 10de	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	1
SCLr clock frequency	fsc∟	$\begin{array}{l} 4.0 \; V \leq E V_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$		1000 ^{Note 1}		300 Note 1		300 Note 1	kHz
		$\begin{array}{l} 2.7 \; V \leq E V_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$		1000 Note 1		300 Note 1		300 Note 1	kHz
				400 Note 1		300 Note 1		300 Note 1	kHz
		$\begin{array}{l} 2.7 \; V \leq E V_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$		400 Note 1		300 Note 1		300 Note 1	kHz
		$ \begin{split} & 1.8 \; V \leq EV_{DD0} < 3.3 \; V, \\ & 1.6 \; V \leq V_b \leq 2.0 \; V \; ^{Note \; 2}, \\ & C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{split} $		300 Note 1		300 Note 1		300 Note 1	kHz
Hold time when SCLr = "L"	t∟ow	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	475		1550		1550		ns
		$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	475		1550		1550		ns
			1150		1550		1550		ns
		$\begin{array}{l} 2.7 \; V \leq E V_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	1150		1550		1550		ns
		$ \begin{split} & 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ & 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{Note \ 2}, \\ & C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega \end{split} $	1550		1550		1550		ns
Hold time when SCLr = "H"	tнıgн	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	245		610		610		ns
		$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	200		610		610		ns
			675		610		610		ns
		$\begin{array}{l} 2.7 \; V \leq E V_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	600		610		610		ns
		$\label{eq:linear} \begin{split} & 1.8 \; V \leq EV_{DD0} < 3.3 \; V, \\ & 1.6 \; V \leq V_b \leq 2.0 \; V \; \text{Note 2}, \\ & C_b = 100 \; \text{pF}, \; \text{Rb} = 5.5 \; \text{k}\Omega \end{split}$	610		610		610		ns

(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)

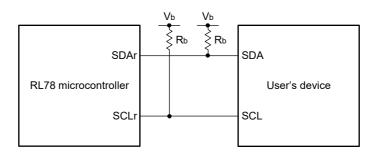
Parameter	Symbol	Conditions	HS (high-speed r mode	main)	LS (low-speed n mode	nain)	LV (low-voltage r mode	main)	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Data setup time (reception)	tsu:dat	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	1/fмск + 135 ^{Note 3}		1/fмск + 190 ^{Note 3}		1/fмск + 190 ^{Note 3}		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1/fмск + 135 Note 3		1/fmck + 190 Note 3		1/fмск + 190 Note 3		ns
		$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_{b} \leq 4.0 \; V, \\ C_{b} = 100 \; pF, \; R_{b} = 2.8 \; k\Omega \end{array}$	1/fмск + 190 Note 3		1/fмск + 190 Note 3		1/fмск + 190 Note 3		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1/fмск + 190 Note 3		1/fмск + 190 Note 3		1/fмск + 190 Note 3		ns
		$ \begin{split} & 1.8 \ \text{V} \leq \text{EV}_{\text{DD0}} < 3.3 \ \text{V}, \\ & 1.6 \ \text{V} \leq \text{V}_{b} \leq 2.0 \ \text{V}^{\ \text{Note 2}}, \\ & \text{C}_{b} = 100 \ \text{pF}, \ \text{R}_{b} = 5.5 \ \text{k}\Omega \end{split} $	1/fмск + 190 Note 3		1/fmck + 190 Note 3		1/fмск + 190 Note 3		ns
Data hold time (transmission)	thd:dat	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	0	305	0	305	0	305	ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	0	305	0	305	0	305	ns
		$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega \end{array}$	0	355	0	355	0	355	ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	0	355	0	355	0	355	ns
		$ \begin{split} & 1.8 \ \text{V} \leq \text{EV}_{\text{DD0}} < 3.3 \ \text{V}, \\ & 1.6 \ \text{V} \leq \text{V}_{b} \leq 2.0 \ \text{V} \ ^{\text{Note 2}}, \\ & \text{C}_{b} = 100 \ \text{pF}, \ \text{R}_{b} = 5.5 \ \text{k}\Omega \end{split} $	0	405	0	405	0	405	ns

(10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified l²C mode) (TA = -40 to +85°C, 1.8 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

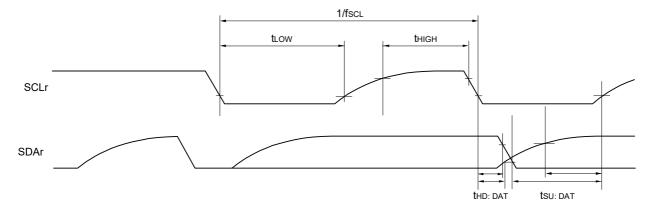
(2/2)

Note 1. The value must also be equal to or less than fmck/4.

Note 2. Use it with $EVDD0 \ge Vb$.


Note 3. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.


(Remarks are listed on the next page.)

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- **Remark 1.** Rb[Ω]: Communication line (SDAr, SCLr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance, Vb[V]: Communication line voltage
- Remark 2. r: IIC number (r = 00, 01, 10, 11, 20, 30, 31), g: PIM, POM number (g = 0, 1, 3 to 5, 14)
- Remark 3. fMCK: Serial array unit operation clock frequency
 - (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0, 2), mn = 00, 01, 02, 10, 12, 13)

(1/2)

2.5.2 Serial interface IICA

(1) I²C standard mode

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

-						,				<u> </u>
Parameter	Symbol	C	onditions		peed main) ode		beed main) bde	LV (low-voltage main) mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock			$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$	0	100	0	100	0	100	kHz
frequency		fc∟k ≥ 1 MHz	$1.8~V \leq EV_{\text{DD0}} \leq 5.5~V$	0	100	0	100	0	100	kHz
			$1.7~V \leq EV_{DD0} \leq 5.5~V$	0	100	0	100	0	100	kHz
			$1.6~V \leq EV_{DD0} \leq 5.5~V$	-	_	0	100	0	100	kHz
Setup time of	tsu: sta	$2.7 \text{ V} \leq EV_{DD0} \leq 3$	5.5 V	4.7		4.7		4.7		μs
restart condition		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3$	5.5 V	4.7		4.7		4.7		μs
		$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3$	4.7		4.7		4.7		μs	
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 8$	5.5 V	-	_	4.7		4.7		μs
Hold time Note 1	thd: STA	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3$	4.0		4.0		4.0		μs	
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 8$	4.0		4.0		4.0		μs	
		$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3$	4.0		4.0		4.0		μs	
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 8$	$V \le EV_{DD0} \le 5.5 V$		_	4.0		4.0		μs
Hold time when	tLOW	$2.7 \text{ V} \leq EV_{DD0} \leq 3$	5.5 V	4.7		4.7		4.7		μs
SCLA0 = "L"		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 8$	5.5 V	4.7		4.7		4.7		μs
		$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3$	5.5 V	4.7		4.7		4.7		μs
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 8$	5.5 V	-	_	4.7		4.7		μs
Hold time when	tніgн	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 8$	5.5 V	4.0		4.0		4.0		μs
SCLA0 = "H"		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 8$	4.0		4.0		4.0		μs	
		$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 8$	5.5 V	4.0		4.0		4.0		μs
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3$	5.5 V	-	_	4.0		4.0		μs

 $(\ensuremath{\textit{Notes}}, \ensuremath{\textit{Caution}}, \ensuremath{\text{and}} \ensuremath{\textit{Remark}}$ are listed on the next page.)

(1) I²C standard mode

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

(2/2)

Parameter	Symbol	Conditions		HS (high-speed main) mode		peed main) ode	LV (low-voltage main) mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Data setup time (reception)	tsu: dat	$2.7~V \leq EV_{DD0} \leq 5.5~V$	250		250		250		ns
		$1.8~V \leq EV_{DD0} \leq 5.5~V$	250		250		250		ns
		$1.7~V \leq EV_{DD0} \leq 5.5~V$	250		250		250		ns
		$1.6~V \leq EV_{DD0} \leq 5.5~V$	-	_	250		250		ns
Data hold time (transmission)	thd: dat	$2.7~V \leq EV_{DD0} \leq 5.5~V$	0	3.45	0	3.45	0	3.45	μs
Note 2		$1.8~V \leq EV_{DD0} \leq 5.5~V$	0	3.45	0	3.45	0	3.45	μs
		$1.7~V \leq EV_{DD0} \leq 5.5~V$	0	3.45	0	3.45	0	3.45	μs
		$1.6~V \leq EV_{DD0} \leq 5.5~V$	-	_	0	3.45	0	3.45	μs
Setup time of stop condition	tsu: sto	$2.7~V \leq EV_{DD0} \leq 5.5~V$	4.0		4.0		4.0		μs
		$1.8~V \leq EV_{DD0} \leq 5.5~V$	4.0		4.0		4.0		μs
		$1.7~V \leq EV_{DD0} \leq 5.5~V$	4.0		4.0		4.0		μs
		$1.6~V \leq EV_{DD0} \leq 5.5~V$	-	_	4.0		4.0		μs
Bus-free time	t BUF	$2.7~V \leq EV_{DD0} \leq 5.5~V$	4.7		4.7		4.7		μs
		$1.8~V \leq EV_{DD0} \leq 5.5~V$	4.7		4.7		4.7		μs
		$1.7~V \leq EV_{DD0} \leq 5.5~V$	4.7		4.7		4.7		μs
		$1.6~V \leq EV_{DD0} \leq 5.5~V$	-	_	4.7		4.7		μs

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.

Note 2. The maximum value (MAX.) of the DAT is during normal transfer and a clock stretch state is inserted in the ACK (acknowledge) timing.

- Caution The values in the above table are applied even when bit 2 (PIOR02) in the peripheral I/O redirection register 0 (PIOR0) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: Cb = 400 pF, Rb = 2.7 k Ω

(2) I²C fast mode

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Parameter	Symbol	Conditions			h-speed mode		v-speed mode		-voltage mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode:	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$	0	400	0	400	0	400	kHz
		fclk ≥ 3.5 MHz	$1.8~V \leq EV_{DD0} \leq 5.5~V$	0	400	0	400	0	400	kHz
Setup time of restart	tsu: sta	$2.7 \text{ V} \leq EV_{DD0} \leq$	5.5 V	0.6		0.6		0.6		μs
condition		$1.8 \text{ V} \leq EV_{DD0} \leq$	5.5 V	0.6		0.6		0.6		μs
Hold time Note 1	thd: STA	$2.7 \text{ V} \leq EV_{DD0} \leq$	5.5 V	0.6		0.6		0.6		μs
		$1.8 \text{ V} \leq EV_{DD0} \leq$	$.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$			0.6		0.6		μs
Hold time when SCLA0 = "L"	t∟ow	$2.7 \text{ V} \leq EV_{DD0} \leq$	5.5 V	1.3		1.3		1.3		μs
		$1.8 \text{ V} \leq EV_{DD0} \leq$	5.5 V	1.3		1.3		1.3		μs
Hold time when SCLA0 = "H"	tніgн	$2.7 \text{ V} \leq EV_{DD0} \leq$	5.5 V	0.6		0.6		0.6		μs
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq$	5.5 V	0.6		0.6		0.6		μs
Data setup time (reception)	tsu: dat	$2.7 \text{ V} \leq EV_{DD0} \leq$	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$			100		100		ns
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		100		100		100		ns
Data hold time (transmission)	thd: dat	$2.7 \text{ V} \leq EV_{DD0} \leq$	5.5 V	0	0.9	0	0.9	0	0.9	μs
Note 2		$1.8 \text{ V} \leq EV_{DD0} \leq$	5.5 V	0	0.9	0	0.9	0	0.9	μs
Setup time of stop condition	tsu: sto	$2.7 \text{ V} \leq EV_{DD0} \leq$	5.5 V	0.6		0.6		0.6		μs
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq$	5.5 V	0.6		0.6		0.6		μs
Bus-free time	t BUF	$2.7 \text{ V} \leq EV_{DD0} \leq$	5.5 V	1.3		1.3		1.3		μs
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq$	5.5 V	1.3		1.3		1.3		μs

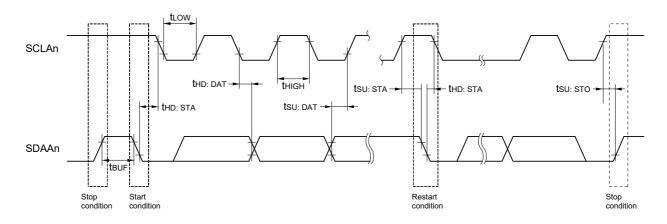
Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.

Note 2. The maximum value (MAX.) of the DLAT is during normal transfer and a clock stretch state is inserted in the ACK (acknowledge) timing.

- Caution The values in the above table are applied even when bit 2 (PIOR02) in the peripheral I/O redirection register 0 (PIOR0) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of C_b (communication line capacitance) and the value of R_b (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode: C_b = 320 pF, R_b = 1.1 k Ω

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)


Parameter	Symbol			HS (high-speed main) mode		LS (low-speed main) mode			-voltage mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode plus: fc∟ĸ ≥ 10 MHz			1000	—		-		kHz
Setup time of restart condition	tsu: sta	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5$	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V} $			_		_		μs
Hold time Note 1	thd: STA	$2.7~V \leq EV_{DD0} \leq 5$	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$			—		_		μs
Hold time when SCLA0 = "L"	t∟ow	$2.7 \text{ V} \leq EV_{DD0} \leq 5$.5 V	0.5		—		—		μs
Hold time when SCLA0 = "H"	tніgн	$2.7 \text{ V} \leq EV_{DD0} \leq 5$.5 V	0.26		—		_		μs
Data setup time (reception)	tsu: dat	$2.7 \text{ V} \leq EV_{DD0} \leq 5$.5 V	50		-	_	-	_	ns
Data hold time (transmission) Note 2	thd: dat	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5$	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		0.45	_		-		μs
Setup time of stop condition	tsu: sto	$2.7 \text{ V} \leq EV_{DD0} \leq 5$.5 V	0.26		-	_	-	_	μs
Bus-free time	tвuғ	$2.7 \text{ V} \leq EV_{DD0} \leq 5$.5 V	0.5		-	_	-	_	μs

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.

Note 2. The maximum value (MAX.) of the DAT is during normal transfer and a clock stretch state is inserted in the ACK (acknowledge) timing.

- Caution The values in the above table are applied even when bit 2 (PIOR02) in the peripheral I/O redirection register 0 (PIOR0) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- RemarkThe maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at
that time in each mode are as follows.
Fast mode plus: Cb = 120 pF, $Rb = 1.1 \text{ k}\Omega$

IICA serial transfer timing

Remark n = 0, 1

2.6 Analog Characteristics

2.6.1 A/D converter characteristics

Classification of A/D converter characteristics

Reference Voltage	Reference voltage (+) = AVREFP Reference voltage (-) = AVREFM	Reference voltage (+) = V _{DD} Reference voltage (-) = Vss	Reference voltage (+) = V _{BGR} Reference voltage (-)= AV _{REFM}
ANI0 to ANI14	Refer to 2.6.1 (1).	Refer to 2.6.1 (3).	Refer to 2.6.1 (4).
ANI16 to ANI20	Refer to 2.6.1 (2).		
Internal reference voltage Temperature sensor output voltage	Refer to 2.6.1 (1) .		_

(1) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI2 to ANI14, internal reference voltage, and temperature sensor output voltage

(TA = -40 to +85°C, 1.6 V \leq AVREFP \leq VDD \leq 5.5 V, Vss = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol	Condition	IS	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error Note 1	AINL	10-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$		1.2	±3.5	LSB
		AVREFP = VDD Note 3	$1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}^{\text{Note 4}}$		1.2	±7.0	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \le V_{DD} \le 5.5~V$	2.125		39	μs
		Target pin: ANI2 to ANI14	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μs
			$1.8 \text{ V} \leq \text{V}\text{DD} \leq 5.5 \text{ V}$	17		39	μs
			$1.6~V \le V_{DD} \le 5.5~V$	57		95	μs
		10-bit resolution Target pin: Internal reference voltage,	$3.6 \text{ V} \leq \text{V}\text{DD} \leq 5.5 \text{ V}$	2.375		39	μs
			$2.7~V \leq V_{DD} \leq 5.5~V$	3.5625		39	μs
		and temperature sensor output voltage (HS (high-speed main) mode)	$2.4 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$	17		39	μs
Zero-scale error Notes 1, 2	Ezs	10-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$			±0.25	%FSR
		AVREFP = VDD Note 3	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}^{\text{Note 4}}$			±0.50	%FSR
Full-scale error Notes 1, 2	EFS	10-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$			±0.25	%FSR
		AV _{REFP} = V _{DD} Note 3	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$ Note 4			±0.50	%FSR
Integral linearity error Note 1	ILE	10-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$			±2.5	LSB
		AVREFP = VDD Note 3	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}^{\text{Note 4}}$			±5.0	LSB
Differential linearity error Note 1	DLE	10-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$			±1.5	LSB
		AVREFP = VDD Note 3	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$ Note 4			±2.0	LSB
Analog input voltage	VAIN	ANI2 to ANI14		0		AVREFP	V
		Internal reference voltage (2.4 V \leq V _{DD} \leq 5.5 V, HS (high-speed main) mode)			V _{BGR} Note 5		
		Temperature sensor output voltage (2.4 V \leq V _{DD} \leq 5.5 V, HS (high-speed main) mode)			V _{TMPS25} Note 5		

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (%FSR) to the full-scale value.

Note 3.	When AVREFP < VDD, the MAX. values are as foll	ows.						
	Overall error:	Add ±1.0 LSB to the MAX. value when AVREFP = VDD.						
	Zero-scale error/Full-scale error:	Add ±0.05%FSR to the MAX. value when AVREFP = VDD.						
	Integral linearity error/ Differential linearity error:	Add ± 0.5 LSB to the MAX. value when AVREFP = VDD.						
Note 4.	4. Values when the conversion time is set to 57 μs (min.) and 95 μs (max.).							

Note 5. Refer to 2.6.2 Temperature sensor characteristics/internal reference voltage characteristic.

(2) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI16 to ANI20

 $(TA = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EVDD0} = \text{EVDD1} \le \text{VDD} \le 5.5 \text{ V}, 1.6 \text{ V} \le \text{AVREFP} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = \text{EVss0} = \text{EVss1} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AVREFP}, \text{Reference voltage (-)} = \text{AVREFM} = 0 \text{ V})$

Parameter	Symbol	Condi	itions	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error Note 1	AINL	10-bit resolution	$1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$		1.2	±5.0	LSB
		EVDD0 ≤ AVREFP = VDD Notes 3, 4	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}^{\text{Note 5}}$		1.2	±8.5	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μs
		Target ANI pin: ANI16 to ANI20	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μs
			$1.8~V \leq V_{DD} \leq 5.5~V$	17		39	μs
			$1.6~V \leq V_{DD} \leq 5.5~V$	57		95	μs
Zero-scale error Notes 1, 2	Ezs	10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$			±0.35	%FSR
		$EV_{DD0} \leq AV_{REFP} = V_{DD}$ Notes 3, 4	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$ Note 5			±0.60	%FSR
Full-scale error Notes 1, 2	Efs	10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$			±0.35	%FSR
		$EV_{DD0} \le AV_{REFP} = V_{DD}$ Notes 3, 4	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$ Note 5			±0.60	%FSR
Integral linearity error Note 1	ILE	10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$			±3.5	LSB
		$EV_{DD0} \leq AV_{REFP} = V_{DD}$ Notes 3, 4	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$ Note 5			±6.0	LSB
Differential linearity error Note 1	DLE	10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$			±2.0	LSB
		$EV_{DD0} \le AV_{REFP} = V_{DD}$ Notes 3, 4	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$ Note 5			±2.5	LSB
Analog input voltage	Vain	ANI16 to ANI20		0		AVREFP and EVDD0	V

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (%FSR) to the full-scale value.

Note 3. When $EVDD0 \le AVREFP \le VDD$, the MAX. values are as follows.

 Overall error:
 Add ±1.0 LSB to the MAX. value when AVREFP = VDD.

 Zero-scale error/Full-scale error:
 Add ±0.05%FSR to the MAX. value when AVREFP = VDD.

 Integral linearity error/ Differential linearity error:
 Add ±0.5%FSR to the MAX. value when AVREFP = VDD.

 Note 4.
 When AVREFP < EVDD0 ≤ VDD, the MAX. values are as follows.</td>

 Overall error:
 Add ±4.0 LSB to the MAX. value when AVREFP = VDD.

 Zero-scale error/Full-scale error:
 Add ±0.20%FSR to the MAX. value when AVREFP = VDD.

Integral linearity error/ Differential linearity error: Add ±2.0 LSB to the MAX. value when AVREFP = VDD.

Note 5. When the conversion time is set to 57 μ s (min.) and 95 μ s (max.).

(3) When reference voltage (+) = VDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = Vss (ADREFM = 0), target pin: ANI0 to ANI14, ANI16 to ANI20, internal reference voltage, and temperature sensor output voltage

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V, Reference voltage (+) = VDD, Reference voltage (-) = Vss)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error Note 1	AINL	10-bit resolution	$1.8~V \leq V_{DD} \leq 5.5~V$		1.2	±7.0	LSB
			$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$ Note 3		1.2	±10.5	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μs
		Target pin: ANI0 to ANI14, ANI16 to ANI20	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μs
			$1.8~V \leq V_{DD} \leq 5.5~V$	17		39	μs
			$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	57		95	μs
		10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.375		39	μs
		Target pin: internal reference voltage, and temperature sensor output voltage	$2.7~V \leq V_{DD} \leq 5.5~V$	3.5625		39	μs
		(HS (high-speed main) mode)	$2.4~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$	17		39	μs
Zero-scale error Notes 1, 2	2 Ezs 10-bit resolution		$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			±0.60	%FSR
			$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}^{\text{Note 3}}$			±0.85	%FSR
Full-scale error Notes 1, 2	Efs	10-bit resolution	$1.8 \text{ V} \leq \text{V}\text{DD} \leq 5.5 \text{ V}$			±0.60	%FSR
			$1.6 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}^{\text{Note 3}}$			±0.85	%FSR
Integral linearity error Note 1	ILE	10-bit resolution	$1.8~V \le V_{DD} \le 5.5~V$			±4.0	LSB
			$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$ Note 3			±6.5	LSB
Differential linearity error	DLE	10-bit resolution	$1.8~V \le V_{DD} \le 5.5~V$			±2.0	LSB
Note 1			$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$ Note 3			±2.5	LSB
Analog input voltage	Vain	ANI0 to ANI14	·	0		Vdd	V
		ANI16 to ANI20		0		EV _{DD0}	V
		Internal reference voltage (2.4 V \leq VDD \leq 5.5 V, HS (high-speed main) mode)			/ _{BGR} Note	4	V
		Temperature sensor output voltage (2.4 V \leq VDD \leq 5.5 V, HS (high-speed main) r	VTMPS25 Note 4			V	

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (%FSR) to the full-scale value.

Note 3. When the conversion time is set to 57 μ s (min.) and 95 μ s (max.).

Note 4. Refer to 2.6.2 Temperature sensor characteristics/internal reference voltage characteristic.

(4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI0, ANI2 to ANI14, ANI16 to ANI20

(TA = -40 to +85°C, 2.4 V \leq VDD \leq 5.5 V, 1.6 V \leq EVDD = EVDD1 \leq VDD, Vss = EVss0 = EVss1 = 0 V, Reference voltage (+) = VBGR ^{Note 3}, Reference voltage (-) = AVREFM = 0 V ^{Note 4}, HS (high-speed main) mode)

Parameter	Symbol	Co	MIN.	TYP.	MAX.	Unit	
Resolution	RES				8		bit
Conversion time	tCONV	8-bit resolution	$2.4~\text{V} \leq \text{V}\text{DD} \leq 5.5~\text{V}$	17		39	μs
Zero-scale error Notes 1, 2	Ezs	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±0.60	%FSR
Integral linearity error Note 1	ILE	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±1.0	LSB
Analog input voltage	Vain		•	0		VBGR Note 3	V

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (%FSR) to the full-scale value.

Note 3. Refer to 2.6.2 Temperature sensor characteristics/internal reference voltage characteristic.

Note 4. When reference voltage (-) = Vss, the MAX. values are as follows.

Zero-scale error:Add ±0.35%FSR to the MAX. value when reference voltage (-) = AVREFM.Integral linearity error:Add ±0.5 LSB to the MAX. value when reference voltage (-) = AVREFM.Differential linearity error:Add ±0.2 LSB to the MAX. value when reference voltage (-) = AVREFM.

RL78/G14

2.6.2 Temperature sensor characteristics/internal reference voltage characteristic

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, TA = +25°C		1.05		V
Internal reference voltage	Vbgr	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	FVTMPS	Temperature sensor that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		5			μs

(TA = -40 to +85°C, 2.4 V \leq VDD \leq 5.5 V, Vss = EVsso = EVss1 = 0 V, HS (high-speed main) mode)

2.6.3 D/A converter characteristics

(TA = -40 to +85°C, 1.6 V \leq EVsso = EVss1 \leq VDD \leq 5.5 V, Vss = EVsso = EVss1 = 0 V)

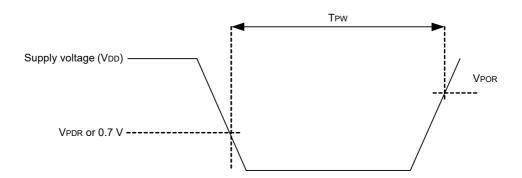
Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES					8	bit
Overall error	AINL	Rload = 4 MΩ	$1.8~V \le V \text{DD} \le 5.5~V$			±2.5	LSB
		Rload = 8 MΩ	$1.8~V \le V \text{DD} \le 5.5~V$			±2.5	LSB
Settling time	tset	Cload = 20 pF	$2.7~V \leq V_{DD} \leq 5.5~V$			3	μs
			$1.6~V \leq V_{DD} < 2.7~V$			6	μs

2.6.4 Comparator

Parameter	Symbol	Co	nditions	MIN.	TYP.	MAX.	Unit
Input voltage range	lvref			0		EVDD0 - 1.4	V
	lvcmp			-0.3		EVDD0 + 0.3	V
Output delay	td	V _{DD} = 3.0 V Input slew rate > 50 mV/µs	Comparator high-speed mode, standard mode			1.2	μs
			Comparator high-speed mode, window mode			2.0	μs
			Comparator low-speed mode, standard mode		3.0	5.0	μs
High-electric-potential reference voltage	VTW+	Comparator high-speed mode	e, window mode		0.76 Vdd		V
Low-electric-potential reference voltage	VTW-	Comparator high-speed mode	e, window mode		0.24 Vdd		V
Operation stabilization wait time	tсмр			100			μs
Internal reference voltage Note	VBGR	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, \text{ HS}$ (H	nigh-speed main) mode	1.38	1.45	1.50	V

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0	= EVss1 = 0 V)
---	----------------

Note Not usable in LS (low-speed main) mode, LV (low-voltage main) mode, sub-clock operation, or STOP mode.


2.6.5 POR circuit characteristics

(TA = -40 to +85°C, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power on/down reset threshold	VPOR	Voltage threshold on VDD rising	1.47	1.51	1.55	V
	VPDR	Voltage threshold on VDD falling Note 1	1.46	1.50	1.54	V
Minimum pulse width Note 2	TPW		300			μs

Note 1. However, when the operating voltage falls while the LVD is off, enter STOP mode, or enable the reset status using the external reset pin before the voltage falls below the operating voltage range shown in 2.4 AC Characteristics.

Note 2. Minimum time required for a POR reset when VDD exceeds below VPDR. This is also the minimum time required for a POR reset from when VDD exceeds below 0.7 V to when VDD exceeds VPOR while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

2.6.6 LVD circuit characteristics

(1) Reset Mode and Interrupt Mode

(TA = -40 to +85°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

	Parameter		Conditions	MIN.	TYP.	MAX.	Unit
Voltage	Supply voltage level	VLVD0	Rising edge	3.98	4.06	4.14	V
detection			Falling edge	3.90	3.98	4.06	V
threshold		VLVD1	Rising edge	3.68	3.75	3.82	V
			Falling edge	3.60	3.67	3.74	V
		VLVD2	Rising edge	3.07	3.13	3.19	V
			Falling edge	3.00	3.06	3.12	V
		Vlvd3	Rising edge	2.96	3.02	3.08	V
			Falling edge	2.90	2.96	3.02	V
		VLVD4	Rising edge	2.86	2.92	2.97	V
			Falling edge	2.80	2.86	2.91	V
		VLVD5	Rising edge	2.76	2.81	2.87	V
			Falling edge	2.70	2.75	2.81	V
		VLVD6	Rising edge	2.66	2.71	2.76	V
			Falling edge	2.60	2.65	2.70	V
		VLVD7	Rising edge	2.56	2.61	2.66	V
			Falling edge	2.50	2.55	2.60	V
		VLVD8	Rising edge	2.45	2.50	2.55	V
			Falling edge	2.40	2.45	2.50	V
		Vlvd9	Rising edge	2.05	2.09	2.13	V
			Falling edge	2.00	2.04	2.08	V
		VLVD10	Rising edge	1.94	1.98	2.02	V
			Falling edge	1.90	1.94	1.98	V
		VLVD11	Rising edge	1.84	1.88	1.91	V
			Falling edge	1.80	1.84	1.87	V
		VLVD12	Rising edge	1.74	1.77	1.81	V
			Falling edge	1.70	1.73	1.77	V
		VLVD13	Rising edge	1.64	1.67	1.70	V
			Falling edge	1.60	1.63	1.66	V
Minimum pu	lse width	tLW		300			μs
Detection de	lay time					300	μs

(2) Interrupt & Reset Mode

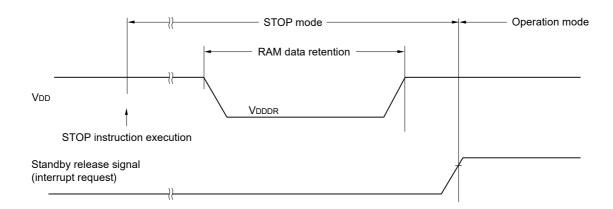
(TA = -40 to +85°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol		Cor	ditions	MIN.	TYP.	MAX.	Unit
Voltage detection	VLVDA0	VPOC2,	VPOC1, VPOC0 = 0, 0, 0, f	alling reset voltage	1.60	1.63	1.66	V
threshold	VLVDA1		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	1.74	1.77	1.81	V
				Falling interrupt voltage	1.70	1.73	1.77	V
	VLVDA2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	1.84	1.88	1.91	V
				Falling interrupt voltage	1.80	1.84	1.87	V
	VLVDA3		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	VLVDB0	VPOC2,	VPOC1, VPOC0 = 0, 0, 1, f	alling reset voltage	1.80	1.84	1.87	V
	VLVDB1		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	1.94	1.98	2.02	V
				Falling interrupt voltage	1.90	1.94	1.98	V
	VLVDB2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.05	2.09	2.13	V
				Falling interrupt voltage	2.00	2.04	2.08	V
	VLVDB3		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.07	3.13	3.19	V
				Falling interrupt voltage	3.00	3.06	3.12	V
	VLVDC0	VPOC2,	, VPOC1, VPOC0 = 0, 1, 0, falling reset voltage		2.40	2.45	2.50	V
	VLVDC1		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.56	2.61	2.66	V
				Falling interrupt voltage	2.50	2.55	2.60	V
	VLVDC2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.66	2.71	2.76	V
				Falling interrupt voltage	2.60	2.65	2.70	V
	VLVDC3		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.68	3.75	3.82	V
				Falling interrupt voltage	3.60	3.67	3.74	V
	VLVDD0	VPOC2,	VPOC1, VPOC0 = 0, 1, 1, f	alling reset voltage	2.70	2.75	2.81	V
	VLVDD1		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	VLVDD2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.96	3.02	3.08	V
				Falling interrupt voltage	2.90	2.96	3.02	V
	VLVDD3		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.98	4.06	4.14	V
				Falling interrupt voltage	3.90	3.98	4.06	V

2.6.7 Power supply voltage rising slope characteristics

(TA = -40 to +85°C, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms


Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until VDD reaches the operating voltage range shown in 2.4 AC Characteristics.

2.7 RAM Data Retention Characteristics

(TA = -40 to +85°C, Vss = 0V)						
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.46 Note		5.5	V

Note The value depends on the POR detection voltage. When the voltage drops, the RAM data is retained before a POR reset is effected, but RAM data is not retained when a POR reset is effected.

2.8 Flash Memory Programming Characteristics

 $(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
System clock frequency	fclk	$1.8 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$	1		32	MHz
Number of code flash rewrites Notes 1, 2, 3	Cerwr	Retained for 20 years TA = 85°C	1,000			Times
Number of data flash rewrites Notes 1, 2, 3		Retained for 1 year TA = 25°C		1,000,000		
		Retained for 5 years TA = 85°C	100,000			
		Retained for 20 years TA = 85°C	10,000			

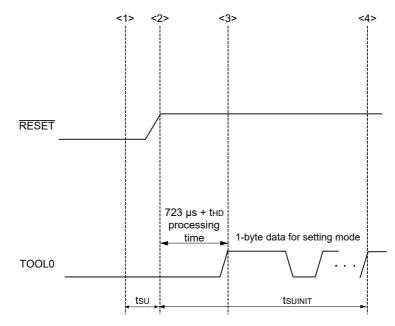
Note 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.

Note 2. When using flash memory programmer and Renesas Electronics self-programming library

Note 3. These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

2.9 Dedicated Flash Memory Programmer Communication (UART)

(TA = -40 to +85°C, 1.8 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

2.10 Timing of Entry to Flash Memory Programming Modes

(TA = -40 to +85°C, 1.8 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)
--

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
How long from when an external reset ends until the initial communication settings are specified	tsuinit	POR and LVD reset must end before the external reset ends.			100	ms
How long from when the TOOL0 pin is placed at the low level until an external reset ends	ts∪	POR and LVD reset must end before the external reset ends.	10			μs
How long the TOOL0 pin must be kept at the low level after an external reset ends (excluding the processing time of the firmware to control the flash memory)	thd	POR and LVD reset must end before the external reset ends.	1			ms

<1> The low level is input to the TOOL0 pin.

<2> The external reset ends (POR and LVD reset must end before the external reset ends).

<3> The TOOL0 pin is set to the high level.

<4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

- **Remark** tsuinit: The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from when the external resets end.
 - tsu: How long from when the TOOL0 pin is placed at the low level until a pin reset ends
 - tHD: How long to keep the TOOL0 pin at the low level from when the external resets end (excluding the processing time of the firmware to control the flash memory)

3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105°C)

This chapter describes the following electrical specifications.

Target products G: Industrial applications $T_A = -40$ to $+105^{\circ}C$ R5F104xxGxx

- Caution 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
- Caution 2. With products not provided with an EVDD0, EVDD1, EVSS0, or EVSS1 pin, replace EVDD0 and EVDD1 with VDD, or replace EVSS0 and EVSS1 with VSS.
- Caution 3. The pins mounted depend on the product. Refer to 2.1 Port Functions to 2.2.1 Functions for each product in the RL78/G14 User's Manual.
- Caution 4. Please contact Renesas Electronics sales office for derating of operation under TA = +85 to +105°C. Derating is the systematic reduction of load for the sake of improved reliability.
- Remark When RL78/G14 is used in the range of T_A = -40 to +85°C, see 2. ELECTRICAL SPECIFICATIONS (T_A = -40 to +85°C).

Operation of products rated "G: Industrial applications (TA = -40 to + $105^{\circ}C$)" at ambient operating temperatures above $85^{\circ}C$ differs from that of products rated "A: Consumer applications" and "D: Industrial applications" in the ways listed below.

Parameter	A: Consumer applications, D: Industrial applications	G: Industrial applications
Operating ambient temperature	TA = -40 to +85°C	TA = -40 to +105°C
Operating mode Operating voltage range	HS (high-speed main) mode: 2.7 V \leq VDD \leq 5.5 V@1 MHz to 32 MHz 2.4 V \leq VDD \leq 5.5 V@1 MHz to 16 MHz LS (low-speed main) mode: 1.8 V \leq VDD \leq 5.5 V@1 MHz to 8 MHz LV (low-voltage main) mode: 1.6 V \leq VDD \leq 5.5 V@1 MHz to 4 MHz	HS (high-speed main) mode only: 2.7 V \leq VDD \leq 5.5 V@1 MHz to 32 MHz 2.4 V \leq VDD \leq 5.5 V@1 MHz to 16 MHz
High-speed on-chip oscillator clock accuracy	$\begin{array}{l} 1.8 \ V \leq V DD \leq 5.5 \ V: \\ \pm 1.0\% \ @ \ TA = -20 \ to \ +85^{\circ}C \\ \pm 1.5\% \ @ \ TA = -40 \ to \ -20^{\circ}C \\ 1.6 \ V \leq V DD < 1.8 \ V: \\ \pm 5.0\% \ @ \ TA = -20 \ to \ +85^{\circ}C \\ \pm 5.5\% \ @ \ TA = -40 \ to \ -20^{\circ}C \end{array}$	2.4 V \leq V _{DD} \leq 5.5 V: $\pm 2.0\%$ @ TA = +85 to +105°C $\pm 1.0\%$ @ TA = -20 to +85°C $\pm 1.5\%$ @ TA = -40 to -20°C
Serial array unit	UART Simplified SPI (CSI): fcLk/2 (16 Mbps supported), fcLk/4 Simplified I ² C communication	UART Simplified SPI (CSI): fcLk/4 Simplified I ² C communication
IICA	Standard mode Fast mode Fast mode plus	Standard mode Fast mode
Voltage detector	 Rising: 1.67 V to 4.06 V (14 stages) Falling: 1.63 V to 3.98 V (14 stages) 	• Rising: 2.61 V to 4.06 V (8 stages) • Falling: 2.55 V to 3.98 V (8 stages)

Remark The electrical characteristics of products rated "G: Industrial applications (TA = -40 to + 105°C)" at ambient operating temperatures above 85°C differ from those of products rated "A: Consumer applications" and "D: Industrial applications". For details, refer to **3.1** to **3.10**.

3.1 Absolute Maximum Ratings

Absolute Maximum Ratings

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	Vdd		-0.5 to +6.5	V
	EVDD0, EVDD1	EVDD0 = EVDD1	-0.5 to +6.5	V
	EVsso, EVss1	EVsso = EVss1	-0.5 to +0.3	V
REGC pin input voltage	VIREGC	REGC	-0.3 to +2.8	V
			and -0.3 to V _{DD} +0.3 ^{Note 1}	
Input voltage	VI1	P00 to P06, P10 to P17, P30, P31,	-0.3 to EVDD0 +0.3	V
		P40 to P47, P50 to P57, P64 to P67,	and -0.3 to VDD +0.3 Note 2	
		P70 to P77, P80 to P87, P100 to P102,		
		P110, P111, P120, P140 to P147		
	VI2	P60 to P63 (N-ch open-drain)	-0.3 to +6.5	V
	Vı3	P20 to P27, P121 to P124, P137,	-0.3 to V _{DD} +0.3 Note 2	V
		P150 to P156, EXCLK, EXCLKS, RESET		
Output voltage	V01	P00 to P06, P10 to P17, P30, P31,	-0.3 to EVDD0 +0.3	V
		P40 to P47, P50 to P57, P60 to P67,	and -0.3 to V _{DD} +0.3 Note 2	
		P70 to P77, P80 to P87, P100 to P102,		
		P110, P111, P120, P130, P140 to P147		
	Vo2	P20 to P27, P150 to P156	-0.3 to VDD +0.3 Note 2	V
Analog input voltage	VAI1	ANI16 to ANI20	-0.3 to EVDD0 +0.3	V
			and -0.3 to AVREF(+) +0.3 Notes 2, 3	V
	VAI2	ANI0 to ANI14	-0.3 to VDD +0.3	V
			and -0.3 to AVREF(+) +0.3 Notes 2, 3	v

Note 1. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μF). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.

Note 2. Must be 6.5 V or lower.

Note 3. Do not exceed AVREF (+) + 0.3 V in case of A/D conversion target pin.

- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- Remark 1. Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Remark 2. AVREF (+): + side reference voltage of the A/D converter.

Remark 3. Vss: Reference voltage

(1/2)

Absolute Maximum Ratings

(2/2)

Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Iон1 Per pin		P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147	-40	mA
		Total of all pins	P00 to P04, P40 to P47, P102, P120, P130, P140 to P145	-70	mA
		-170 mA	P05, P06, P10 to P17, P30, P31, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100, P101, P110, P111, P146, P147	-100	mA
	Іон2	Per pin	P20 to P27, P150 to P156	-0.5	mA
		Total of all pins		-2	mA
Output current, low	IOL1	Per pin	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147	40	mA
		Total of all pins	P00 to P04, P40 to P47, P102, P120, P130, P140 to P145	70	mA
		170 mA	P05, P06, P10 to P17, P30, P31, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P100, P101, P110, P111, P146, P147	100	mA
	IOL2	Per pin	P20 to P27, P150 to P156	1	mA
		Total of all pins		5	mA
Operating ambient	Та		pperation mode	-40 to +105	°C
Storage temperature	Tstg	in flash me	mory programming mode	-65 to +150	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

3.2 Oscillator Characteristics

3.2.1 X1, XT1 characteristics

$(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Resonator	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation frequency (fx) Note	Ceramic resonator/	$2.7~V \leq V \text{DD} \leq 5.5~V$	1.0		20.0	MHz
	Ceramic resonator/ 2.	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 2.7 \text{ V}$	1.0		16.0	
XT1 clock oscillation frequency (fxT) Note	Crystal resonator		32	32.768	35	kHz

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark When using the X1 oscillator and XT1 oscillator, refer to 5.4 System Clock Oscillator in the RL78/G14 User's Manual.

3.2.2 On-chip oscillator characteristics

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V)

Oscillators	Parameters	Conditions		MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Notes 1, 2	fін			1		32	MHz
High-speed on-chip oscillator clock frequency		-20 to +85°C	$2.4~V \leq V \text{DD} \leq 5.5~V$	-1.0		+1.0	%
accuracy		-40 to -20°C	$2.4~V \leq V \text{DD} \leq 5.5~V$	-1.5		+1.5	%
		+85 to +105°C	$2.4~V \leq V \text{DD} \leq 5.5~V$	-2.0		+2.0	%
Low-speed on-chip oscillator clock frequency	fı∟				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

Note 1. High-speed on-chip oscillator frequency is selected with bits 0 to 4 of the option byte (000C2H) and bits 0 to 2 of the HOCODIV register.

Note 2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

3.3 DC Characteristics

3.3.1 Pin characteristics

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)	

(1/5)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Dutput current, high ^{Note 1}	Іон1	Per pin for P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147	$2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$			-3.0 Note 2	mA
		Total of P00 to P04, P40 to P47,	$4.0~V \leq EV \text{DD0} \leq 5.5~V$			-30.0	mA
		P102, P120, P130, P140 to P145	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}$			-10.0	mA
		(When duty \leq 70% ^{Note 3})	$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$			-5.0	mA
		Total of P05, P06, P10 to P17,	$4.0~\text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5~\text{V}$			-30.0	mA
		P30, P31, P50 to P57,	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}$			-19.0	mA
		P64 to P67, P70 to P77, P80 to P87, P100, P101, P110, P111, P146, P147 (When duty ≤ 70% ^{Note 3})	2.4 V ≤ EVDD0 < 2.7 V			-19.0 mA -10.0 mA	
		Total of all pins (When duty \leq 70% ^{Note 3})	$2.4 \text{ V} \leq \text{EVDD0} \leq 5.5 \text{ V}$			-60.0	mA
	Іон2	Per pin for P20 to P27, P150 to P156	$2.4 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$			-0.1 Note 2	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})	$2.4 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$			-1.5	mA

Note 1. Value of current at which the device operation is guaranteed even if the current flows from the EVDD0, EVDD1, VDD pins to an output pin.

Note 2. Do not exceed the total current value.

Note 3. Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins = (IOH × 0.7)/(n × 0.01) <Example> Where n = 80% and IOH = -10.0 mA

Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P00, P02 to P04, P10, P11, P13 to P15, P17, P30, P43 to P45, P50 to P55, P71, P74, P80 to P82, and P142 to P144 do not output high level in N-ch open-drain mode.

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, low ^{Note 1}	IOL1	Per pin for P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147				8.5 Note 2	mA
		Per pin for P60 to P63				15.0 Note 2	mA
		Total of P00 to P04, P40 to P47,	$4.0~V \leq EV_{DD0} \leq 5.5~V$			40.0	mA
		P102, P120, P130, P140 to P145	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}$			15.0	mA
		(When duty \leq 70% ^{Note 3})	$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$			9.0	mA
		Total of P05, P06, P10 to P17,	$4.0~V \leq EV_{DD0} \leq 5.5~V$			40.0	mA
		P30, P31, P50 to P57,	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}$			35.0	mA
		P60 to P67, P70 to P77, P80 to P87, P100, P101, P110, P111, P146, P147 (When duty ≤ 70% ^{Note 3})	2.4 V ≤ EVDD0 < 2.7 V			20.0	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})				80.0	mA
	IOL2	Per pin for P20 to P27, P150 to P156				0.4 Note 2	mA
		Total of all pins (When duty \leq 70% ^{Note 3})	$2.4~\text{V} \leq \text{VDD} \leq 5.5~\text{V}$			5.0	mA

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(2/5)

Note 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the EVsso, EVss1, and Vss pins.

Note 2. Do not exceed the total current value.

Note 3. Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = (IoL × 0.7)/(n × 0.01)
- <Example> Where n = 80% and IoL = 10.0 mA

Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \approx 8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor.

A current higher than the absolute maximum rating must not flow into one pin.

Items	Symbol	Conditions	3	MIN.	TYP.	MAX.	Unit
put voltage, high	VIH1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P140 to P147	Normal input buffer	0.8 EVDD0		EVDD0	V
	VIH2	P01, P03, P04, P10, P14 to P17, P30, P43, P44, P50, P53 to P55,	TTL input buffer $4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	2.2		EVDD0	V
		P80, P81, P142, P143	TTL input buffer 3.3 V ≤ EV _{DD0} < 4.0 V	2.0		EVDD0	V
Vi			TTL input buffer $2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V}$	1.5		EVDD0	V
	Vінз	P20 to P27, P150 to P156	·	0.7 Vdd		Vdd	V
	VIH4	P60 to P63		0.7 EVDD0		6.0	V
	Vih5	P121 to P124, P137, EXCLK, EX	0.8 Vdd		Vdd	V	
Input voltage, low	VIL1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P140 to P147	Normal input buffer	0		0.2 EVDD0	V
	VIL2	P01, P03, P04, P10, P14 to P17, P30, P43, P44, P50, P53 to P55,	TTL input buffer $4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	0		0.8	V
		P80, P81, P142, P143	TTL input buffer $3.3 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}$	0		0.5	V
			TTL input buffer $2.4 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V}$	0		0.32	V
	VIL3	P20 to P27, P150 to P156		0		0.3 Vdd	V
	VIL4	P60 to P63		0		0.3 EVDD0	V
	VIL5	P121 to P124, P137, EXCLK, EX	CLKS, RESET	0		0.2 Vdd	V

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

(3/5)

Caution The maximum value of VIH of pins P00, P02 to P04, P10, P11, P13 to P15, P17, P30, P43 to P45, P50 to P55, P71, P74, P80 to P82, and P142 to P144 is EVDD0, even in the N-ch open-drain mode.

Items	Symbol	Condition	IS	MIN.	TYP.	MAX.	Unit
Output voltage, high	Voh1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57,	4.0 V ≤ EVDD0 ≤ 5.5 V, Іон1 = -3.0 mA	EVDD0 - 0.7			V
		P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110,	2.7 V ≤ EVDD0 ≤ 5.5 V, Іон1 = -2.0 mA	EVDD0 - 0.6			V
		P111, P120, P130, P140 to P147	2.4 V ≤ EVDD0 ≤ 5.5 V, Іон1 = -1.5 mA	EVDD0 - 0.5	0.7		V
	Voh2	P20 to P27, P150 to P156	2.4 V ≤ Vdd ≤ 5.5 V, Ioh2 = -100 μA	Vdd - 0.5			V
Output voltage, low VoL1	VOL1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57,	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ IOL1 = 8.5 mA			0.7	V
		P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110,	$2.7 \text{ V} \le \text{EVDD0} \le 5.5 \text{ V},$ IOL1 = 3.0 mA			0.6	V
		P111, P120, P130, P140 to P147	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ IOL1 = 1.5 mA	·		0.4	V
			$2.4 \text{ V} \le \text{EVDD0} \le 5.5 \text{ V},$ IOL1 = 0.6 mA			0.4	V
	Vol2	P20 to P27, P150 to P156	$\begin{array}{l} 2.4 \ V \leq V \ \text{DD} \leq 5.5 \ \text{V}, \\ I \ \text{OL2} = 400 \ \mu A \end{array}$			0.4	V
	Vol3	P60 to P63	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ IOL3 = 15.0 mA			2.0	V
			$4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ $I_{\text{OL3}} = 5.0 \text{ mA}$			0.4	V
			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ IOL3 = 3.0 mA			0.4	V
			$2.4 \text{ V} \le \text{EVDD0} \le 5.5 \text{ V},$ IOL3 = 2.0 mA			0.4	V

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

(4/5)

Caution P00, P02 to P04, P10, P11, P13 to P15, P17, P30, P43 to P45, P50 to P55, P71, P74, P80 to P82, P142 to P144 do not output high level in N-ch open-drain mode.

Items	Symbol	Condit	ions		MIN.	TYP.	MAX.	Unit
Input leakage current, high	ILIH1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P140 to P147	VI = EVDDO)			1	μA
	ILIH2	P20 to P27, P137, P150 to P156, RESET	VI = VDD				1	μA
	Іцнз	P121 to P124 (X1, X2, EXCLK, XT1, XT2, EXCLKS)	VI = VDD	In input port or external clock input			1	μA
				In resonator connection			10	μA
Input leakage current, low	ILIL1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P140 to P147	VI = EVsso				-1	μΑ
	ILIL2	P20 to P27, P137, P150 to P156, RESET	VI = Vss				-1	μA
	ILIL3	P121 to P124 (X1, X2, EXCLK, XT1, XT2, EXCLKS)	VI = VSS	In input port or external clock input			-1	μA
				In resonator connection			-10	μA
On-chip pull-up resistance	Ru	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P140 to P147	VI = EVsso	, In input port	10	20	100	kΩ

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

(5/5)

3.3.2 Supply current characteristics

(1) Flash ROM: 16 to 64 KB of 30- to 64-pin products

(TA = -40 to +105°C, 2.4 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVsso = 0 V)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply	IDD1	Operating	HS (high-speed main)	fносо = 64 MHz,	Basic	V _{DD} = 5.0 V		2.4		mA
current Note 1		mode	mode Note 5	fiH = 32 MHz Note 3	operation	VDD = 3.0 V		2.4		
NOTE 1				fносо = 32 MHz,	Basic	VDD = 5.0 V		2.1		1
				fiн = 32 MHz Note 3	operation	VDD = 3.0 V		2.1		
			HS (high-speed main)	fносо = 64 MHz,	Normal	VDD = 5.0 V		5.1	9.3	mA
			mode Note 5	fiH = 32 MHz Note 3	operation	VDD = 3.0 V		5.1	9.3	
				fносо = 32 MHz,	Normal	VDD = 5.0 V		4.8	8.7	
				fiH = 32 MHz Note 3	operation	VDD = 3.0 V		4.8	8.7	
				fносо = 48 MHz,	Normal	VDD = 5.0 V		4.0	7.3	
				fiH = 24 MHz Note 3	operation	VDD = 3.0 V		4.0	7.3	
				fносо = 24 MHz,	Normal	VDD = 5.0 V		3.8	6.7	mA
				fiH = 24 MHz Note 3	operation	VDD = 3.0 V		3.8	6.7	
			HS (high-speed main) mode ^{Note 5}	fносо = 16 MHz, fiн = 16 MHz ^{Note 3}	Normal operation	VDD = 5.0 V		2.8	4.9	
						V _{DD} = 3.0 V		2.8	4.9	
				f _{MX} = 20 MHz ^{Note 2} , V _{DD} = 5.0 V	Normal operation	Square wave input		3.3	5.7	
						Resonator connection		3.4	5.8	
				fmx = 20 MHz ^{Note 2} , VDD = 3.0 V	Normal operation	Square wave input		3.3	5.7	
						Resonator connection		3.4	5.8	
				f _{MX} = 10 MHz ^{Note 2} ,	Normal	Square wave input		2.0	3.4	
				VDD = 5.0 V	operation	Resonator connection		2.1	3.5	
				f _{MX} = 10 MHz ^{Note 2} ,	Normal	Square wave input		2.0	3.4	
				VDD = 3.0 V	operation	Resonator connection		2.1	3.5	
			Subsystem clock operation	fsub = 32.768 kHz ^{Note 4} TA = -40°C	Normal operation	Square wave input		4.7	6.1	μA
						Resonator connection		4.7	6.1	
				fsue = 32.768 kHz ^{Note 4}	Normal	Square wave input		4.7	6.1	
				TA = +25°C	operation	Resonator connection		4.7	6.1	
				fsue = 32.768 kHz Note 4	Normal	Square wave input		4.8	6.7	
				T _A = +50°C	operation	Resonator connection		4.8	6.7	
				fsue = 32.768 kHz ^{Note 4}	Normal	Square wave input		4.8	7.5	
				T _A = +70°C	operation	Resonator connection		4.8	7.5	
				fs∪B = 32.768 kHz ^{Note 4} TA = +85°C	Normal operation	Square wave input		5.4	8.9	
						Resonator connection		5.4	8.9	
				fsue = 32.768 kHz Note 4	Normal	Square wave input		7.2	21.0	
					T _A = +105°C	operation	Resonator connection		7.3	21.1

(Notes and Remarks are listed on the next page.)

(1/2)

Note 1.	 Total current flowing into VDD and EVDD0, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0 or Vss, EVSs0. The following points apply in the HS (high-speed main) mode. The currents in the "TYP." column do not include the operating currents of the peripheral modules. The currents in the "MAX." column include the operating currents of the peripheral modules, except for those flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten. In the subsystem clock operation, the currents in both the "TYP." and "MAX." columns do not include the operating currents of the peripheral modules.
Note 2.	When high-speed on-chip oscillator and subsystem clock are stopped.
Note 3.	When high-speed system clock and subsystem clock are stopped.
Note 4.	When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation).
Note 5.	Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.HS (high-speed main) mode: $2.7 V \le V_{DD} \le 5.5 V@1 MHz$ to $32 MHz$ $2.4 V \le V_{DD} \le 5.5 V@1 MHz$ to $16 MHz$

- **Remark 1.** fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHoco: High-speed on-chip oscillator clock frequency (64 MHz max.)
- Remark 3. fill: High-speed on-chip oscillator clock frequency (32 MHz max.)
- **Remark 4.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- **Remark 5.** Except subsystem clock operation, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

bl		Conditions		MIN.	TYP.	MAX.	Unit
HALT mode	HS (high-speed main)	fносо = 64 MHz,	VDD = 5.0 V		0.80	4.36	mA
	mode Note 6	fiн = 32 MHz Note 4	VDD = 3.0 V		0.80	4.36	
		fносо = 32 MHz,	VDD = 5.0 V		0.49	3.67	
		fiн = 32 MHz Note 4	VDD = 3.0 V		0.49	3.67	
		fносо = 48 MHz,	VDD = 5.0 V		0.62	3.42	
		fiH = 24 MHz Note 4	VDD = 3.0 V		0.62	3.42	
		fносо = 24 MHz,	VDD = 5.0 V		0.4	2.85	
		fiн = 24 MHz Note 4	VDD = 3.0 V		0.4	2.85	
		fносо = 16 MHz,	VDD = 5.0 V		0.37	2.08	
		fiн = 16 MHz Note 4	VDD = 3.0 V		0.37	2.08	
	HS (high-speed main)	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.28	2.45	mA
	mode Note 6	Vdd = 5.0 V	Resonator connection		0.40	2.57	
		f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.28	2.45	
		VDD = 3.0 V	Resonator connection		0.40	2.57	
		f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.19	1.28	
		VDD = 5.0 V	Resonator connection		0.25	1.36	
		f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.19	1.28	
		VDD = 3.0 V	Resonator connection		0.25	1.36	
	Subsystem clock	fsue = 32.768 kHz ^{Note 5} ,	Square wave input		0.25	0.57	μA
	operation	T _A = -40°C	Resonator connection		0.44	0.76	
		fs∪в = 32.768 kHz ^{Note 5} ,	Square wave input		0.30	0.57	
		TA = +25°C	Resonator connection		0.49	0.76	
		fs∪в = 32.768 kHz ^{Note 5} ,	Square wave input		0.36	1.17	
		T _A = +50°C	Resonator connection		0.59	1.36	
		fsue = 32.768 kHz ^{Note 5} ,	Square wave input		0.49	1.97	
		T _A = +70°C	Resonator connection		0.72	2.16	
		fsuB = 32.768 kHz ^{Note 5} ,	Square wave input		0.97	3.37	
		T _A = +85°C	Resonator connection		1.16	3.56	
		fs∪в = 32.768 kHz ^{Note 5} ,	Square wave input		3.20	17.10	
		T _A = +105°C	Resonator connection		3.40	17.50	
STOP mode	TA = -40°C				0.18	0.51	μA
Note /	TA = +25°C				0.24	0.51	
	TA = +50°C				0.29	1.10	
	TA = +70°C				0.41	1.90	
	T _A = +85°C				0.90	3.30	
	STOP mode Note 7	Note 7 $T_A = +25^{\circ}C$ $T_A = +50^{\circ}C$ $T_A = +70^{\circ}C$	Note 7 $T_A = +25^{\circ}C$ $T_A = +50^{\circ}C$ $T_A = +70^{\circ}C$ $T_A = +85^{\circ}C$	Note 7 $T_A = +25^{\circ}C$ $T_A = +50^{\circ}C$ $T_A = +70^{\circ}C$ $T_A = +85^{\circ}C$	Note 7 $T_A = +25^{\circ}C$ $T_A = +50^{\circ}C$ $T_A = +70^{\circ}C$ $T_A = +85^{\circ}C$	Note 7 $T_A = +25^{\circ}C$ 0.24 $T_A = +50^{\circ}C$ 0.29 $T_A = +70^{\circ}C$ 0.41 $T_A = +85^{\circ}C$ 0.90	Note 7 $T_A = +25^{\circ}C$ 0.24 0.51 $T_A = +50^{\circ}C$ 0.29 1.10 $T_A = +70^{\circ}C$ 0.41 1.90 $T_A = +85^{\circ}C$ 0.90 3.30

(1) Flash ROM: 16 to 64 KB of 30- to 64-pin products

(Notes and $\ensuremath{\textit{Remarks}}$ are listed on the next page.)

Note 4

Note 1.	Total current flowing into VDD and EVDD0, including the input leakage current flowing when the level of the input pin is
	fixed to VDD, EVDD0 or Vss, EVss0. The following points apply in the HS (high-speed main) mode.
	 The currents in the "TYP." column do not include the operating currents of the peripheral modules.
	• The currents in the "MAX." column include the operating currents of the peripheral modules, except for those flowing
	into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data
	flash memory is being rewritten.
	In the subsystem clock operation, the currents in both the "TYP." and "MAX." columns do not include the operating
	currents of the peripheral modules. However, in HALT mode, including the current flowing into the RTC.
	In the STOP mode, the currents in both the "TYP." and "MAX." columns do not include the operating currents of the
	peripheral modules.
Note 2.	During HALT instruction execution by flash memory.
Note 3.	When high-speed on-chip oscillator and subsystem clock are stopped.
Note 4.	When high-speed system clock and subsystem clock are stopped.
Note 5.	When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low
	current consumption (AMPHS1 = 1).
Note 6.	Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
	HS (high-speed main) mode: $2.7 \text{ V} \le \text{Vdd} \le 5.5 \text{ V}$ @1 MHz to 32 MHz
	2.4 V \leq Vdd \leq 5.5 V@1 MHz to 16 MHz
Note 7.	Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.

Total surrent flowing into Voc and EVoca including the input lackage surrent flowing when the level of the input nin is

Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)

Remark 2. fHOCO: High-speed on-chip oscillator clock frequency (64 MHz max.)

Remark 3. fil: High-speed on-chip oscillator clock frequency (32 MHz max.)

Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)

Remark 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

Parameter	Symbol	1	-	$l \leq VDD \leq 5.5 V, VSS$		/	MIN.	TYP.	MAX.	(1/2 Uni
Supply		Operating	HS (high-speed main)	fносо = 64 MHz,	Basic	VDD = 5.0 V	iviira.	2.6	WIAA.	mA
current	ועטו	mode	mode Note 5	$f_{\text{IH}} = 32 \text{ MHz} \text{ Note } 3$	operation	VDD = 3.0 V		2.0		
Note 1				fносо = 32 MHz,	Basic	VDD = 5.0 V		2.3		-
				$f_{\text{IH}} = 32 \text{ MHz} \text{ Note } 3$	operation	$V_{DD} = 3.0 V$		2.3		
			HS (high-speed main)	fносо = 64 MHz,	Normal	VDD = 5.0 V		5.4	10.9	m/
			mode Note 5	$f_{IH} = 32 \text{ MHz} \text{ Note } 3$	operation	VDD = 3.0 V		5.4	10.9	
				fносо = 32 MHz,	Normal	V _{DD} = 5.0 V		5.0	10.3	
				$f_{IH} = 32 \text{ MHz} \text{ Note } 3$	operation	VDD = 3.0 V		5.0	10.3	
				fносо = 48 MHz,	Normal	VDD = 5.0 V		4.2	8.2	-
				fih = 24 MHz Note 3	operation	VDD = 3.0 V		4.2	8.2	-
				fносо = 24 MHz,	Normal	V _{DD} = 5.0 V		4.0	7.8	-
				fih = 24 MHz Note 3	operation	VDD = 3.0 V		4.0	7.8	-
				fносо = 16 MHz,	Normal	VDD = 5.0 V		3.0	5.6	
				fiн = 16 MHz Note 3	operation	VDD = 3.0 V		3.0	5.6	
			HS (high-speed main)	fmx = 20 MHz Note 2,	Normal	Square wave input		3.4	6.6	m
			mode Note 5	VDD = 5.0 V	operation	Resonator connection		3.6	6.7	
				f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		3.4	6.6	1
				VDD = 3.0 V	operation	Resonator connection		3.6	6.7	
				f _{MX} = 10 MHz ^{Note 2} ,	Normal	Square wave input		2.1	3.9	
				VDD = 5.0 V	operation	Resonator connection		2.2	4.0	
				f _{MX} = 10 MHz ^{Note 2} ,	Normal	Square wave input		2.1	3.9	
				VDD = 3.0 V	operation	Resonator connection		2.2	4.0	
			Subsystem clock	fsub = 32.768 kHz Note 4	Normal	Square wave input		4.9	7.1	μ
			operation	TA = -40°C	operation	Resonator connection		4.9	7.1	
				fsue = 32.768 kHz Note 4	Normal	Square wave input		4.9	7.1	
				TA = +25°C	operation	Resonator connection		4.9	7.1	
				fsue = 32.768 kHz Note 4	Normal	Square wave input		5.1	8.8	
				TA = +50°C	operation	Resonator connection		5.1	8.8	
				fsue = 32.768 kHz Note 4	Normal	Square wave input		5.5	10.5	
				TA = +70°C	operation	Resonator connection		5.5	10.5	
				fsue = 32.768 kHz Note 4	Normal	Square wave input		6.5	14.5	
				TA = +85°C	operation	Resonator connection		6.5	14.5	
				fsue = 32.768 kHz Note 4	Normal	Square wave input		13.0	58.0	1
				TA = +105°C	operation	Resonator connection		13.0	58.0	1

(2) Flash ROM: 96 to 256 KB of 30- to 100-pin products

(Notes and Remarks are listed on the next page.)

Note 1.	Total current flowing into VDD, EVDD0, and EVDD1, including the input leakage current flowing when the level of the input
	pin is fixed to VDD, EVDD0, and EVDD1, or Vss, EVss0, and EVss1. The following points apply in the HS (high-speed main)
	mode.

- The currents in the "TYP." column do not include the operating currents of the peripheral modules.
- The currents in the "MAX." column include the operating currents of the peripheral modules, except for those flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.

In the subsystem clock operation, the currents in both the "TYP." and "MAX." columns do not include the operating currents of the peripheral modules. However, in HALT mode, including the current flowing into the RTC.

- Note 2. When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 3. When high-speed system clock and subsystem clock are stopped.
- **Note 4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation).
- Note 5.Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
HS (high-speed main) mode: $2.7 V \le V_{DD} \le 5.5 V@1$ MHz to 32 MHz
 $2.4 V \le V_{DD} \le 5.5 V@1$ MHz to 16 MHz
- Remark 1. fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHOCO: High-speed on-chip oscillator clock frequency (64 MHz max.)
- Remark 3. fill: High-speed on-chip oscillator clock frequency (32 MHz max.)
- Remark 4. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)									(2/2)
Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	Idd2	HALT mode	HS (high-speed main)	fносо = 64 MHz,	VDD = 5.0 V		0.79	4.86	mA
urrent Note 1	Note 2		mode Note 6	fiн = 32 MHz ^{Note 4}	VDD = 3.0 V		0.79	4.86]
				fносо = 32 MHz,	VDD = 5.0 V		0.49	4.17	
				fiн = 32 MHz ^{Note 4}	VDD = 3.0 V		0.49	4.17]
				fносо = 48 MHz,	VDD = 5.0 V		0.62	3.82	1
				fiн = 24 MHz Note 4	VDD = 3.0 V		0.62	3.82	
				fносо = 24 MHz,	VDD = 5.0 V		0.4	3.25	1
				fiн = 24 MHz ^{Note 4}	VDD = 3.0 V		0.4	3.25	1
				fносо = 16 MHz,	VDD = 5.0 V		0.38	2.28	1
				fiн = 16 MHz ^{Note 4}	VDD = 3.0 V		0.38	2.28	1
			HS (high-speed main)	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.30	2.65	mA
			mode Note 6	VDD = 5.0 V	Resonator connection		0.40	2.77	1
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.30	2.65	1
				VDD = 3.0 V	Resonator connection		0.40	2.77	1
				f _{MX} = 10 MHz Note 3,	Square wave input		0.20	1.36	1
				Vdd = 5.0 V	Resonator connection		0.25	1.46	1
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.20	1.36	1
				VDD = 3.0 V	Resonator connection		0.25	1.46	1
			Subsystem clock	fsue = 32.768 kHz Note 5,	Square wave input		0.28	0.66	μA
			operation	TA = -40°C	Resonator connection		0.47	0.85	1
				fsue = 32.768 kHz Note 5,	Square wave input		0.34	0.66	1
				TA = +25°C	Resonator connection		0.53	0.85	1
				fs∪в = 32.768 kHz ^{Note 5} ,	Square wave input		0.37	2.35	1
				TA = +50°C	Resonator connection		0.56	2.54	1
				fsue = 32.768 kHz Note 5,	Square wave input		0.61	4.08	1
				TA = +70°C	Resonator connection		0.80	4.27	1
				fsue = 32.768 kHz Note 5,	Square wave input		1.55	8.09	1
				TA = +85°C	Resonator connection		1.74	8.28	1
				fsue = 32.768 kHz Note 5,	Square wave input		6.00	51.00	1
				TA = +105°C	Resonator connection		6.00	51.00	1
	IDD3	STOP mode	TA = -40°C				0.19	0.57	μA
		Note 7	TA = +25°C				0.25	0.57	1
			TA = +50°C				0.33	2.26	1
			T _A = +70°C				0.52	3.99	1
			TA = +85°C				1.46	8.00	1
			T _A = +105°C				5.50	50.00	1

(2) Flash ROM: 96 to 256 KB of 30- to 100-pin products

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

(2/2)

(Notes and Remarks are listed on the next page.)

- Note 1. Total current flowing into VDD, EVDD0, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0, and EVDD1, or Vss, EVss0, and EVss1. The following points apply in the HS (high-speed main) mode.
 - The currents in the "TYP." column do not include the operating currents of the peripheral modules.
 - The currents in the "MAX." column include the operating currents of the peripheral modules, except for those flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.

In the subsystem clock operation, the currents in both the "TYP." and "MAX." columns do not include the operating currents of the peripheral modules. However, in HALT mode, including the current flowing into the RTC.

In the STOP mode, the currents in both the "TYP." and "MAX." columns do not include the operating currents of the peripheral modules.

- **Note 2.** During HALT instruction execution by flash memory.
- Note 3. When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 4. When high-speed system clock and subsystem clock are stopped.
- **Note 5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1).
- Note 6.Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.HS (high-speed main) mode: $2.7 V \le V DD \le 5.5 V @1 MHz$ to 32 MHz

2.4 V \leq VDD \leq 5.5 V@1 MHz to 16 MHz

Note 7. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.

Remark 1. fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)

- Remark 2. fHOCO: High-speed on-chip oscillator clock frequency (64 MHz max.)
- Remark 3. fill: High-speed on-chip oscillator clock frequency (32 MHz max.)
- **Remark 4.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Uni
Supply	IDD1	Operating	HS (high-speed main)	fносо = 64 MHz,	Basic	VDD = 5.0 V		2.9		mA
current		mode	mode Note 5	fiн = 32 MHz Note 3	operation	VDD = 3.0 V		2.9		
Note 1				fносо = 32 MHz,	Basic	VDD = 5.0 V		2.5		1
				fiH = 32 MHz Note 3	operation	VDD = 3.0 V		2.5		-
			HS (high-speed main)	fносо = 64 MHz,	Normal	VDD = 5.0 V		6.0	11.2	mA
			mode Note 5	fiH = 32 MHz Note 3	operation	VDD = 3.0 V		6.0	11.2	1
				fносо = 32 MHz,	Normal	VDD = 5.0 V		5.5	10.6	1
				fiн = 32 MHz Note 3	operation	VDD = 3.0 V		5.5	10.6	1
				fносо = 48 MHz,	Normal	VDD = 5.0 V		4.7	8.6	
				fiH = 24 MHz Note 3	operation	VDD = 3.0 V		4.7	8.6	
				fносо = 24 MHz,	Normal	Vdd = 5.0 V		4.4	8.2	1
				fiH = 24 MHz Note 3	operation	VDD = 3.0 V		4.4	8.2	
				fносо = 16 MHz,	Normal	VDD = 5.0 V		3.3	5.9	1
				fiH = 16 MHz Note 3	operation	VDD = 3.0 V		3.3	5.9	
			HS (high-speed main)	fmx = 20 MHz Note 2,	Normal	Square wave input		3.7	6.8	m
			mode Note 5	VDD = 5.0 V	operation	Resonator connection		3.9	7.0	
				f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		3.7	6.8	
				VDD = 3.0 V	operation	Resonator connection		3.9	7.0	
				f _{MX} = 10 MHz ^{Note 2} ,	Normal	Square wave input		2.3	4.1	1
				VDD = 5.0 V	operation	Resonator connection		2.3	4.2	
				f _{MX} = 10 MHz Note 2,	Normal	Square wave input		2.3	4.1	
				VDD = 3.0 V	operation	Resonator connection		2.3	4.2	
			Subsystem clock	fsue = 32.768 kHz Note 4	Normal	Square wave input		5.2	7.7	μ
			operation	TA = -40°C	operation	Resonator connection		5.2	7.7	1
				fsue = 32.768 kHz Note 4	Normal	Square wave input		5.3	7.7	
				TA = +25°C	operation	Resonator connection		5.3	7.7	
				fsue = 32.768 kHz Note 4	Normal	Square wave input		5.5	10.6	
				TA = +50°C	operation	Resonator connection		5.5	10.6	
				fsue = 32.768 kHz Note 4	Normal	Square wave input		5.9	13.2	
				TA = +70°C	operation	Resonator connection		6.0	13.2	
				fsue = 32.768 kHz Note 4	Normal	Square wave input		6.8	17.5	
				TA = +85°C	operation	Resonator connection	1	6.9	17.5	1
				fsub = 32.768 kHz Note 4	Normal	Square wave input		15.5	77.8	1
				TA = +105°C	operation	Resonator connection		15.5	77.8	1

(3) Flash ROM: 384 to 512 KB of 48- to 100-pin products

(Notes and Remarks are listed on the next page.)

Note 1.	Total current flowing into VDD, EVDD0, and EVDD1, including the input leakage current flowing when the level of the input
	pin is fixed to VDD, EVDD0, and EVDD1, or Vss, EVss0, and EVss1. The following points apply in the HS (high-speed main)
	mode.

- The currents in the "TYP." column do not include the operating currents of the peripheral modules.
- The currents in the "MAX." column include the operating currents of the peripheral modules, except for those flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.

In the subsystem clock operation, the currents in both the "TYP." and "MAX." columns do not include the operating currents of the peripheral modules. However, in HALT mode, including the current flowing into the RTC.

- Note 2. When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 3. When high-speed system clock and subsystem clock are stopped.
- **Note 4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation).
- Note 5.Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
HS (high-speed main) mode: $2.7 V \le V_{DD} \le 5.5 V@1$ MHz to 32 MHz
 $2.4 V \le V_{DD} \le 5.5 V@1$ MHz to 16 MHz
- Remark 1. fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHOCO: High-speed on-chip oscillator clock frequency (64 MHz max.)
- Remark 3. fill: High-speed on-chip oscillator clock frequency (32 MHz max.)
- Remark 4. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

		0, 2.4 7 3 1		$DD \leq 5.5 V, Vss = EVs$					(2/
Parameter	Symbol		i	Conditions	÷	MIN.	TYP.	MAX.	Uni
Supply	IDD2 Note 2	HALT mode	HS (high-speed main)	fHoco = 64 MHz,	VDD = 5.0 V		0.93	5.16	mA
urrent Note 1	Note 2		mode Note 6	fiH = 32 MHz Note 4	VDD = 3.0 V		0.93	5.16	
				fhoco = 32 MHz,	VDD = 5.0 V		0.5	4.47	
				fiH = 32 MHz Note 4	VDD = 3.0 V		0.5	4.47	
				fносо = 48 MHz,	VDD = 5.0 V		0.72	4.08	
				fiH = 24 MHz Note 4	VDD = 3.0 V		0.72	4.08	
				fносо = 24 MHz,	VDD = 5.0 V		0.42	3.51	
				fiн = 24 MHz ^{Note 4}	VDD = 3.0 V		0.42	3.51	
				fносо = 16 MHz,	V _{DD} = 5.0 V		0.39	2.38	
				fiн = 16 MHz ^{Note 4}	VDD = 3.0 V		0.39	2.38	
			HS (high-speed main)	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.31	2.83	m/
			mode Note 6	V _{DD} = 5.0 V	Resonator connection		0.41	2.92	
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.31	2.83	
				VDD = 3.0 V	Resonator connection		0.41	2.92	
				f _{MX} = 10 MHz Note 3,	Square wave input		0.21	1.46	
				Vdd = 5.0 V	Resonator connection		0.26	1.57	
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.21	1.46	
				VDD = 3.0 V	Resonator connection		0.26	1.57	
			Subsystem clock	fsue = 32.768 kHz ^{Note 5} ,	Square wave input		0.31	0.76	μA
			operation	TA = -40°C	Resonator connection		0.50	0.95	
			fsue = 32.768 kHz ^{Note 5} ,	Square wave input		0.38	0.76		
				TA = +25°C	Resonator connection		0.57	0.95	
				fs∪в = 32.768 kHz ^{Note 5} ,	Square wave input		0.47	3.59	
				TA = +50°C	Resonator connection		0.70	3.78	
				fsue = 32.768 kHz Note 5,	Square wave input		0.80	6.20	
				TA = +70°C	Resonator connection		1.00	6.39	
				fsue = 32.768 kHz Note 5,	Square wave input		1.65	10.56	
				TA = +85°C	Resonator connection		1.84	10.75	
				fsub = 32.768 kHz Note 5,	Square wave input		8.00	65.7	
				TA = +105°C	Resonator connection		8.00	65.7	
	IDD3	STOP mode	TA = -40°C				0.19	0.63	μA
		Note 7	TA = +25°C				0.30	0.63	
			T _A = +50°C				0.41	3.47	
			T _A = +70°C				0.80	6.08	
			T _A = +85°C				1.53	10.44	1
			T _A = +105°C				6.50	67.14	-

(3) Flash ROM: 384 to 512 KB of 48- to 100-pin products

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

(2/2)

(Notes and Remarks are listed on the next page.)

- Note 1. Total current flowing into VDD, EVDD0, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0, and EVDD1, or Vss, EVss0, and EVss1. The following points apply in the HS (high-speed main) mode.
 - The currents in the "TYP." column do not include the operating currents of the peripheral modules.
 - The currents in the "MAX." column include the operating currents of the peripheral modules, except for those flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.

In the subsystem clock operation, the currents in both the "TYP." and "MAX." columns do not include the operating currents of the peripheral modules. However, in HALT mode, including the current flowing into the RTC.

In the STOP mode, the currents in both the "TYP." and "MAX." columns do not include the operating currents of the peripheral modules.

- **Note 2.** During HALT instruction execution by flash memory.
- Note 3. When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 4. When high-speed system clock and subsystem clock are stopped.
- **Note 5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1).
- Note 6.Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.HS (high-speed main) mode: $2.7 V \le V D D \le 5.5 V @1 MHz$ to 32 MHz

2.4 V \leq VDD \leq 5.5 V@1 MHz to 16 MHz

Note 7. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.

Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)

- Remark 2. fHOCO: High-speed on-chip oscillator clock frequency (64 MHz max.)
- Remark 3. file: High-speed on-chip oscillator clock frequency (32 MHz max.)
- **Remark 4.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

Parameter	Symbol	Condit	ions	MIN.	TYP.	MAX.	Unit
Low-speed on-chip oscillator operating current	I _{FIL} Note 1				0.20		μA
RTC operating current	IRTC Notes 1, 2, 3				0.02		μA
12-bit interval timer operating current	IIT Notes 1, 2, 4				0.02		μA
Watchdog timer operating current	I _{WDT} Notes 1, 2, 5	fi∟ = 15 kHz			0.22		μA
A/D converter operating current	IADC Notes 1, 6	When conversion at maximum speed	Normal mode, AVREFP = VDD = 5.0 V		1.3	1.7	mA
			Low voltage mode, AVREFP = VDD = 3.0 V		0.5	0.7	mA
A/D converter reference voltage current	IADREF Note 1				75.0		μA
Temperature sensor operating current	ITMPS Note 1				75.0		μA
D/A converter operating current	IDAC Notes 1, 11, 13	Per D/A converter channel				1.5	mA
Comparator operating	I _{CMP} Notes 1, 12, 13	VDD = 5.0 V,	Window mode		12.5		μA
current		Regulator output voltage = 2.1 V	Comparator high-speed mode		6.5		μA
			Comparator low-speed mode		1.7		μA
		VDD = 5.0 V,	Window mode		8.0		μA
		Regulator output voltage = 1.8 V	Comparator high-speed mode		4.0		μA
			Comparator low-speed mode		1.3		μA
LVD operating current	ILVD Notes 1, 7				0.08		μA
Self-programming operating current	IFSP Notes 1, 9				2.50	12.20	mA
BGO operating current	IBGO Notes 1, 8				2.50	12.20	mA
SNOOZE operating current	ISNOZ Note 1	ADC operation	The mode is performed Note 10		0.50	1.10	mA
			The A/D conversion operations are performed, Low voltage mode, AV _{REFP} = V _{DD} = 3.0 V		1.20	2.04	
	5	Simplified SPI (CSI)/UART operation			0.70	1.54	
		DTC operation			3.10		

(4) Peripheral Functions (Common to all products)

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Note 1. Current flowing to VDD.

Note 2. When high speed on-chip oscillator and high-speed system clock are stopped.

- Note 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock.
- Note 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
- Note 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer is in operation.

Note 7. Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.

RENESAS

Note 6. Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.

- Note 8. Current flowing during programming of the data flash.
- **Note 9.** Current flowing during self-programming.
- Note 10. For shift time to the SNOOZE mode, see 23.3.3 SNOOZE mode in the RL78/G14 User's Manual.
- **Note 11.** Current flowing only to the D/A converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IDAC when the D/A converter operates in an operation mode or the HALT mode.
- **Note 12.** Current flowing only to the comparator circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2, or IDD3 and ICMP when the comparator circuit is in operation.
- Note 13. A comparator and D/A converter are provided in products with 96 KB or more code flash memory.
- Remark 1. fil: Low-speed on-chip oscillator clock frequency
- Remark 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 3. fcLK: CPU/peripheral hardware clock frequency
- Remark 4. Temperature condition of the TYP. value is TA = 25°C

3.4 AC Characteristics

TA = -40 to +105°C,	2.4 V ≤ E	\mathbf{V} DD0 = \mathbf{E} VDD	$1 \leq VDD \leq 5.5 V, VSS$	= EVSS0 = EVSS1 = 0	V)			(1/2
Items	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum instruction execution time)	Тсү	Main system clock (fMAIN) operation	HS (high-speed main) mode	$2.7 \text{ V} \le \text{Vdd} \le 5.5 \text{ V}$ $2.4 \text{ V} \le \text{Vdd} \le 2.7 \text{ V}$	0.03125 0.0625		1	μs μs
		Subsystem clo	ock (fsuв) operation	$2.4~V \leq V_{DD} \leq 5.5~V$	28.5	30.5	31.3	μs
		In the self-	HS (high-speed main)	$2.7 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$	0.03125		1	μs
		programming mode	mode	$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	0.0625		1	μS
External system clock	fEX	$2.7~V \leq V_{DD} \leq$	5.5 V		1.0		20.0	MHz
frequency		$2.4~V \leq V_{DD} \leq$	2.7 V		1.0		16.0	MHz
	fexs				32		35	kHz
External system clock	texн,	$2.7~V \leq V_{DD} \leq$	5.5 V		24			ns
input high-level width,	t EXL	$2.4~V \leq V_{DD} \leq$	2.7 V		30			ns
low-level width	texhs, texls				13.7			μs
TI00 to TI03, TI10 to TI13 input high-level width, low-level width	ttiH, ttiL				1/fмск + 10 Note			ns
Timer RJ input cycle	fc	TRJIO		$2.7 \text{ V} \leq EV\text{DD0} \leq 5.5 \text{ V}$	100			ns
				$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$	300			ns
Timer RJ input high-	tтjiн,	TRJIO		$2.7~V \leq EV_{DD0} \leq 5.5~V$	40			ns
level width, low-level width	t⊤jil			$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} < 2.7 \text{ V}$	120			ns

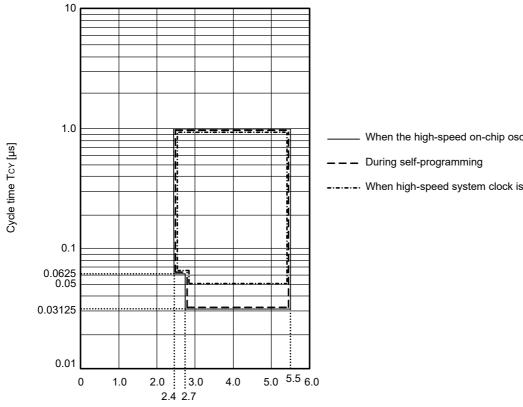
(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

(1/2)

NoteThe following conditions are required for low voltage interface when EVDD0 < VDD2.4 V $\leq EVDD0 < 2.7$ V: MIN. 125 ns

 Remark
 fmck: Timer array unit operation clock frequency

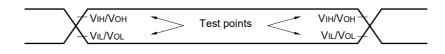
 (Operation clock to be set by the CKSmn bit of timer mode register mn (TMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3))


$(1A = -40 \ 10 + 105 \ C, 2.4 \ V$		$= EVDD1 \leq VDD \leq 5.5 V, VS3$	5 - EV550 - EV551 - 0	V)			(2/2)
Items	Symbol	Conditio	ons	MIN.	TYP.	MAX.	Unit
Timer RD input high-level width, low-level width	tтdiн, tтdi∟	TRDIOA0, TRDIOA1, TRDIOE TRDIOC0, TRDIOC1, TRDIO	, ,	3/fclк			ns
Timer RD forced cutoff signal	TDSIL	P130/INTP0	$2MHz < fclk \le 32 MHz$	1			μs
input low-level width			fclκ ≤ 2 MHz	1/fclк + 1			
Timer RG input high-level width, low-level width	tтGін, tтGі∟	TRGIOA, TRGIOB		2.5/fclk			ns
TO00 to TO03,	fто	HS (high-speed main) mode	$4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$			16	MHz
TO10 to TO13,			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}$			8	MHz
TRJIO0, TRJO0, TRDIOA0, TRDIOA1, TRDIOB0, TRDIOB1, TRDIOC0, TRDIOC1, TRDIOD0, TRDIOD1, TRGIOA, TRGIOB output frequency			2.4 V ≤ EVDD0 < 2.7 V			4	MHz
PCLBUZ0, PCLBUZ1 output	f PCL	HS (high-speed main) mode	$4.0~V \leq EV_{DD0} \leq 5.5~V$			16	MHz
frequency			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 4.0 \text{ V}$			8	MHz
			$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$			4	MHz
Interrupt input high-level	tinth,	INTP0	$2.4~V \leq V_{DD} \leq 5.5~V$	1			μs
width, low-level width	tint L	INTP1 to INTP11	$2.4~V \leq EV_{DD0} \leq 5.5~V$	1			μs
Key interrupt input low-level width	tкr	KR0 to KR7	$2.4 \text{ V} \le \text{EVdd0} \le 5.5 \text{ V}$	250			ns
RESET low-level width	trsl			10			μs

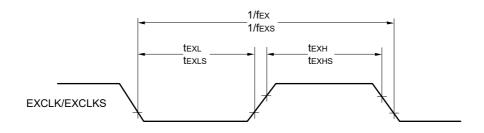
(2/2)

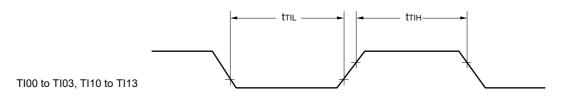
Minimum Instruction Execution Time during Main System Clock Operation

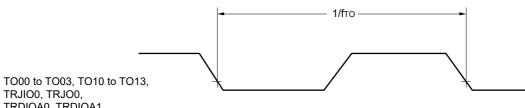
TCY vs VDD (HS (high-speed main) mode)



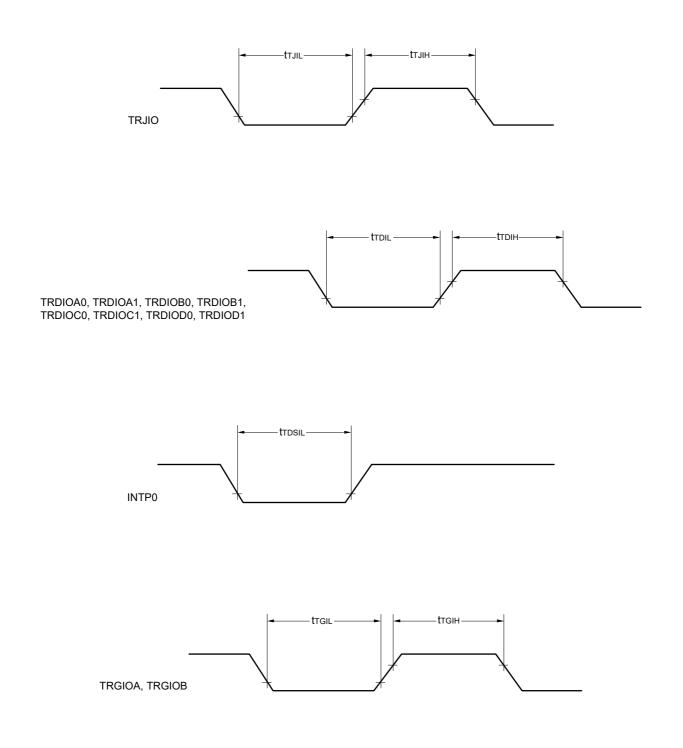
Supply voltage VDD [V]

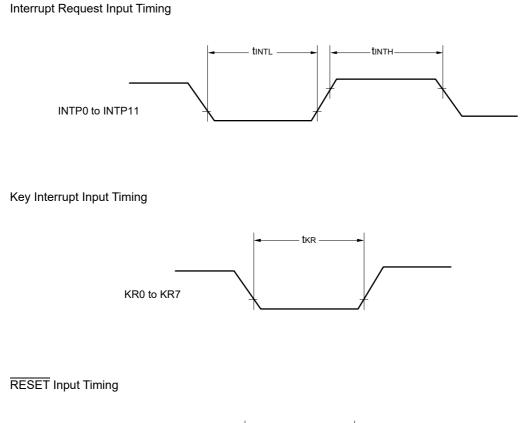

- When the high-speed on-chip oscillator clock is selected
- ----- When high-speed system clock is selected

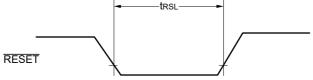

AC Timing Test Points

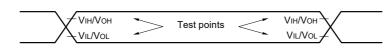


External System Clock Timing


TI/TO Timing




TO00 to TO03, TO10 to TO13 TRJIO0, TRJO0, TRDIOA0, TRDIOA1, TRDIOB0, TRDIOB1, TRDIOC0, TRDIOC1, TRDIOC0, TRDIOC1, TRDIOD0, TRDIOD1, TRGIOA, TRGIOB



3.5 Peripheral Functions Characteristics

AC Timing Test Points

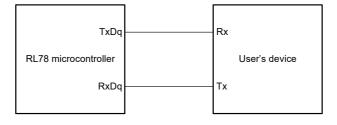
3.5.1 Serial array unit

(1) During communication at same potential (UART mode)

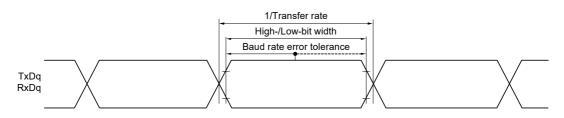
$(Ta = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le EVDD0 = EVDD1 \le 5.5 \text{ V}, \text{ Vss} = EVss0 = EVss1 = 0 \text{ V})$

Parameter	Symbol	Conditions	HS (high-spee	Unit	
			MIN.	MAX.	
Transfer rate Note 1		$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		fмск/12 Note 2	bps
		Theoretical value of the maximum transfer rate fMCK = fCLK Note 3		2.6	Mbps

 Note 1.
 Transfer rate in the SNOOZE mode is 4800 bps only. However, the SNOOZE mode cannot be used when FRQSEL4 = 1.


 Note 2.
 The following conditions are required for low voltage interface when EVDD0 < VDD. 2.4 V ≤ EVDD0 < 2.7 V: MAX. 1.3 Mbps</td>

 Note 3.
 The maximum operating frequencies of the CPU/peripheral hardware clock (fcLk) are: HS (high-speed main) mode: 32 MHz (2.7 V ≤ VDD ≤ 5.5 V)


```
16 MHz (2.4 V \leq VDD \leq 5.5 V)
```

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remark 1. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 5, 14)

Remark 2. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

RENESAS

(2) During communication at same potential (Simplified SPI (CSI) mode) (master mode, SCKp... internal clock output)

T 40 to +405°C			$V_{00} = EV_{000} = EV_{000} = 0.1/$
(I A = -40 to +105 C	$\mathbf{v}, \mathbf{Z}.4 \ \mathbf{V} \leq \mathbf{E} \mathbf{V} \mathbf{D} \mathbf{D} 0 = \mathbf{E} \mathbf{V} \mathbf{D} \mathbf{D} 1$	\leq VDD \leq 5.5 V,	Vss = EVss0 = EVss1 = 0 V

Parameter	Symbol	Conditions			HS (high-speed main) mode	
				MIN.	MAX.	
SCKp cycle time	tксү1	tkcy1 ≥ 4/fcLk	$2.7 \text{ V} \leq \text{Evdd0} \leq 5.5 \text{ V}$	250		ns
			$2.4~\text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5~\text{V}$	500		ns
SCKp high-/low-level width	tĸнı, tĸ∟ı	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		tксү1/2 - 24		ns
		$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		tксү1/2 - 36		ns
		$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		tксү1/2 - 76		ns
SIp setup time (to SCKp↑) ^{Note 1}	tsiк1	$4.0 V \le EV_{DD0} \le 5.5 V$ $2.7 V \le EV_{DD0} \le 5.5 V$		66		ns
				66		ns
		$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} \leq$	5.5 V	113		ns
SIp hold time (from SCKp↑) Note 2	tksi1			38		ns
Delay time from SCKp↓ to SOp output ^{Note 3}	tkso1	C = 30 pF Note 4	4		50	ns

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SCKp and SOp output lines.

- Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).
- **Remark 1.** p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 3 to 5, 14)

Remark 2. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

(3) During communication at same potential (Simplified SPI (CSI) mode) (slave mode, SCKp... external clock input)

$(1A = -40 \ 10 \ 103 \ 0, 2.4 \ 0 \le 1000)$. = =		• • • •		(1/2)
Parameter	Symbol	Cond	ditions	HS (high-speed	l main) mode	Unit
				MIN.	MAX.	
SCKp cycle time Note 5	tксү2	$4.0~V \leq EV_{DD0} \leq 5.5~V$	20 MHz < fмск	16/f мск		ns
			fмск ≤ 20 MHz	12/fмск		ns
		$2.7~V \leq EV_{DD0} \leq 5.5~V$	16 MHz < fмск	16/fмск		ns
			fмск ≤ 16 MHz	12/fмск		ns
		$2.4~V \leq EV_{DD0} \leq 5.5~V$		12/fмск and 1000		ns
SCKp high-/low-level width	tkh2, tkl2	$4.0~V \leq EV_{DD0} \leq 5.5~V$		tксү2/2 - 14		ns
		$2.7~V \leq EV_{DD0} \leq 5.5~V$		tĸcy2/2 - 16		ns
		$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		tkcy2/2 - 36		ns
SIp setup time (to SCKp↑) ^{Note 1}	tsıĸ2	$2.7~V \leq EV_{DD0} \leq 5.5~V$		1/fмск + 40		ns
		$2.4~V \leq EV_{DD0} \leq 5.5~V$		1/fмск + 60		ns
SIp hold time (from SCKp [↑]) Note 2	tksi2			1/fмск + 62		ns
Delay time from SCKp↓ to SOp output ^{Note 3}	tĸso2	C = 30 pF Note 4	$2.7~V \leq EV_{DD0} \leq 5.5~V$		2/fмск + 66	ns
			$2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		2/fмск + 113	ns

input) (TA = -40 to +105°C, 2.4 V ≤ EVDD0 = EVDD1 ≤ VDD ≤ 5.5 V. Vss = EVss0 = EVss1 = 0 V)

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SOp output lines.

Note 5. The maximum transfer rate when using the SNOOZE mode is 1 Mbps.

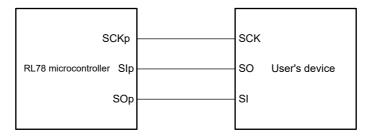
Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1),

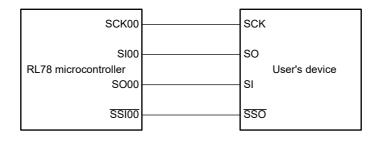
n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 3 to 5, 14)

Remark 2. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

(1/2)

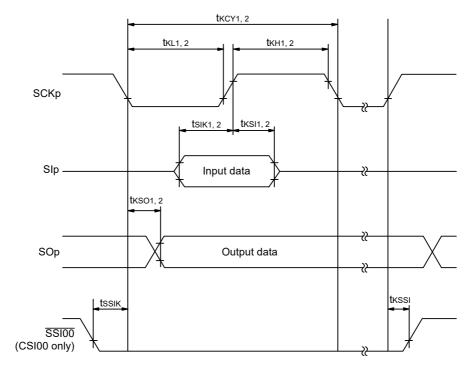

(3) During communication at same potential (Simplified SPI (CSI) mode) (slave mode, SCKp... external clock input)

(TA = -40 to +105°	°C, 2.4 V ≤ E	\mathbf{V} DD0 = EVDD1 $\leq \mathbf{V}$	VDD \leq 5.5 V, VSS = EVSS0 =	= EVss1 = 0 V)		(2/2
Parameter	Symbol	Conditions		HS (high-speed	l main) mode	Unit
				MIN.	MAX.	
SSI00 setup time	tssik	DAPmn = 0	$2.7~\text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5~\text{V}$	240		ns
			$2.4~\text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5~\text{V}$	400		ns
		DAPmn = 1	$2.7~\text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5~\text{V}$	1/fмск + 240		ns
			$2.4~\text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5~\text{V}$	1/fмск + 400		ns
SSI00 hold time	tĸssi	DAPmn = 0	$2.7~\text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5~\text{V}$	1/fмск + 240		ns
			$2.4~\text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5~\text{V}$	1/fмск + 400		ns
		DAPmn = 1	$2.7~\text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5~\text{V}$	240		ns
			$2.4~\text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5~\text{V}$	400		ns

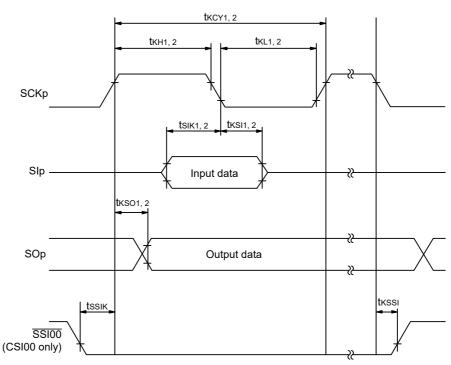

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM number (g = 3, 5)

Simplified SPI (CSI) mode connection diagram (during communication at same potential)



Simplified SPI (CSI) mode connection diagram (during communication at same potential) (Slave Transmission of slave select input function (CSI00))


Remark 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31) **Remark 2.** m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

Simplified SPI (CSI) mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Simplified SPI (CSI) mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remark 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31)

(4) During communication at same potential (simplified I²C mode)

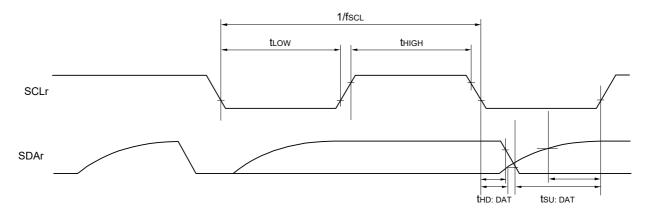
(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Parameter	Symbol	Conditions	HS (high-speed	main) mode	Unit
			MIN.	MAX.	
SCLr clock frequency	fscL	$\begin{array}{l} 2.7 \ \text{V} \leq EV_{\text{DD0}} \leq 5.5 \ \text{V}, \\ C_{b} = 50 \ \text{pF}, \ R_{b} = 2.7 \ \text{k}\Omega \end{array}$		400 Note 1	kHz
		$\begin{array}{l} 2.4 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ C_{b} = 100 \ pF, \ R_{b} = 3 \ k\Omega \end{array}$		100 Note 1	kHz
Hold time when SCLr = "L"	tLow	$\begin{array}{l} 2.7 \ \text{V} \leq E V_{\text{DD0}} \leq 5.5 \ \text{V}, \\ C_b = 50 \ \text{pF}, \ \text{R}_b = 2.7 \ \text{k}\Omega \end{array}$	1200		ns
		$\begin{array}{l} 2.4 V \leq EV_{DD0} \leq 5.5 \; V, \\ C_{b} = 100 \; pF, \; R_{b} = 3 \; k\Omega \end{array}$	4600		ns
Hold time when SCLr = "H"	tніgн	$\begin{array}{l} 2.7 \ \text{V} \leq E V_{\text{DD0}} \leq 5.5 \ \text{V}, \\ C_{b} = 50 \ \text{pF}, \ R_{b} = 2.7 \ \text{k}\Omega \end{array}$	1200		ns
		$\begin{array}{l} 2.4 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ C_{b} = 100 \ pF, \ R_{b} = 3 \ k\Omega \end{array}$	4600		ns
Data setup time (reception)	tsu: dat	$\begin{array}{l} 2.7 \ \text{V} \leq E V_{\text{DD0}} \leq 5.5 \ \text{V}, \\ \text{C}_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	1/fMCK + 220 Note 2		ns
		$\label{eq:bound} \begin{split} 2.4 V &\leq E V_{DD0} \leq 5.5 \; V, \\ C_{b} &= 100 \; pF, \; R_{b} = 3 \; k \Omega \end{split}$	1/fмск + 580 Note 2		ns
Data hold time (transmission)	thd: dat	$\begin{array}{l} 2.7 \ \text{V} \leq E V_{\text{DD0}} \leq 5.5 \ \text{V}, \\ \text{C}_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	0	770	ns
		$\begin{array}{l} 2.4 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ C_{b} = 100 \ pF, \ R_{b} = 3 \ k\Omega \end{array}$	0	1420	ns

Note 1. The value must also be equal to or less than fMCK/4.

Note 2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).


(**Remarks** are listed on the next page.)

Simplified I²C mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

- Remark 1. $R_b[\Omega]$: Communication line (SDAr) pull-up resistance, $C_b[F]$: Communication line (SDAr, SCLr) load capacitance
- Remark 2. r: IIC number (r = 00, 01, 10, 11, 20, 21, 30, 31), g: PIM number (g = 0, 1, 3 to 5, 14),
- h: POM number (h = 0, 1, 3 to 5, 7, 14)
- Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), mn = 00 to 03, 10 to 13)

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

(1/2)

			-			•
Parameter	Symbol		Conditions	HS (high-s	speed main) mode	Unit
				MIN.	MAX.	
Transfer rate		reception	$\begin{array}{l} 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V \end{array}$		fмск/12 Note 1	bps
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK} Note 3$		2.6	Mbps
			$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V},$ $2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}$		fмск/12 Note 1	bps
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK} Note 3$		2.6	Mbps
			$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V},$ $1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V}$		f _{MCK} /12 Notes 1, 2	bps
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK} Note 3$		2.6	Mbps

Note 1. Transfer rate in the SNOOZE mode is 4800 bps only.

However, the SNOOZE mode cannot be used when FRQSEL4 = 1.

Note 3. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are: HS (high-speed main) mode: $32 \text{ MHz} (2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V})$

 $16 \text{ MHz} (2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V})$

- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- Remark 1. Vb [V]: Communication line voltage
- **Remark 2.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 5, 14)

Remark 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

Remark 4. UART2 cannot communicate at different potential when bit 1 (PIOR01) of peripheral I/O redirection register 0 (PIOR0) is 1.

Note 2. The following conditions are required for low voltage interface when $EV_{DD0} < V_{DD}$. 2.4 V $\leq EV_{DD0} < 2.7$ V: MAX. 1.3 Mbps

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

(2/2)

Parameter	Symbol		Conditions	HS (high-spe	eed main) mode	Unit
				MIN.	MAX.	
Transfer rate		transmission	$\begin{array}{l} 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V \end{array}$		Note 1	bps
			Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 1.4 k Ω , V_b = 2.7 V		2.6 Note 2	Mbps
			$2.7 V \le EV_{DD0} < 4.0 V,$ $2.3 V \le V_b \le 2.7 V$		Note 3	bps
			$\label{eq:constraint} \begin{array}{l} Theoretical value of the maximum transfer rate \\ C_b = 50 \mbox{ pF, } R_b = 2.7 \mbox{ k}\Omega, \\ V_b = 2.3 \mbox{ V} \end{array}$		1.2 Note 4	Mbps
			$\begin{array}{l} 2.4 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \end{array}$		Note 5	bps
			Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 5.5 kΩ, V_b = 1.6 V		0.43 Note 6	Mbps

Note 1. The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq EVDD0 \leq 5.5 V and 2.7 V \leq Vb \leq 4.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
Baud rate error (theoretical value) =
$$\frac{\frac{1}{Transfer rate \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\}}{(\frac{1}{Transfer rate}) \times Number of transferred bits}$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- Note 2. This value as an example is calculated when the conditions described in the "Conditions" column are met.
 - Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
- Note 3. The smaller maximum transfer rate derived by using fMcK/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq EVDD0 < 4.0 V and 2.3 V \leq Vb \leq 2.7 V

Maximum transfe

r rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$

1

Baud rate error (theoretical value

$$\frac{1}{\text{Transfer rate } \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\}$$

$$(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

1

Note 4. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.

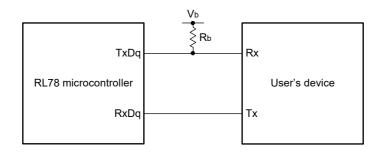
[%]

Note 5. The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

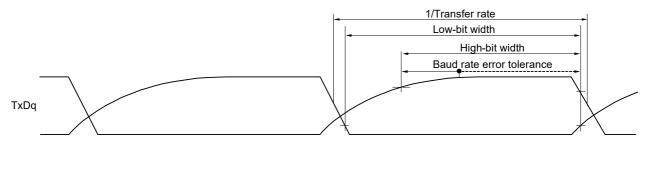
Expression for calculating the transfer rate when 2.4 V \leq EVDD0 < 3.3 V and 1.6 V \leq Vb \leq 2.0 V

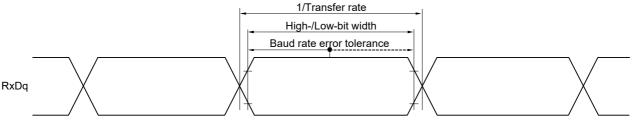
1

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$


* This value is the theoretical value of the relative difference between the transmission and reception sides.

- Note 6.This value as an example is calculated when the conditions described in the "Conditions" column are met.Refer to Note 5 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.


(Remarks are listed on the next page.)



UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

 Remark 1. Rb[Ω]: Communication line (TxDq) pull-up resistance, Cb[F]: Communication line (TxDq) load capacitance, Vb[V]: Communication line voltage
 Remark 2. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 5, 14)

Remark 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).

m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

Remark 4. UART2 cannot communicate at different potential when bit 1 (PIOR01) of peripheral I/O redirection register 0 (PIOR0) is 1.

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (Simplified SPI (CSI) mode) (master mode, SCKp... internal clock output)

Parameter	Symbol	Symbol Conditions		HS (high-speed	main) mode	Unit
				MIN.	MAX.	
SCKp cycle time	tkCY1	tkcy1 ≥ 4/fclk		600		ns
			$\label{eq:2.7} \begin{split} & 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ & 2.3 \ V \leq V_b \leq 2.7 \ V, \\ & C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$	1000		ns
			$\begin{array}{l} 2.4 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	2300		ns
SCKp high-level width	tкнı			tксү1/2 - 150		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \end{array}$		tксү1/2 - 340		ns
		$\begin{array}{l} 2.4 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$		tксү1/2 - 916		ns
SCKp low-level width	tKL1		,	tĸcy1/2 - 24		ns
		2.7 V \leq EV _{DD0} < 4.0 V, 2.3 V \leq Vb \leq 2.7 V, Cb = 30 pF, Rb = 2.7 kΩ		tксү1/2 - 36		ns
		$\begin{array}{l} 2.4 \ V \leq EV_{DD0} < 3.3 \\ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \end{array}$,	tkcy1/2 - 100		ns

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

(1/3)

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed two pages after the next page.)

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (Simplified SPI (CSI) mode) (master mode, SCKp... internal clock output)

Parameter	Symbol	Conditions	HS (high-speed main) mode		Unit
			MIN.	MAX.	
SIp setup time (to SCKp↑) ^{Note}	tsiк1		162		ns
		$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	354		ns
		$\begin{array}{l} 2.4 \; V \leq EV_{DD0} < 3.3 \; V, \\ 1.6 \; V \leq V_b \leq 2.0 \; V, \\ C_b = 30 \; pF, \; R_b = 5.5 \; k\Omega \end{array}$	958		ns
SIp hold time (from SCKp↑) ^{Note}	tĸsıı		38		ns
		$\label{eq:VDD} \begin{split} & 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$	38		ns
		$\label{eq:2.4} \begin{split} 2.4 \ V &\leq E V_{DD0} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V, \\ C_b &= 30 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$	38		ns
Delay time from SCKp↓ to SOp output ^{Note}	tkso1			200	ns
		$\begin{split} & 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ & 2.3 \ V \leq V_b \leq 2.7 \ V, \\ & C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$		390	ns
		$\label{eq:VDD0} \begin{array}{l} 2.4 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$		966	ns

internal clock output) (Ta = -40 to +105°C, 2.4 V < EVD00 = EVD01 < VD0 < 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Note When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

(Remarks are listed on the page after the next page.)

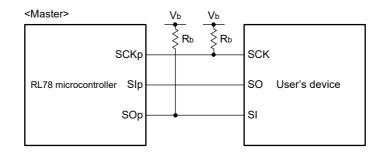
Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (Simplified SPI (CSI) mode) (master mode, SCKp... internal clock output)

Parameter	Symbol	Conditions	HS (high-spe	ed main) mode	Unit
			MIN.	MAX.	
SIp setup time (to SCKp↓) ^{Note}	tsiк1		88		ns
		$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	88		ns
		$\begin{array}{l} 2.4 \; V \leq EV_{DD0} < 3.3 \; V, \\ 1.6 \; V \leq V_b \leq 2.0 \; V, \\ C_b = 30 \; pF, \; R_b = 5.5 \; k\Omega \end{array}$	220		ns
SIp hold time (from SCKp↓) ^{Note}	tksi1		38		ns
		$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	38		ns
		$\begin{array}{l} 2.4 \; V \leq E V_{DD0} < 3.3 \; V, \\ 1.6 \; V \leq V_b \leq 2.0 \; V, \\ C_b = 30 \; pF, \; R_b = 5.5 \; k\Omega \end{array}$	38		ns
Delay time from SCKp↑ to SOp output ^{Note}	tkso1			50	ns
		$\begin{array}{l} 2.7 \; V \leq E V_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$		50	ns
		$\label{eq:2.4} \begin{array}{l} 2.4 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$		50	ns

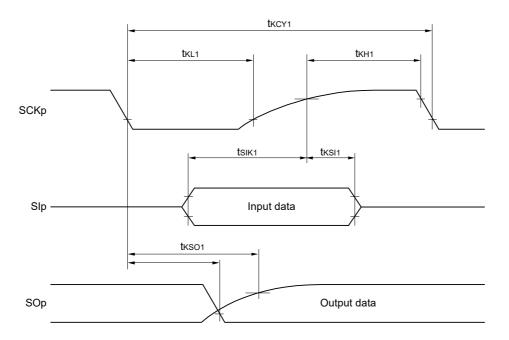
(TA = -40 to +105°C. 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V. Vss = EVss0 = EVss1 = 0 V)

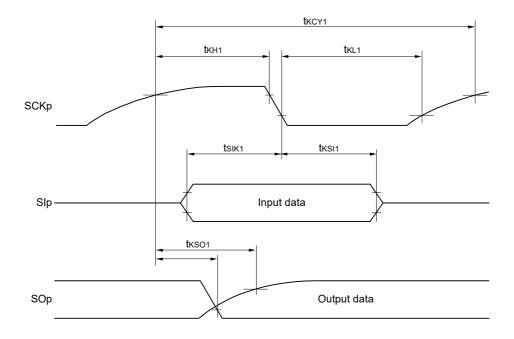
(3/3)


Note When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the next page.)


Simplified SPI (CSI) mode connection diagram (during communication at different potential


- **Remark 1.** Rb[Ω]: Communication line (SCKp, SOp) pull-up resistance, Cb[F]: Communication line (SCKp, SOp) load capacitance, Vb[V]: Communication line voltage
- Remark 2. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3 to 5, 14)
- Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))
- Remark 4. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

Simplified SPI (CSI) mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

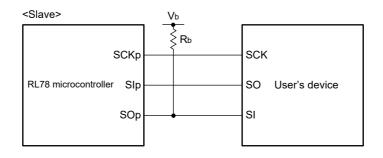
Simplified SPI (CSI) mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

- **Remark 1.** p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3 to 5, 14)
- Remark 2. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

RENESAS

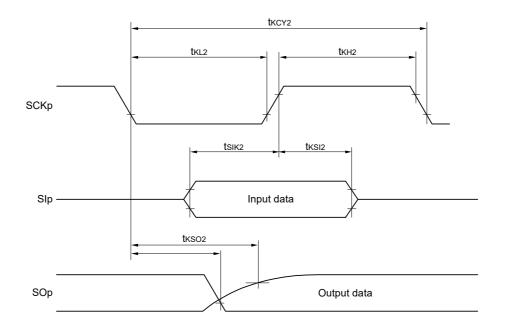
(7) Communication at different potential (1.8 V, 2.5 V, 3 V) (Simplified SPI (CSI) mode) (slave mode, SCKp... external clock input)

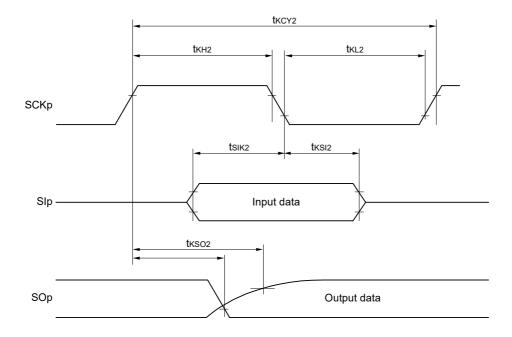
Parameter	Symbol	Conditions		HS (high-spe	Unit	
				MIN.	MAX.	
SCKp cycle time Note 1	tксү2	$4.0~V \leq EV_{DD0} \leq 5.5~V,$	24 MHz < fмск	28/fмск		ns
		$2.7 \text{ V} \leq \text{V}_{b} \leq 4.0 \text{ V}$	$20 \text{ MHz} < f_{\text{MCK}} \le 24 \text{ MHz}$	24/fмск		ns
			8 MHz < fmck \leq 20 MHz	20/fмск		ns
			$4 \text{ MHz} < \text{fmck} \le 8 \text{ MHz}$	16/fмск		ns
			fмск ≤ 4 MHz	12/fмск		ns
		$2.7 \text{ V} \leq EV_{\text{DD0}} < 4.0 \text{ V},$	24 MHz < fмск	40/fмск		ns
		$2.3~V \leq V_b \leq 2.7~V$	$20 \text{ MHz} < f_{MCK} \leq 24 \text{ MHz}$	32/fмск		ns
			$16 \text{ MHz} < f_{\text{MCK}} \le 20 \text{ MHz}$	28/fмск		ns
			8 MHz < fmck \leq 16 MHz	24/fмск		ns
			$4 \text{ MHz} < \text{fmck} \le 8 \text{ MHz}$	16/fмск		ns
			fмск ≤ 4 MHz	12/fмск		ns
		$2.4 V \le EV_{DD0} < 3.3 V$, $1.6 V \le V_b \le 2.0 V$	24 MHz < fмск	96/fмск		ns
			$20 \text{ MHz} < f_{MCK} \leq 24 \text{ MHz}$	72/fмск		ns
			$16 \text{ MHz} < f_{\text{MCK}} \le 20 \text{ MHz}$	64/fмск		ns
			$8 \text{ MHz} < \text{fmck} \le 16 \text{ MHz}$	52/fмск		ns
			$4 \text{ MHz} < \text{fmck} \le 8 \text{ MHz}$	32/fмск		ns
			fмск ≤ 4 MHz	20/fмск		ns
SCKp high-/low-level	tĸн₂, tĸ∟₂	$4.0 \ V \le EV_{DD0} \le 5.5 \ V, \ 2.7 \ V \le V_b \le 4.0 \ V$		tkcy2/2 - 24		ns
width		$2.7 \text{ V} \leq EV_{DD0} < 4.0 \text{ V}, 2.3 \text{ V} \leq V_b \leq 2.7 \text{ V}$		tkcy2/2 - 36		ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V}, 1.$	$6 \text{ V} \leq \text{V}_b \leq 2.0 \text{ V}$	tксү2/2 - 100		ns
SIp setup time	tsik2	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}, 2.$	$7~V \leq V_b \leq 4.0~V$	1/fмск + 40		ns
(to SCKp↑) ^{Note 2}		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}, 2.$	$3 \text{ V} \leq \text{V}_b \leq 2.7 \text{ V}$	1/fмск + 40		ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V}, 1.$	$6 \text{ V} \leq \text{V}_b \leq 2.0 \text{ V}$	1/fмск + 60		ns
SIp hold time (from SCKp↑) ^{Note 3}	tksı2			1/fмск + 62		ns
Delay time from SCKp↓ to SOp output ^{Note 4}	tkso2	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \; 2. \\ C_b = 30 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$	$7 \text{ V} \leq V_b \leq 4.0 \text{ V},$		2/fмск + 240	ns
		$\label{eq:2.7} \begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \ 2. \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	$3 \text{ V} \leq \text{V}_b \leq 2.7 \text{ V},$		2/fмск + 428	ns
		$\begin{array}{l} 2.4 \ V \leq EV_{DD0} < 3.3 \ V, \ 1. \\ C_b = 30 \ pF, \ R_V = 5.5 \ k\Omega \end{array}$	$6~V \leq V_b \leq 2.0~V,$		2/fмск + 1146	ns


(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

(Notes, Caution, and Remarks are listed on the next page.)

- Note 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
- Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and SCKp pin, and the N-ch open drain output (VoD tolerance (for the 30- to 52-pin products)/EVoD tolerance (for the 64- to 100-pin products)) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For ViH and ViL, see the DC characteristics with TTL input buffer selected.


Simplified SPI (CSI) mode connection diagram (during communication at different potential)


- **Remark 1.** Rb[Ω]: Communication line (SOp) pull-up resistance, Cb[F]: Communication line (SOp) load capacitance, Vb[V]: Communication line voltage
- **Remark 2.** p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3 to 5, 14)
- Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13))
- Remark 4. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.
 Also, communication at different potential cannot be performed during clock synchronous serial communication with the slave select function.

Simplified SPI (CSI) mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Simplified SPI (CSI) mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remark 1. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3 to 5, 14)

Remark 2. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.
 Also, communication at different potential cannot be performed during clock synchronous serial communication with the

slave select function.

RENESAS

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode)

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

(1/2)

Parameter	Symbol	Conditions	HS (high-spe	ed main) mode	Unit	
			MIN. MAX.			
SCLr clock frequency	fscL			400 Note 1	kHz	
		$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$		400 Note 1	kHz	
		$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega \end{array}$		100 Note 1	kHz	
		$\label{eq:2.7} \begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$		100 Note 1	kHz	
		$\label{eq:2.4} \begin{array}{l} 2.4 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$		100 Note 1	kHz	
Hold time when SCLr = "L"	tLow		1200		ns	
		$\label{eq:Vbd} \begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1200		ns	
		$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega \end{array}$	4600		ns	
		$\label{eq:2.7} \begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	4600		ns	
		$\begin{array}{l} 2.4 \; V \leq EV_{DD0} < 3.3 \; V, \\ 1.6 \; V \leq V_b \leq 2.0 \; V, \\ C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{array}$	4650		ns	
Hold time when SCLr = "H"	tніgн		620		ns	
		$\begin{array}{l} 2.7 \; V \leq {\sf EV}_{{\sf DD0}} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; p{\sf F}, \; R_b = 2.7 \; k\Omega \end{array}$	500		ns	
		$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega \end{array}$	2700		ns	
		$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	2400		ns	
		2.4 V \leq EV _{DD0} < 3.3 V, 1.6 V \leq V _b \leq 2.0 V, C _b = 100 pF, R _b = 5.5 kΩ	1830		ns	

(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)

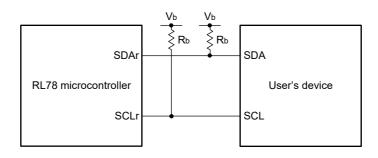
(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode)

TA = -40 to +105°C 2.4 V < EVDD0 = EVDD1 < VDD < 5.5 V VSS = EVSS0 = EVSS1 = 0.V	n
TA = -40 to +105°C, 2.4 V \leq EVD00 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

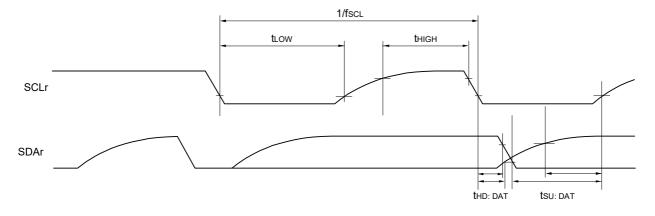
(2/2)

Parameter	Symbol	Conditions	HS (high-speed m	ain) mode	Unit
			MIN.	MAX.	
Data setup time (reception)	tsu:dat		1/f _{MCK} + 340 Note 2		ns
		$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	1/f _{MCK} + 340 Note 2		ns
			1/f _{MCK} + 760 Note 2		ns
		$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	1/f _{MCK} + 760 Note 2		ns
		$\begin{array}{l} 2.4 \; V \leq EV_{DD0} < 3.3 \; V, \\ 1.6 \; V \leq V_b \leq 2.0 \; V, \\ C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{array}$	1/fmck + 570 Note 2		ns
Data hold time (transmission)	thd:dat		0	770	ns
		$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	0	770	ns
			0	1420	ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	0	1420	ns
		$\label{eq:2.4} \begin{array}{l} 2.4 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	0	1215	ns

Note 1. The value must also be equal to or less than fMCK/4.


Note 2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.


(**Remarks** are listed on the next page.)

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

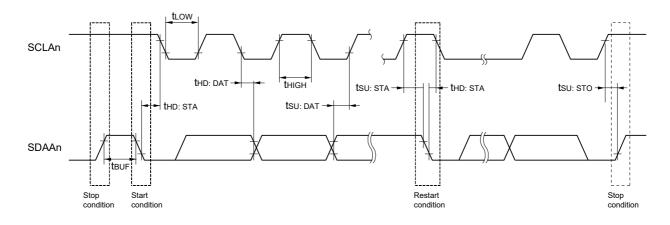
- **Remark 1.** Rb[Ω]: Communication line (SDAr, SCLr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance, Vb[V]: Communication line voltage
- Remark 2. r: IIC number (r = 00, 01, 10, 11, 20, 30, 31), g: PIM, POM number (g = 0, 1, 3 to 5, 14)
- Remark 3. fmck: Serial array unit operation clock frequency
 - (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0, 2), mn = 00, 01, 02, 10, 12, 13)

3.5.2 Serial interface IICA

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Parameter	Symbol	Conditions	HS	HS (high-speed main) mode			
			Standa	Standard mode Fast		st mode	
			MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode: fc∟κ ≥ 3.5 MHz	_	_	0	400	kHz
		Standard mode: fcLk ≥ 1 MHz	0	100		—	kHz
Setup time of restart condition	tsu: sta		4.7		0.6		μs
Hold time ^{Note 1}	THD: STA		4.0		0.6		μs
Hold time when SCLA0 = "L"	tLow		4.7		1.3		μs
Hold time when SCLA0 = "H"	tніgн		4.0		0.6		μs
Data setup time (reception)	tsu: dat		250		100		ns
Data hold time (transmission) Note 2	thd: dat		0	3.45	0	0.9	μs
Setup time of stop condition	tsu: sto		4.0		0.6		μs
Bus-free time	t BUF		4.7		1.3		μs

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.


Note 2. The maximum value (MAX.) of the DAT is during normal transfer and a clock stretch state is inserted in the ACK (acknowledge) timing.

Caution The values in the above table are applied even when bit 2 (PIOR02) in the peripheral I/O redirection register 0 (PIOR0) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: $C_b = 400 \text{ pF}, R_b = 2.7 \text{ k}\Omega$ Fast mode: $C_b = 320 \text{ pF}, R_b = 1.1 \text{ k}\Omega$

IICA serial transfer timing

Remark n = 0, 1

3.6 Analog Characteristics

3.6.1 A/D converter characteristics

Classification of A/D converter characteristics

Reference Voltage	Reference voltage (+) = AVREFP Reference voltage (-) = AVREFM	Reference voltage (+) = V _{DD} Reference voltage (-) = Vss	Reference voltage (+) = V _{BGR} Reference voltage (-)= AV _{REFM}
ANI0 to ANI14	Refer to 3.6.1 (1).	Refer to 3.6.1 (3).	Refer to 3.6.1 (4).
ANI16 to ANI20	Refer to 3.6.1 (2).		
Internal reference voltage Temperature sensor output voltage	Refer to 3.6.1 (1) .		_

(1) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI2 to ANI14, internal reference voltage, and temperature sensor output voltage

(TA = -40 to +105°C, 2.4 V \leq AVREFP \leq VDD \leq 5.5 V, Vss = 0 V, Reference voltage (+) = AVREFP,
Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol	Conditions			TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error Note 1	AINL	10-bit resolution AV _{REFP} = V _{DD} Note 3	$2.4 \text{ V} \leq \text{AVREFP} \leq 5.5 \text{ V}$		1.2	±3.5	LSB
Conversion time	tCONV	10-bit resolution	$3.6~V \le V_{DD} \le 5.5~V$	2.125		39	μs
		Target pin: ANI2 to ANI14	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μs
			$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
		10-bit resolution	$3.6~V \le V_{DD} \le 5.5~V$	2.375		39	μs
		Target pin: Internal reference voltage, and temperature sensor output	$2.7~V \leq V_{DD} \leq 5.5~V$	3.5625		39	μs
		voltage (HS (high-speed main) mode)	$2.4~V \leq V_{DD} \leq 5.5~V$	17	39	μs	
Zero-scale error Notes 1, 2	Ezs	10-bit resolution AV _{REFP} = V _{DD} Note 3	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$			±0.25	%FSR
Full-scale error Notes 1, 2	Efs	10-bit resolution AV _{REFP} = V _{DD} Note 3	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$			±0.25	%FSR
Integral linearity error Note 1	ILE	10-bit resolution AV _{REFP} = V _{DD} Note 3	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$			±2.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	$2.4 \text{ V} \leq \text{AVREFP} \leq 5.5 \text{ V}$			±1.5	LSB
Analog input voltage	VAIN	ANI2 to ANI14		0		AVREFP	V
		Internal reference voltage output (2.4 V \leq VDD \leq 5.5 V, HS (high-speed main) mode)		V _{BGR} Note 4		4	V
		Temperature sensor output voltage $(2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{HS} (high-speed main) mode)$			MPS25 Not	te 4	V

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (%FSR) to the full-scale value.

 Note 3.
 When AVREFP < VDD, the MAX. values are as follows.</td>

 Overall error:
 Add ±1.0 LSB to the MAX. value when AVREFP = VDD.

 Zero-scale error/Full-scale error:
 Add ±0.05%FSR to the MAX. value when AVREFP = VDD.

 Integral linearity error/ Differential linearity error:
 Add ±0.5 LSB to the MAX. value when AVREFP = VDD.

 Note 4.
 Refer to 3.6.2 Temperature sensor characteristics/internal reference voltage characteristic.

(2) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI16 to ANI20

Parameter	Symbol	Cond	Conditions		TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error Note 1	AINL	10-bit resolution EVDD0 ≤ AVREFP = VDD Notes 3, 4	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$		1.2	±5.0	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \leq V_{\text{DD}} \leq 5.5~V$	2.125		39	μs
		Target ANI pin: ANI16 to ANI20	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μs
			$2.4~\text{V} \leq \text{V}\text{DD} \leq 5.5~\text{V}$	17		39	μs
Zero-scale error Notes 1, 2	Ezs	10-bit resolution EVDD0 ≤ AVREFP = VDD Notes 3, 4	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$			±0.35	%FSR
Full-scale error Notes 1, 2	Efs	10-bit resolution EVDD0 ≤ AV _{REFP} = V _{DD} Notes 3, 4	$2.4~V \leq AV_{REFP} \leq 5.5~V$			±0.35	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution EVDD0 ≤ AVREFP = VDD Notes 3, 4	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$			±3.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution EVDD0 ≤ AV _{REFP} = V _{DD} Notes 3, 4	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$			±2.0	LSB
Analog input voltage	VAIN	ANI16 to ANI20		0		AVREFP and EVDD0	V

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, 2.4 V \leq AVREFP \leq VDD \leq 5.5 V,

Vss = EVsso = EVss1 = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (%FSR) to the full-scale value.

Note 3. When $EVDD0 \le AVREFP \le VDD$, the MAX. values are as follows.

	Overall error:	Add ±1.0 LSB to the MAX. value when AVREFP = VDD.				
	Zero-scale error/Full-scale error:	Add ±0.05%FSR to the MAX. value when AVREFP = VDD.				
	Integral linearity error/ Differential linearity error: Add ±0.5 LSB to the MAX. value when AVREFP = V					
Note 4.	4. When AVREFP < EVDD0 \leq VDD, the MAX. values are as follows.					
	Overall error:	Add ± 4.0 LSB to the MAX. value when AVREFP = VDD.				
	Zero-scale error/Full-scale error:	Add $\pm 0.20\%$ FSR to the MAX, value when AVREFP = VDD.				

ero-scale error/Full-scale error:

Add $\pm 0.20\%$ FSR to the MAX. value when AVREFP = VDD. Integral linearity error/ Differential linearity error: Add ±2.0 LSB to the MAX. value when AVREFP = VDD.

(3) When reference voltage (+) = VDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = Vss (ADREFM = 0), target pin: ANI0 to ANI14, ANI16 to ANI20, internal reference voltage, and temperature sensor output voltage

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V, Reference voltage (+) = VDD, Reference voltage (-) = Vss)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES					10	bit
Overall error Note 1	AINL	10-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$		1.2	±7.0	LSB
Conversion time	tconv	10-bit resolution Target pin: ANI0 to ANI14, ANI16 to ANI20	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μs
			$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μs
			$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
		10-bit resolution Target pin: internal reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$3.6~V \leq V_{DD} \leq 5.5~V$	2.375		39	μs
			$2.7~V \leq V_{DD} \leq 5.5~V$	3.5625		39	μs
			$2.4~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$	17		39	μs
Zero-scale error Notes 1, 2	Ezs	10-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±0.60	%FSR
Full-scale error Notes 1, 2	Efs	10-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±0.60	%FSR
Integral linearity error Note 1	ILE	10-bit resolution	$2.4~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$			±4.0	LSB
Differential linearity error Note 1	DLE	10-bit resolution	$2.4~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$			±2.0	LSB
Analog input voltage	VAIN	ANI0 to ANI14		0		Vdd	V
		ANI16 to ANI20		0		EV _{DD0}	V
		Internal reference voltage (2.4 V \leq VDD \leq 5.5 V, HS (high-speed main) mode)		VBGR Note 3			V
		Temperature sensor output voltage (2.4 V \leq VDD \leq 5.5 V, HS (high-speed main) r	node)	V _{TMPS25} Note 3			V

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (%FSR) to the full-scale value.

Note 3. Refer to 3.6.2 Temperature sensor characteristics/internal reference voltage characteristic.

(4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI0, ANI2 to ANI14, ANI16 to ANI20

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, 1.6 V \leq EVDD = EVDD1 \leq VDD, Vss = EVss0 = EVss1 = 0 V,

Reference voltage (+) = VBGR Note 3, Reference voltage (-) = AVREFM = 0 V Note 4, HS (high-speed main) mode)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES				8		bit
Conversion time	tCONV	8-bit resolution	$2.4~\text{V} \leq \text{V}\text{DD} \leq 5.5~\text{V}$	17		39	μs
Zero-scale error Notes 1, 2	Ezs	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±0.60	%FSR
Integral linearity error Note 1	ILE	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±1.0	LSB
Analog input voltage	Vain			0		VBGR Note 3	V

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (%FSR) to the full-scale value.

Note 3. Refer to 3.6.2 Temperature sensor characteristics/internal reference voltage characteristic.

Note 4. When reference voltage (-) = Vss, the MAX. values are as follows.

Zero-scale error:	Add $\pm 0.35\%$ FSR to the MAX. value when reference voltage (-) = AVREFM.
Integral linearity error:	Add ± 0.5 LSB to the MAX. value when reference voltage (-) = AVREFM.
Differential linearity error:	Add ± 0.2 LSB to the MAX. value when reference voltage (-) = AVREFM.

3.6.2 Temperature sensor characteristics/internal reference voltage characteristic

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, TA = +25°C		1.05		V
Internal reference voltage	Vbgr	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	FVTMPS	Temperature sensor that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		5			μs

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = EVsso = EVss1 = 0 V, HS (high-speed main) mode)

3.6.3 D/A converter characteristics

(TA = -40 to +105°C, 2.4 V \leq EVsso = EVss1 \leq VDD \leq 5.5 V, Vss = EVsso = EVss1 = 0 V)

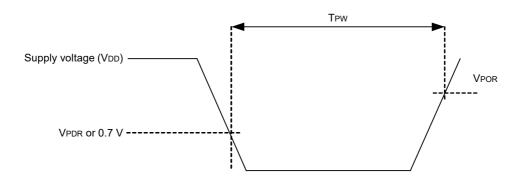
Parameter	Symbol	Cor	nditions	MIN.	TYP.	MAX.	Unit
Resolution	RES					8	bit
Overall error	AINL	Rload = 4 MΩ	$2.4~V \leq V \text{DD} \leq 5.5~V$			±2.5	LSB
		Rload = 8 MΩ	$2.4~V \leq V \text{DD} \leq 5.5~V$			±2.5	LSB
Settling time	tset	Cload = 20 pF	$2.7~V \leq V\text{DD} \leq 5.5~V$			3	μS
			$2.4~V \leq V_{DD} < 2.7~V$			6	μs

3.6.4 Comparator

Parameter	Symbol	Со	nditions	MIN.	TYP.	MAX.	Unit
Input voltage range	lvref			0		EVDD0 - 1.4	V
	lvcmp					EVDD0 + 0.3	V
Output delay	td	V _{DD} = 3.0 V Input slew rate > 50 mV/µs	Comparator high-speed mode, standard mode			1.2	μs
			Comparator high-speed mode, window mode			2.0	μs
		Comparator low-speed mode, standard mode		3.0	5.0	μs	
High-electric-potential reference voltage	VTW+	Comparator high-speed mode	e, window mode		0.76 Vdd		V
Low-electric-potential reference voltage	VTW-	Comparator high-speed mode	e, window mode		0.24 Vdd		V
Operation stabilization wait time	tсмр			100			μs
Internal reference voltage Note	VBGR	$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{HS}$ (h	nigh-speed main) mode	1.38	1.45	1.50	V

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Note Not usable in sub-clock operation or STOP mode.


3.6.5 POR circuit characteristics

(TA = -40 to +105°C, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power on/down reset threshold	VPOR	Voltage threshold on VDD rising	1.45	1.51	1.57	V
	VPDR	Voltage threshold on VDD falling Note 1	1.44	1.50	1.56	V
Minimum pulse width Note 2	TPW		300			μs

Note 1. However, when the operating voltage falls while the LVD is off, enter STOP mode, or enable the reset status using the external reset pin before the voltage falls below the operating voltage range shown in 3.4 AC Characteristics.

Note 2. Minimum time required for a POR reset when VDD exceeds below VPDR. This is also the minimum time required for a POR reset from when VDD exceeds below 0.7 V to when VDD exceeds VPOR while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

3.6.6 LVD circuit characteristics

(1) Reset Mode and Interrupt Mode

(TA = -40 to +105°C, VPDR \leq VDD \leq 5.5 V, VSS = 0 V)

Pa	rameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Voltage detection	Supply voltage level	VLVD0	Rising edge	3.90	4.06	4.22	V
threshold			Falling edge	3.83	3.98	4.13	V
		VLVD1	Rising edge	3.60	3.75	3.90	V
			Falling edge	3.53	3.67	3.81	V
		VLVD2	Rising edge	3.01	3.13	3.25	V
			Falling edge	2.94	3.06	3.18	V
		Vlvd3	Rising edge	2.90	3.02	3.14	V
			Falling edge	2.85	2.96	3.07	V
		VLVD4	Rising edge	2.81	2.92	3.03	V
			Falling edge	2.75	2.86	2.97	V
		Vlvd5	Rising edge	2.70	2.81	2.92	V
			Falling edge	2.64	2.75	2.86	V
		VLVD6	Rising edge	2.61	2.71	2.81	V
			Falling edge	2.55	2.65	2.75	V
		VLVD7	Rising edge	2.51	2.61	2.71	V
			Falling edge	2.45	2.55	2.65	V
Minimum pulse wid	dth	tlw		300			μs
Detection delay tim	ne					300	μs

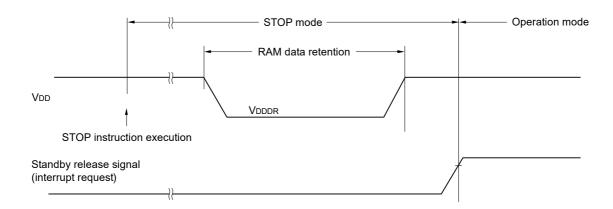
Parameter	Symbol	Cor	nditions	MIN.	TYP.	MAX.	Unit
Voltage detection	VLVDD0	VPOC2, VPOC1, VPOC0 = 0, 1, 1, 1	2.64	2.75	2.86	V	
threshold	VLVDD1	LVIS1, LVIS0 = 1, 0	2.81	2.92	3.03	V	
			Falling interrupt voltage	2.75	2.86	2.97	V
	VLVDD2	LVIS1, LVIS0 = 0, 1	LVIS1, LVIS0 = 0, 1 Rising release reset voltage		3.02	3.14	V
			Falling interrupt voltage	2.85	2.96	3.07	V
	VLVDD3	LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.90	4.06	4.22	V
			Falling interrupt voltage	3.83	3.98	4.13	V

(2) Interrupt & Reset Mode $(TA = -40 \text{ to } +105^{\circ}\text{C}, \text{ VPDR} \leq \text{VDD} \leq 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

3.6.7 Power supply voltage rising slope characteristics

(TA = -40 to +105°C, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms


Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until VDD reaches the operating voltage range shown in 3.4 AC Characteristics.

3.7 RAM Data Retention Characteristics

(TA = -40 to +105°C, Vss = 0V)						
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.44 ^{Note}		5.5	V

Note The value depends on the POR detection voltage. When the voltage drops, the RAM data is retained before a POR reset is effected, but RAM data is not retained when a POR reset is effected.

3.8 Flash Memory Programming Characteristics

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
System clock frequency	fclk	$2.4 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	1		32	MHz
Number of code flash rewrites Notes 1, 2, 3	Cerwr	Retained for 20 years T _A = 85°C ^{Note 4}	1,000			Times
Number of data flash rewrites Notes 1, 2, 3		Retained for 1 year TA = 25°C		1,000,000		
		Retained for 5 years TA = 85°C ^{Note 4}	100,000			
		Retained for 20 years T _A = 85°C ^{Note 4}	10,000			

Note 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.

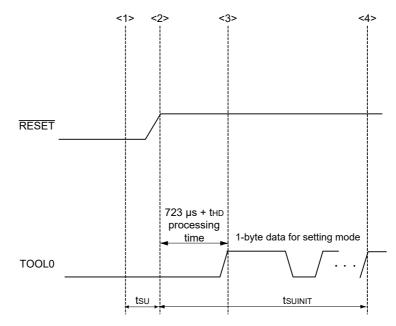
Note 2. When using flash memory programmer and Renesas Electronics self-programming library

Note 3. These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

Note 4. This temperature is the average value at which data are retained.

3.9 Dedicated Flash Memory Programmer Communication (UART)

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

3.10 Timing of Entry to Flash Memory Programming Modes

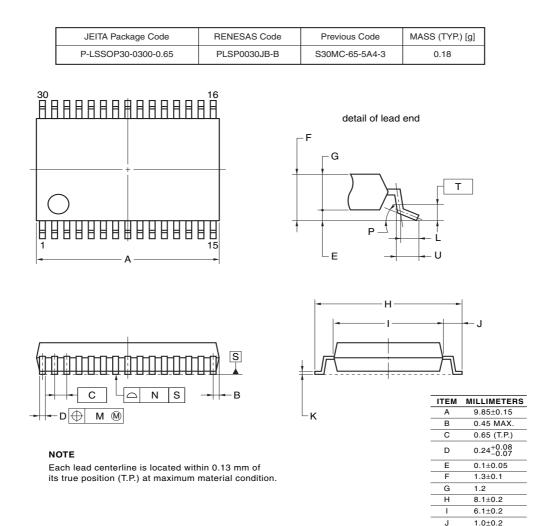
(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0	V)
--	----

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
How long from when an external reset ends until the initial communication settings are specified	tsuinit	POR and LVD reset must end before the external reset ends.			100	ms
How long from when the TOOL0 pin is placed at the low level until an external reset ends	ts∪	POR and LVD reset must end before the external reset ends.	10			μs
How long the TOOL0 pin must be kept at the low level after an external reset ends (excluding the processing time of the firmware to control the flash memory)	thd	POR and LVD reset must end before the external reset ends.	1			ms

<1> The low level is input to the TOOL0 pin.

<2> The external reset ends (POR and LVD reset must end before the external reset ends).

<3> The TOOL0 pin is set to the high level.


<4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

- **Remark** tsuinit: The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from when the external resets end.
 - tsu: How long from when the TOOL0 pin is placed at the low level until a pin reset ends
 - tHD: How long to keep the TOOL0 pin at the low level from when the external resets end (excluding the processing time of the firmware to control the flash memory)

4. PACKAGE DRAWINGS

4.1 30-pin Package

©2012 Renesas Electronics Corporation. All rights reserved.

0.17±0.03

0.5

0.13

0.10 3°+5°

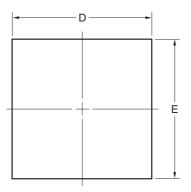
0.25 0.6±0.15

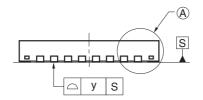
K L

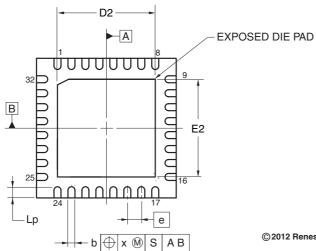
Μ

Ν

P


U




4.2 32-pin Package

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-HWQFN32-5x5-0.50	PWQN0032KB-A	P32K8-50-3B4-4	0.06

S

Reference	Dimen	sion in Mill	imeters
Symbol	Min	Nom	Max
D	4.95	5.00	5.05
E	4.95	5.00	5.05
A	0.70	0.75	0.80
b	0.18	0.25	0.30
е		0.50	
Lp	0.30	0.40	0.50

0.05

0.05

DETAIL OF (A) PART

ITEM		D2			E2		
		MIN	NOM	MAX	MIN	NOM	MAX
EXPOSED DIE PAD VARIATIONS	A	3.45	3.50	3.55	3.45	3.50	3.55

O 2012 Renesas Electronics Corporation. All rights reserved.

х

y

Nom.

0.02

0.25

0.40

_

3.20

3.20

0.15

0.10

0.10 0.05

0.08

0.10

aaa

bbb

ссс

ddd

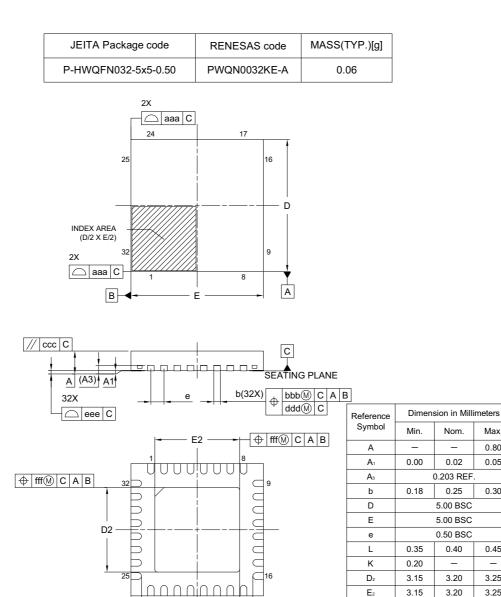
eee

fff

Max.

0.80

0.05

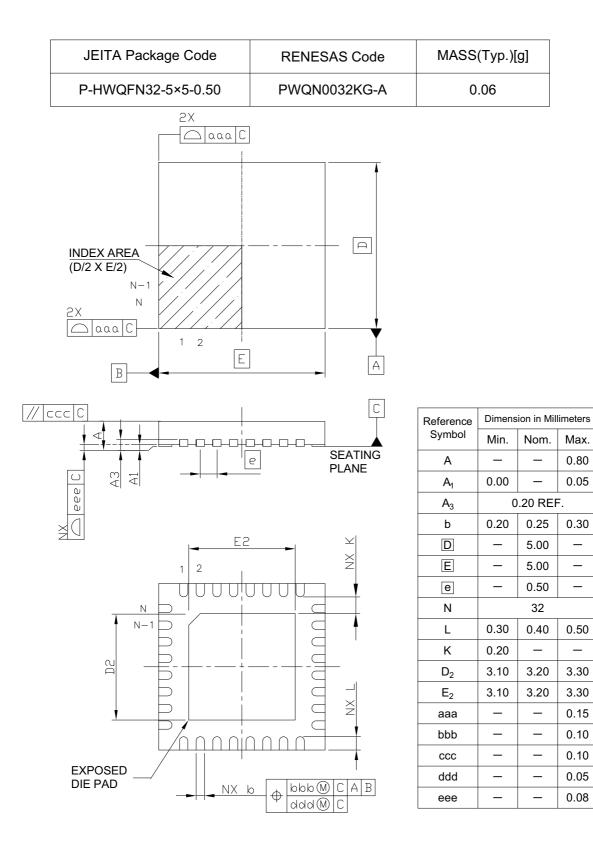

0.30

0.45

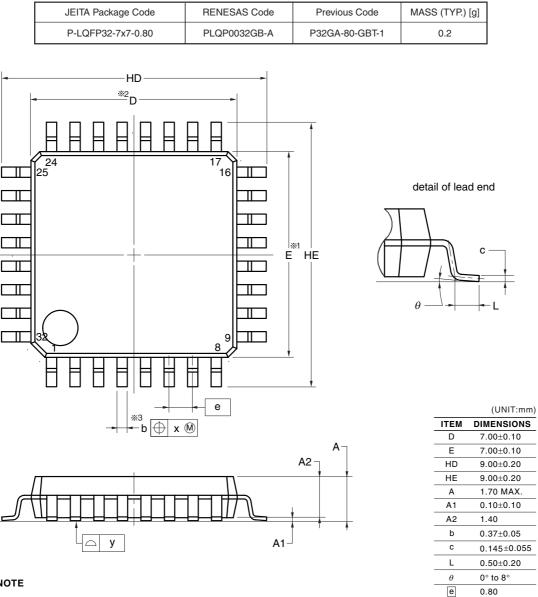
_

3.25

3.25


17

K(32X)

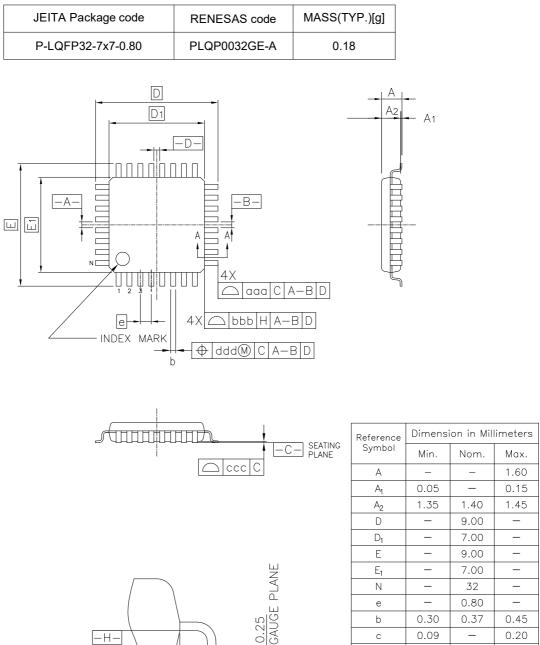

24

L(32X)

NOTE

1.Dimensions "%1" and "%2" do not include mold flash.

2.Dimension "%3" does not include trim offset.


© 2012 Renesas Electronics Corporation. All rights reserved.

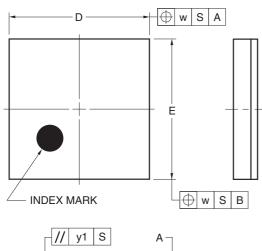
х

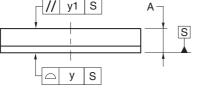
у

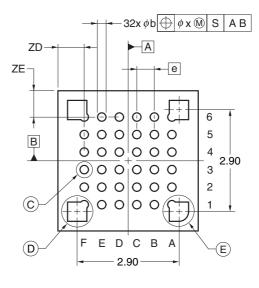
0.20 0.10

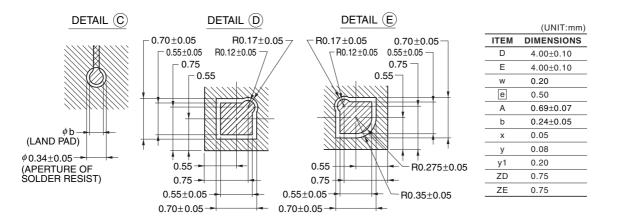
| 1

SECTION A-A

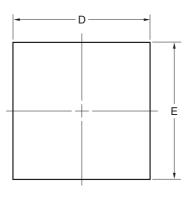

i toror on oc			
Symbol	Min.	Nom.	Max.
A	-	-	1.60
A ₁	0.05	—	0.15
A ₂	1.35	1.40	1.45
D	-	9.00	—
D ₁	—	7.00	—
E	-	9.00	—
E ₁	-	7.00	—
Ν	—	32	—
е	—	0.80	—
b	0.30	0.37	0.45
с	0.09	—	0.20
θ	0*	3.5°	7*
L	0.45	0.60	0.75
L	—	1.00	—
aaa	-	—	0.20
bbb	-	-	0.20
ссс	—	—	0.10
ddd	—	—	0.20

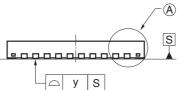

-H-

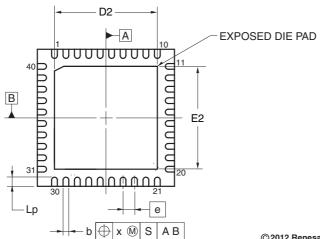


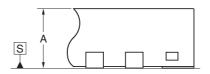

4.3 36-pin Package

Γ	JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
	P-WFLGA36-4x4-0.50	PWLG0036KA-A	P36FC-50-AA4-2	0.023



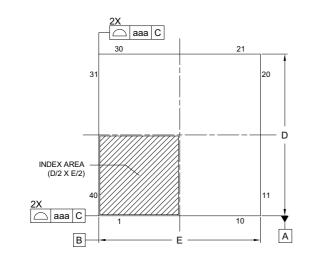

© 2012 Renesas Electronics Corporation. All rights reserved.

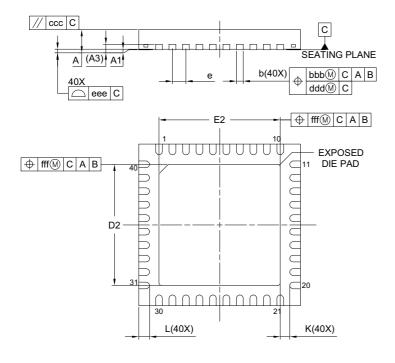

RENESAS


4.4 40-pin Package

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-HWQFN40-6x6-0.50	PWQN0040KC-A	P40K8-50-4B4-4	0.09

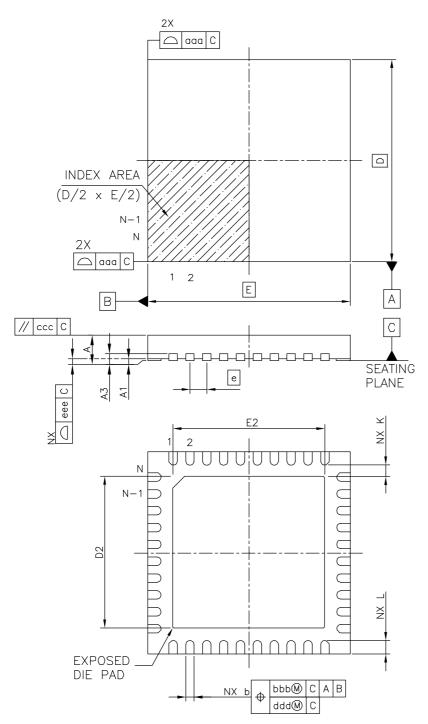
DETAIL OF A PART


Reference	Dimension in Millimeters					
Symbol	Min	Nom	Max			
D	5.95	6.00	6.05			
E	5.95	6.00	6.05			
Α	0.70	0.75	0.80			
b	0.18	0.25	0.30			
е		0.50	—			
Lp	0.30	0.40	0.50			
x			0.05			
У			0.05			


ITEM			D2			E2	
		MIN	NOM	MAX	MIN	NOM	MAX
EXPOSED DIE PAD VARIATIONS	A	4.45	4.50	4.55	4.45	4.50	4.55

©2012 Renesas Electronics Corporation. All rights reserved.

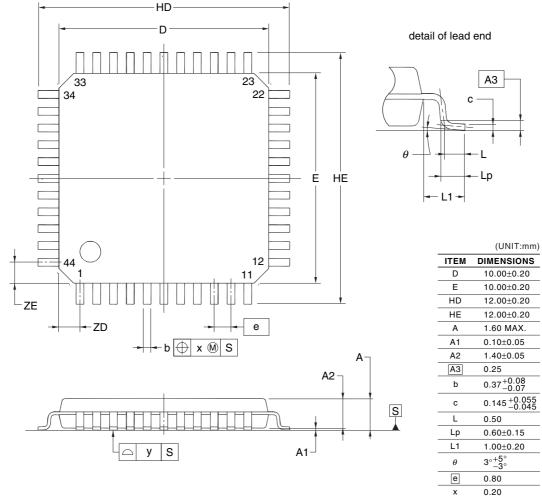
JEITA Package code	RENESAS code	MASS(TYP.)[g]
P-HWQFN040-6x6-0.50	PWQN0040KD-A	0.08



Reference	Dimens	sion in Milli	imeters	
Symbol	Min.	Nom.	Max.	
А	_	_	0.80	
A ₁	0.00	0.02	0.05	
A₃	(0.203 REF	•	
b	0.18	0.25	0.30	
D		6.00 BSC		
Е	6.00 BSC			
е	0.50 BSC			
L	0.30	0.40	0.50	
К	0.20	-	—	
D₂	4.45	4.50	4.55	
E2	4.45	4.50	4.55	
aaa		0.15		
bbb		0.10		
ссс	0.10			
ddd	0.05			
eee	0.08			
fff		0.10		

R01DS0053EJ0360 Rev. 3.60 Mar 29, 2024 <R>

JEITA Package Code	RENESAS Code	MASS(Typ.)[g]
P-HWQFN40-6×6-0.50	PWQN0040KE-A	0.09



Reference	Dimension in Millimeters		
Symbol	Min.	Nom.	Max.
А	—	—	0.80
A ₁	0.00	_	0.05
A ₃	0	.20 REF	₹.
b	0.20	0.25	0.30
D	—	6.00	—
E	—	6.00	—
е	—	0.50	—
N	40		
L	0.30	0.40	0.50
К	0.20	_	—
D ₂	4.40	4.50	4.60
E ₂	4.40	4.50	4.60
aaa	_	_	0.15
bbb	_	_	0.10
ссс	—	—	0.10
ddd	_	_	0.05
eee	—	—	0.08

4.5 44-pin Package

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP44-10x10-0.80	PLQP0044GC-A	P44GB-80-UES-2	0.36

NOTE

Each lead centerline is located within 0.20 mm of its true position at maximum material condition.

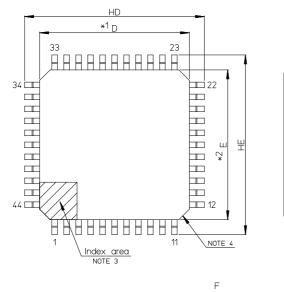
©2012 Renesas Electronics Corporation. All rights reserved.

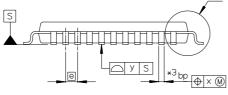
0.10

1.00

1.00

у


ZD


ZE

RL78/G14

JEITA Package Co	de F	RENESAS Code	Previous Code	MASS[Typ.]
P-LQFP44-10x10-0	.80 F	PLQP0044GC-D		0.36g

DIMENSIONS '*1' AND '*2' DO NOT INCLUDE MOLD FLASH.
 DIMENSION '*3' DOES NOT INCLUDE TRM OFFSET.
 PIN 1 VISUAL INDEX FEATURE MAY VARY, BUT MUST BE LOCATED WITHIN THE HATCHED AREA.
 CHAMFERS AT CORNERS ARE OPTIONAL, SIZE MAY VARY.

Reference	Dimension in Millimeters		
Symbol	Min	Nom	Max
D	9.8	10.0	10.2
E	9.8	10.0	10.2
A2		1.4	
HD	11.8	12.0	12.2
HE	11.8	12.0	12.2
А			1.6
A1	0.05		0.15
bp	0.22	0.37	0.45
С	0.09		0.20
θ	0	3.5	8
е		0.80	
×			0.20
У			0.10
Lp	0.45	0.6	0.75
L1		1.0	

A A A A A A A A A A A A A A A A A A A		
	Detail F	-

Max.

1.60

0.15

1.45

—

_

_

_

_

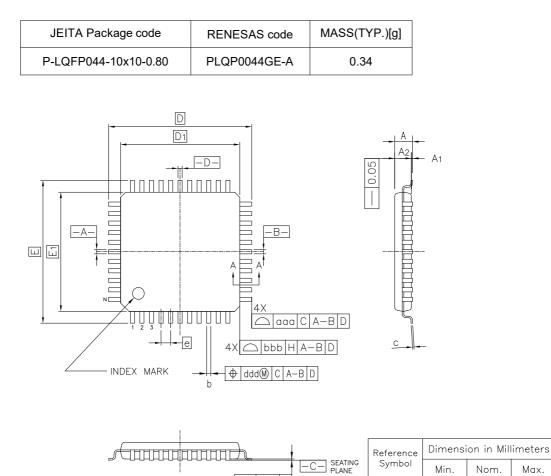
_

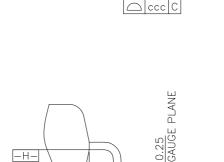
0.45 0.20

7°

0.75

_


0.20 0.20


0.10

0.20

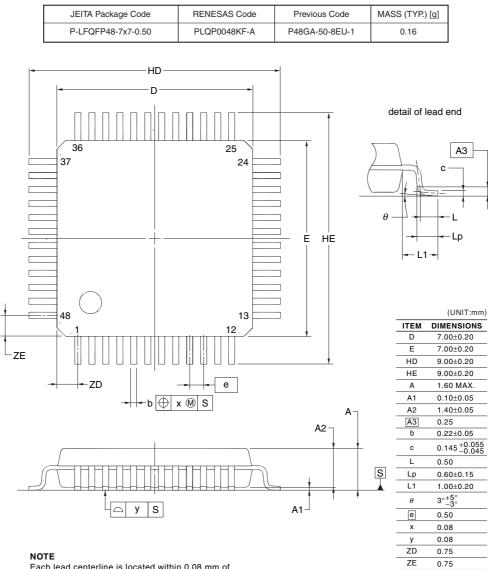
Nom.

_

SECTION A-A

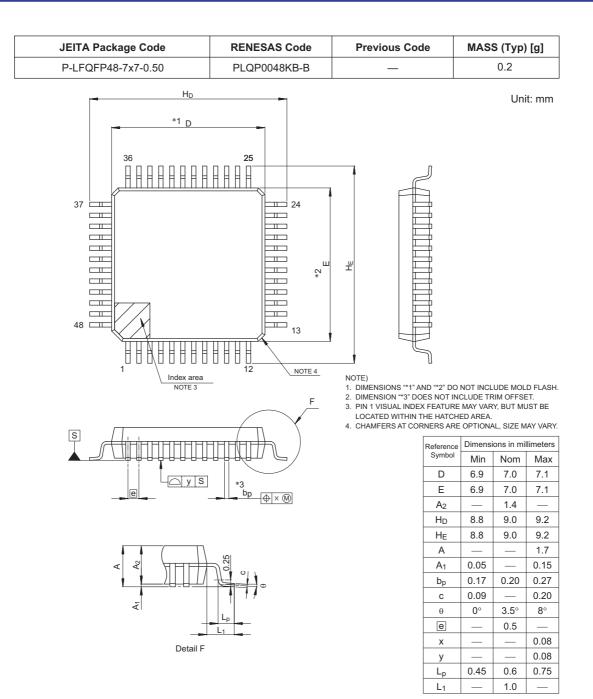
	A ₂	1.35	1.40
	D	_	12.00
	D ₁	-	10.00
1	E	-	12.00
:]	E ₁	_	10.00
-	N	-	44
)	е	-	0.80
5	b	0.30	0.37
,	С	0.09	_
θ	θ	0°	3.5°
1	L	0.45	0.60
	Ц	-	1.00
	aaa	-	-
	bbb	_	-
	ссс	—	-

ddd


А

A₁

_ 0.05


4.6 48-pin Package

Each lead centerline is located within 0.08 mm of its true position at maximum material condition.

©2012 Renesas Electronics Corporation. All rights reserved.

© 2015 Renesas Electronics Corporation. All rights reserved.

Nom.

_

_

1.40

9.00

7.00

9.00

7.00

48

0.50

0.22

_

3.5°

0.60 1.00

_

_

_

_

_

_

ссс

ddd

Max.

1.60

0.15

1.45

—

—

_

_

_

_ 0.27

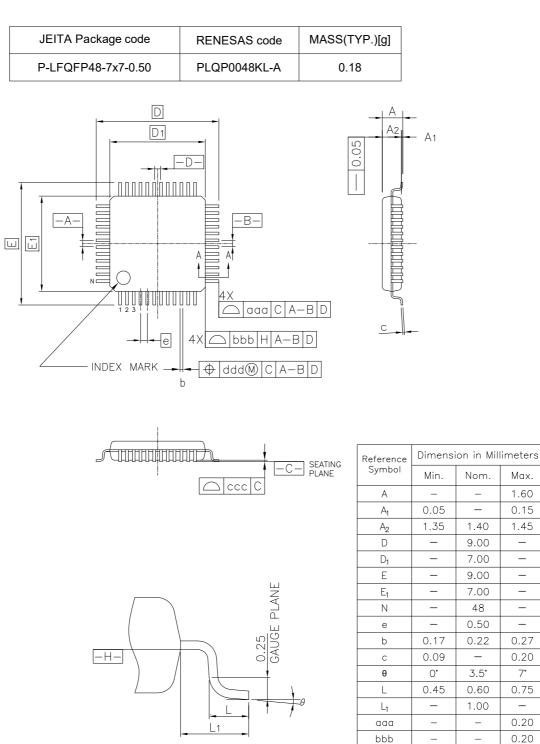
0.20

7°

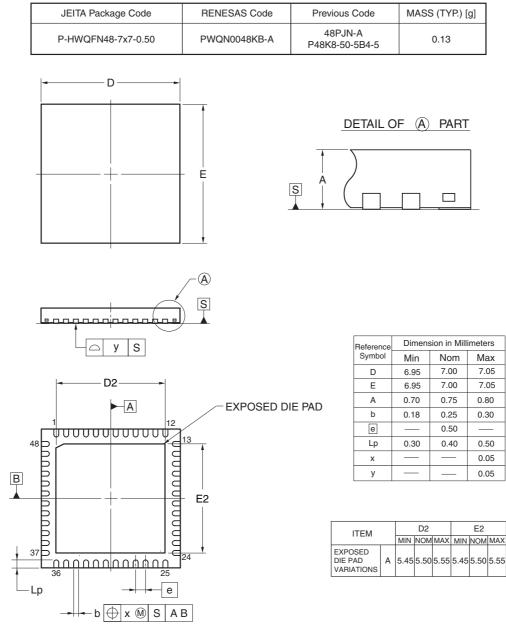
0.75

_

0.20


0.20

0.08

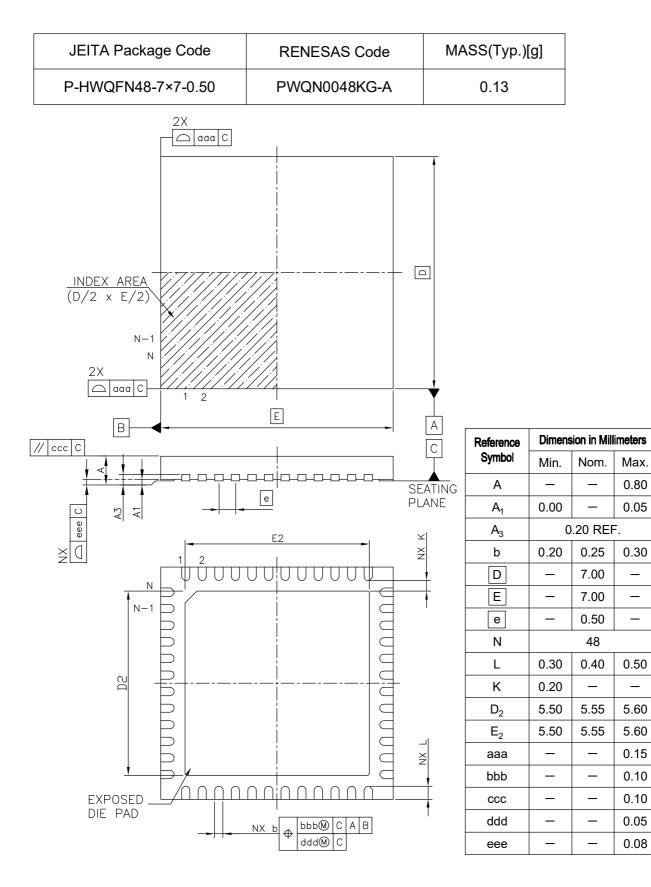

0.08

Mar 29, 2024

R01DS0053EJ0360 Rev. 3.60

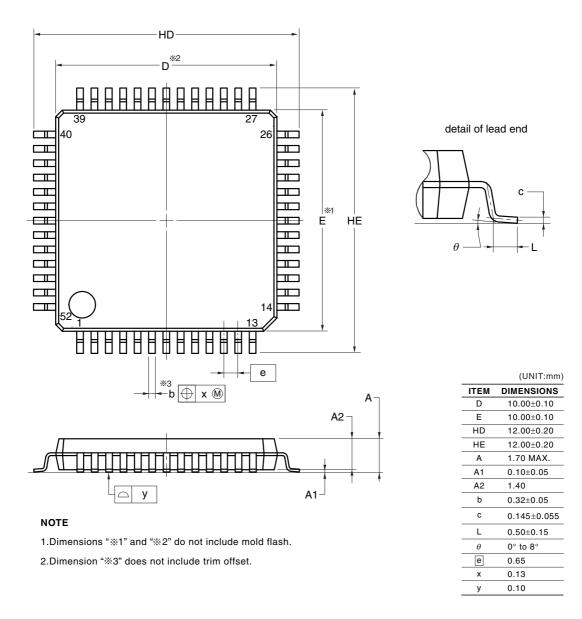
SECTION A-A

©2012 Renesas Electronics Corporation. All rights reserved.

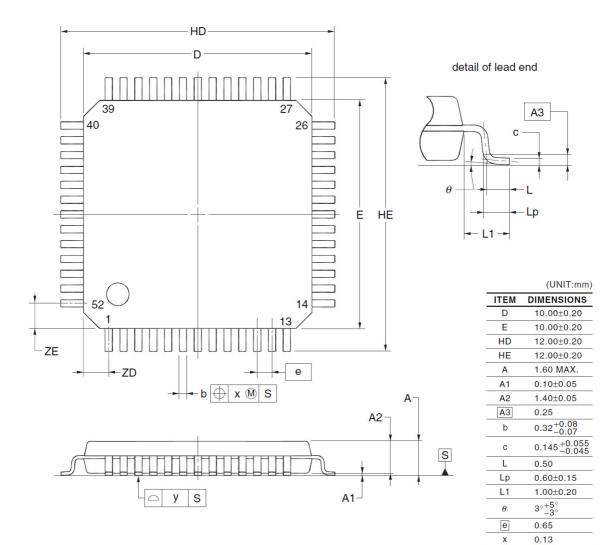

0.10

fff

JEITA Package code	RENESAS code	MASS(TYP.)[g]			
P-HWQFN048-7x7-0.50	PWQN0048KE-A	0.13			
2X aaa C 36 37	25		-		
INDEX AREA (D/2 X E/2) 2X aaa C B					
	b(48X) bbb(M) (
48X					
		Reference	·	sion in Mill	
		C A B Reference	Min.	Nom.	Max.
	21212	Reference C A B A	Min.	Nom.	Max. 0.80
		CAB CAB A POSED F PAD	Min. — 0.00	Nom. — 0.02	Max. 0.80 0.05
		C A B Reference C A B Symbol A A POSED A1 E PAD A3	Min. — 0.00	Nom. — 0.02 0.203 REF	Max. 0.80 0.05
		C A B Reference C A B A POSED A1 E PAD A3 b	Min. — 0.00	Nom. 	Max. 0.80 0.05
		C A B Reference C A B Symbol A A POSED A1 E PAD A3	Min. — 0.00	Nom. 0.02 0.203 REF 0.25 7.00 BSC	Max. 0.80 0.05
		Reference C A B POSED A1 PAD A3 D	Min. — 0.00	Nom. 	Max. 0.80 0.05
		Reference C A B A POSED A1 A3 D E	Min. — 0.00	Nom. 0.02 0.203 REF 0.25 7.00 BSC 7.00 BSC	Max. 0.80 0.05
		Reference C A B POSED FPAD A D E e	Min. - 0.00 0.20	Nom. 0.02 0.203 REF 0.25 7.00 BSC 0.50 BSC	Max. 0.80 0.05 0.30
		C A B Reference C A B A POSED A₁ E PAD A₀ D E e L	Min. 0.00 0.20 0.30	Nom. 0.02 0.203 REF 0.25 7.00 BSC 7.00 BSC 0.50 BSC 0.40	Max. 0.80 0.05 0.30
		Reference Symbol POSED E PAD A A b D E E e L K	Min. 0.00 0.20 0.30 0.20	Nom. 0.02 0.203 REF 0.25 7.00 BSC 7.00 BSC 0.50 BSC 0.40 	Max. 0.80 0.05 0.30 0.30
		Reference Symbol A POSED E PAD A A b D D E E e L K K D ₂	Min. 0.00 0.20 0.20 0.30 0.20 5.50	Nom. 0.02 0.203 REF 0.25 7.00 BSC 7.00 BSC 0.50 BSC 0.40 5.55	Max. 0.80 0.05 0.30 0.50 5.60
		Reference Symbol POSED E PAD E PAD E PAD E PAD E PAD E C E E C E C A A D C E C A C A C A C A C A C A C A C A C A	Min. 0.00 0.20 0.20 0.30 0.20 5.50	Nom. 0.02 0.203 REF 0.25 7.00 BSC 0.50 BSC 0.40 5.55 5.55 0.15 0.10	Max. 0.80 0.05 0.30 0.50 5.60
		Reference C A B POSED FPAD A D E e L K D2 E2 aaa bbb ccc	Min. 0.00 0.20 0.20 0.30 0.20 5.50	Nom. 0.203 REF 0.25 7.00 BSC 7.00 BSC 0.50 BSC 0.50 BSC 0.40 5.55 5.55 0.15 0.10 0.10	Max. 0.80 0.05 0.30 0.50 5.60
		Reference Symbol POSED E PAD E PAD E PAD E C E C A B A A A D D E E C C A C A C A C A C A C A C A C A C	Min. 0.00 0.20 0.20 0.30 0.20 5.50	Nom. 0.02 0.203 REF 0.25 7.00 BSC 0.50 BSC 0.40 5.55 5.55 0.15 0.10	Max. 0.80 0.05 0.30 0.50 5.60
	P-HWQFN048-7x7-0.50	P-HWQFN048-7x7-0.50 PWQN0048KE-A 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3	P-HWQFN048-7x7-0.50 PWQN0048KE-A 0.13	P-HWQFN048-7x7-0.50 PWQN0048KE-A 0.13	P-HWQFN048-7x7-0.50 PWQN0048KE-A 0.13


<R>

4.7 52-pin Package


JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP52-10x10-0.65	PLQP0052JA-A	P52GB-65-GBS-1	0.3

© 2012 Renesas Electronics Corporation. All rights reserved.

RENESAS

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP52-10x10-0.65	PLQP0052JD-B	P52GB-65-UET-2	0.36

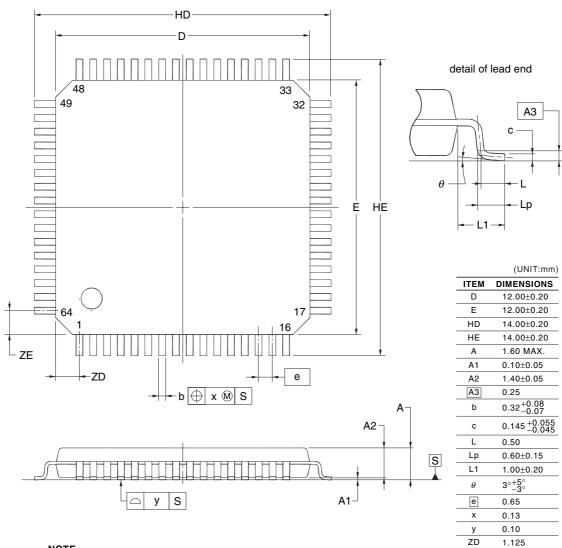
NOTE

Each lead centerline is located within 0.13 mm of its true position at maximum material condition.

0.10

1.10

1.10


у

ZD

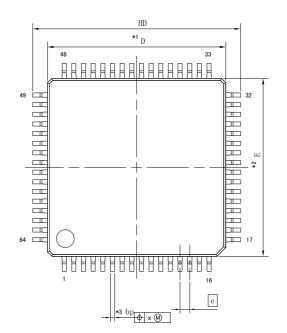
ZE

4.8 64-pin Package

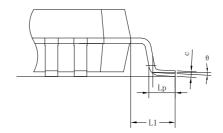
JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP64-12x12-0.65	PLQP0064JA-A	P64GK-65-UET-2	0.51

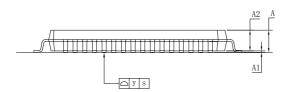
NOTE Each lead centerl

Each lead centerline is located within 0.13 mm of its true position at maximum material condition.


©2012 Renesas Electronics Corporation. All rights reserved.

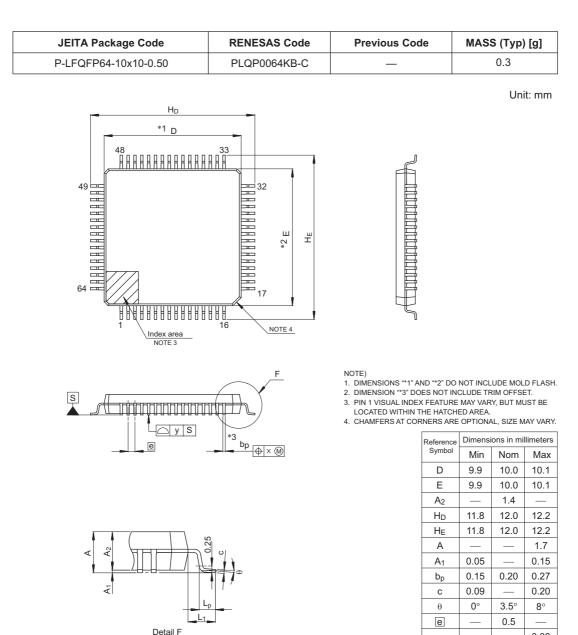
ZE


1.125



JEITA Package code	RENESAS code	MASS(TYP.)[g]
P-LQFP64-12x12-0.65	PLQP0064JB-A	0.50

detail of lead end



N	0.	TF	

1.DIMENSIONS "*1" AND "*2"DO NOT INCLUDE MOLD FLASH. 2.DIMENSION "*3" DOES NOT INCLUDE TRIM OFFSET.

Reference	Dimension in Millimeters		
Symbol	Min.	Nom.	Max.
E	11.90	12.00	12.10
D	11.90	12.00	12.10
A ₂	—	1.40	-
H _D	13.80	14.00	14.20
H _E	13.80	14.00	14.20
Α	—	—	1.70
A ₁	0.05	—	0.15
Lp	0.45	0.60	0.75
L1	—	1.00	-
b _p	0.27	0.32	0.37
С	0.09	—	0.20
е	—	0.65	—
θ	0.00	3.50	8.00
х	-	—	0.08
У	-	_	0.08

0.08

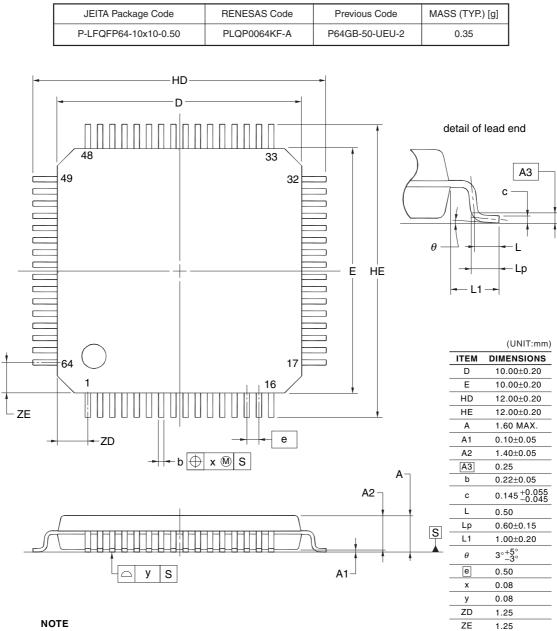
0.08

0.75

х

y

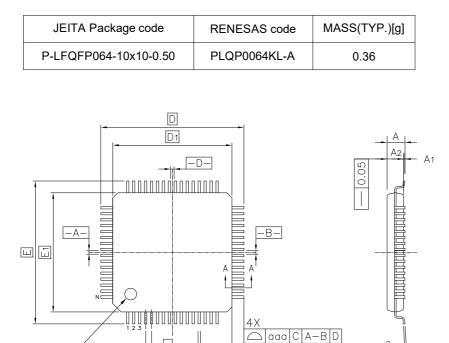
Lp

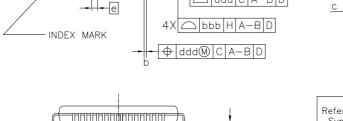

L₁

© 2015 Renesas Electronics Corporation. All rights reserved.

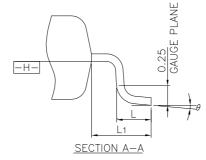
0.45

0.6

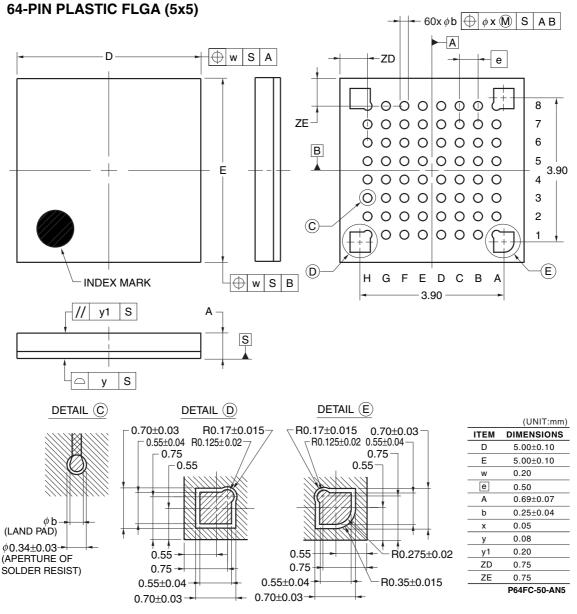

1.0



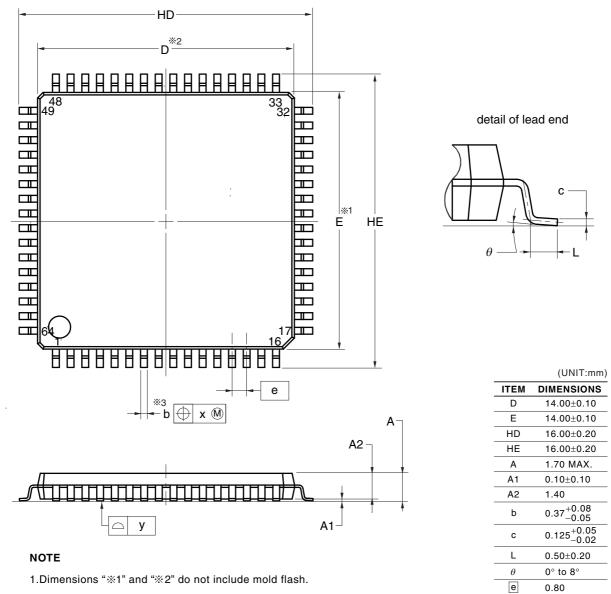
Each lead centerline is located within 0.08 mm of its true position at maximum material condition.


©2012 Renesas Electronics Corporation. All rights reserved.

RENESAS



Reference	Dimension in Millimeters			
Symbol	Min.	Nom.	Max.	
А	-	-	1.60	
A ₁	0.05	_	0.15	
A ₂	1.35	1.40	1.45	
D		12.00	—	
D ₁		10.00	—	
E	-	12.00	-	
E ₁		10.00	—	
Ν		64	—	
е	_	0.50	-	
b	0.17	0.22	0.27	
С	0.09	_	0.20	
θ	0°	3.5°	7°	
L	0.45	0.60	0.75	
L		1.00	—	
aaa	_	-	0.20	
bbb	_	_	0.20	
ccc	_	—	0.08	
ddd	_	—	0.08	


JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-WFLGA64-5x5-0.50	PWLG0064KA-A	P64FC-50-AN5	0.037

© 2011 Renesas Electronics Corporation. All rights reserved.

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP64-14x14-0.80	PLQP0064GA-A	P64GC-80-GBW-1	0.7

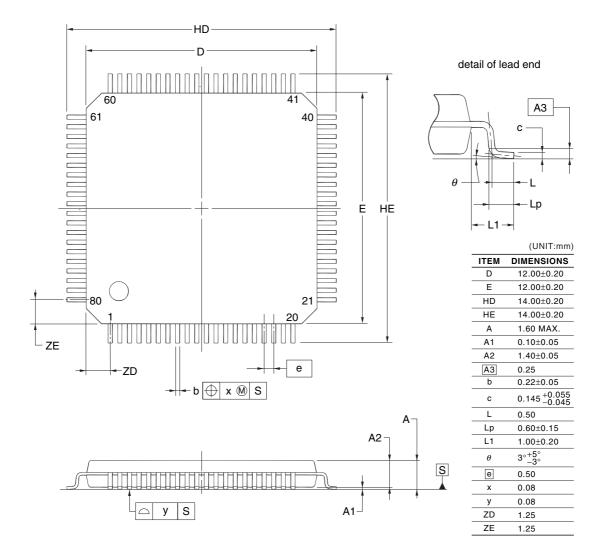
2.Dimension "%3" does not include trim offset.

© 2012 Renesas Electronics Corporation. All rights reserved.

х

у

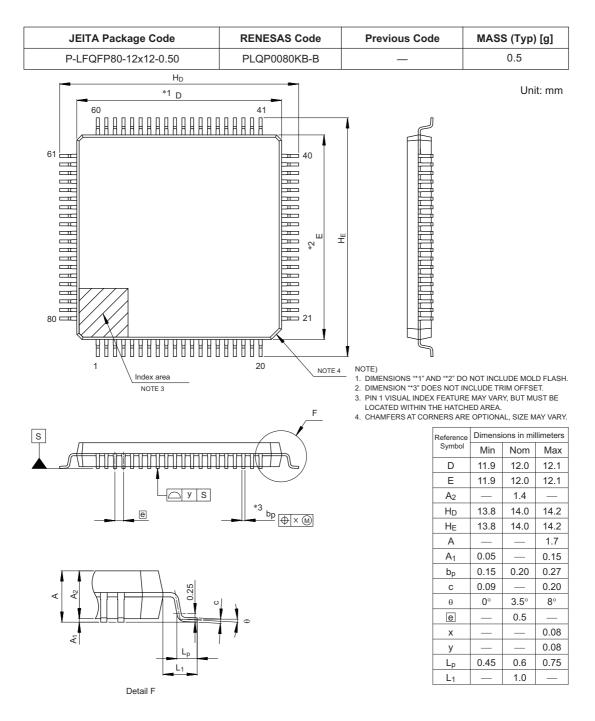
0.20


0.10

RL78/G14

4.9 80-pin Package

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LFQFP80-12x12-0.50	PLQP0080KE-A	P80GK-50-8EU-2	0.53



NOTE

Each lead centerline is located within 0.08 mm of its true position at maximum material condition.

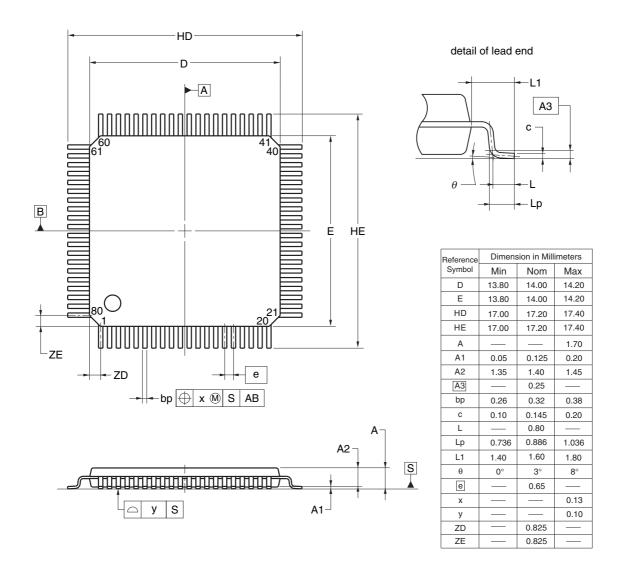
©2012 Renesas Electronics Corporation. All rights reserved.

© 2017 Renesas Electronics Corporation. All rights reserved.

0.08

_

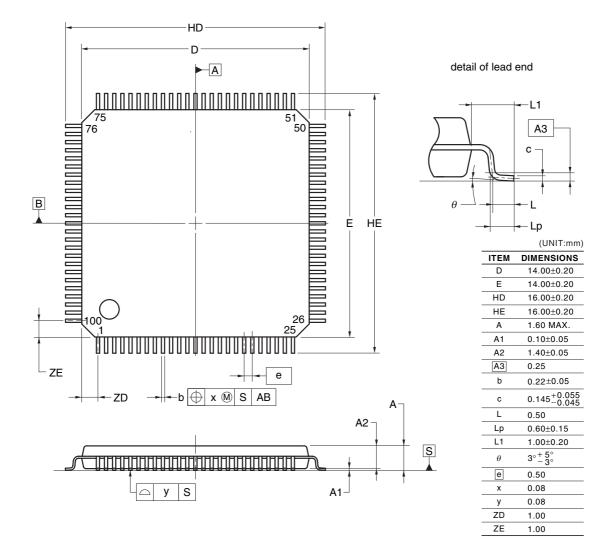
_


ddd

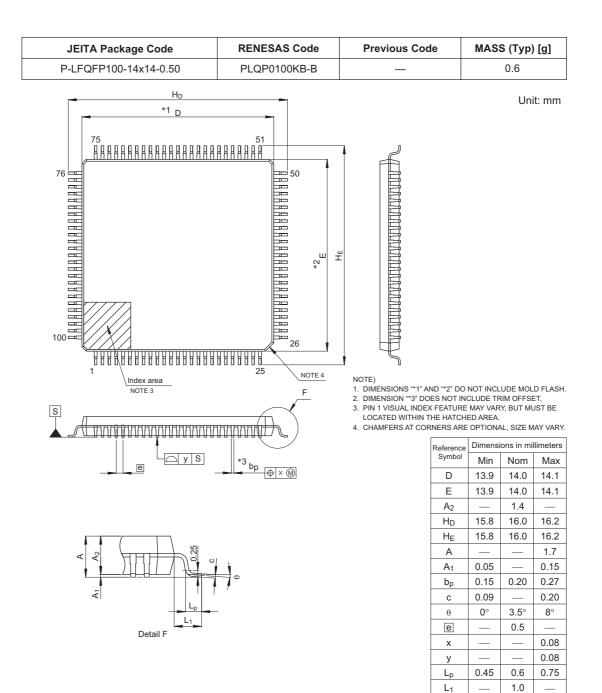
RL78/G14

JEITA Package code	RENESAS code	MASS(T	YP.)[g]			
P-LFQFP80-12x12-0.50	PLQP0080KJ-A	0.4	9			
				A1		
			Reference Symbol	Dimens Min.	ion in Mill Nom.	limeters Max.
		SEATING	A		-	1.60
		SEATING PLANE	A ₁	0.05	_	0.15
			A2	1.35	1.40	1.45
			D	_	14.00	_
			D ₁	_	12.00	_
			E	_	14.00	_
			E1	_	12.00	_
	Ш И		N	_	80	_
			е	_	0.50	_
	0.25 GAUGE PLA		b	0.17	0.22	0.27
	0.25 GAUG		с	0.09	_	0.20
			θ	0°	3.5*	7°
			L	0.45	0.60	0.75
			Lı	—	1.00	—
	L1		aaa	_	-	0.20
51	ECTION A-A		bbb	_	-	0.20
<u> </u>			ccc	—	_	0.08

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP80-14x14-0.65	PLQP0080JB-E	P80GC-65-UBT-2	0.69

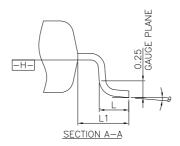


© 2012 Renesas Electronics Corporation. All rights reserved.


4.10 100-pin Package

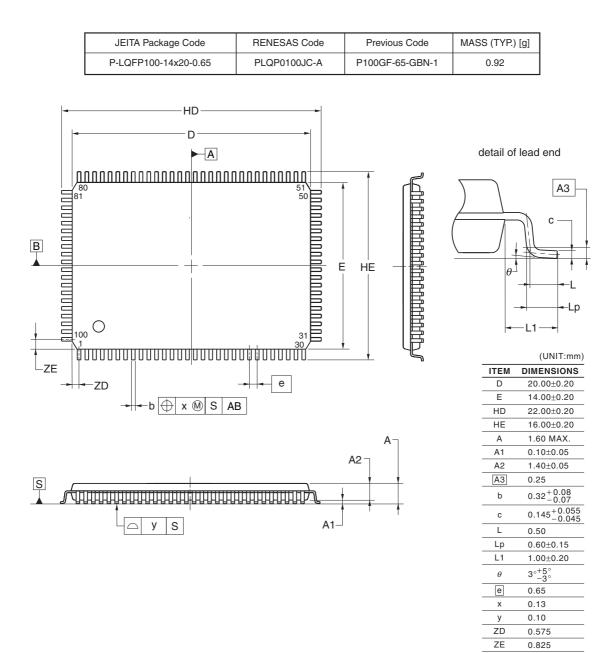
JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LFQFP100-14x14-0.50	PLQP0100KE-A	P100GC-50-GBR-1	0.69

©2012 Renesas Electronics Corporation. All rights reserved.



© 2015 Renesas Electronics Corporation. All rights reserved.

JEITA Package code	RENESAS code	MASS(TYP.)[g]
P-LFQFP100-14x14-0.50	PLQP0100KP-A	0.67



Reference	Dimensi	on in Mil	limeters
Symbol	Min.	Nom.	Max.
A	-	-	1.60
A ₁	0.05	-	0.15
A ₂	1.35	1.40	1.45
D	-	16.00	-
D ₁	-	14.00	-
E	-	16.00	-
E ₁	-	14.00	-
N	-	100	-
е	-	0.50	-
b	0.17	0.22	0.27
с	0.09	-	0.20
θ	0°	3.5°	7*
L	0.45	0.60	0.75
L	-	1.00	_
aaa	-	-	0.20
bbb	-	-	0.20
ccc	-	_	0.08
ddd	-	-	0.08

© 2012 Renesas Electronics Corporation. All rights reserved.

REVISION HISTORY

RL78/G14 Datasheet

Rev.	Date		Description						
1.00.	Dute	Page	Summary						
0.01	Feb 10, 2011	—	First Edition issued						
0.02	May 01, 2011	1 to 2	1.1 Features revised						
		3	1.2 Ordering Information revised						
		4 to 13	1.3 Pin Configuration (Top View) revised						
		14	1.4 Pin Identification revised						
		15 to 17	1.5.1 30-pin products to 1.5.3 36-pin products revised						
		23 to 26	1.6 Outline of Functions revised						
0.03	Jul 28, 2011	1	1.1 Features revised						
1.00	Feb 21, 2012	1 to 40	1. OUTLINE revised						
		41 to 97	2. ELECTRICAL SPECIFICATIONS added						
2.00	Oct 25, 2013	1	Modification of 1.1 Features						
		3 to 8	Modification of 1.2 Ordering Information						
		9 to 22	Modification of package type in 1.3 Pin Configuration (Top View)						
		34 to 43	Modification of description of subsystem clock in 1.6 Outline of Functions						
		34 to 43	Modification of description of timer output in 1.6 Outline of Functions						
		34 to 43	Modification of error of data transfer controller in 1.6 Outline of Functions						
		34 to 43	Modification of error of event link controller in 1.6 Outline of Functions						
		45, 46	Modification of description of Tables in 2.1 Absolute Maximum Ratings						
		47	Modification of Tables, notes, cautions, and remarks in 2.2 Oscillator Characteristics						
		48	Modification of error of conditions of high level input voltage in 2.3.1 Pin characteristics						
								49	Modification of error of conditions of low level output voltage in 2.3.1 Pin characteristics
			53 to 62	Modification of Notes and Remarks in 2.3.2 Supply current characteristics					
				65, 66	Addition of Minimum Instruction Execution Time during Main System Clock Operation				
		67 to 69	Addition of AC Timing Test Points						
		70 to 97	Addition of LS mode and LV mode characteristics in 2.5.1 Serial array unit						
		98 to 101	Addition of LS mode and LV mode characteristics in 2.5.2 Serial interface IICA						
		102 to 105	Addition of characteristics about conversion of internal reference voltage and temperature sensor in 2.6.1 A/D converter characteristics						
		107	Addition of characteristic in 2.6.4 Comparator						
		107	Deletion of detection delay in 2.6.5 POR circuit characteristics						
		109	Modification of 2.6.7 Power supply voltage rising slope characteristics						
		110	Modification of 2.7 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics						
		110	Addition of characteristic in 2.8 Flash Memory Programming Characteristics						
		111	Addition of description in 2.10 Timing for Switching Flash Memory Programming Modes						

			Description
Rev.	Date	Page	Summary
2.00	Oct 25, 2013	112 to 169	Addition of CHAPTER 3 ELECTRICAL SPECIFICATIONS
		171 to 187	Modification of 4.1 30-pin products to 4.10 100-pin products
3.00	Feb 07, 2014	All	Addition of products with maximum 512 KB flash ROM and 48 KB RAM
		1	Modification of 1.1 Features
		2	Modification of ROM, RAM capacities and addition of note 3
		3	Modification of Figure 1 - 1 Part Number, Memory Size, and Package of RL78/G14
		6 to 8	Addition of part number
		15, 16	Modification of 1.3.6 48-pin products
		17	Modification of 1.3.7 52-pin products
		18, 19	Modification of 1.3.8 64-pin products
		20	Modification of 1.3.9 80-pin products
		21, 22	Modification of 1.3.10 100-pin products
		35, 37, 39, 41, 43, 45, 47	Modification of operating ambient temperature in 1.6 Outline of Functions
		42, 43	Addition of table of 48-pin, 52-pin, 64-pin products (code flash memory 384 KB to 512 KB)
		46, 47	Addition of table of 80-pin, 100-pin products (code flash memory 384 KB to 512 KB)
		65 to 68	Addition of (3) Flash ROM: 384 to 512 KB of 48- to 100-pin products
		118	Modification of 2.7 Data Memory Retention Characteristics
		137 to 140	Addition of (3) Flash ROM: 384 to 512 KB of 48- to 100-pin products
		180	Modification of 3.7 Data Memory Retention Characteristics
		189, 190	Addition and modification of 4.6 48-pin products
		191	Modification of 4.7 52-pin products
		193 to 195	Addition and modification of 4.8 64-pin products
		198, 199	Addition and modification of 4.9 80-pin products
		201, 202	Addition and modification of 4.10 100-pin products
3.20	Jan 05, 2015	2	Deletion of R5F104JK and R5F104JL from the list of ROM and RAM capacities and modification of note
		6	Deletion of ordering part numbers of R5F104JK and R5F104JL from 52-pin plastic LQFP package in 1.2 Ordering Information
		6 to 8	Deletion of note 2 in 1.2 Ordering Information
		17	Deletion of note 2 in 1.3.7 52-pin products
		36, 39, 42, 45, 48, 50, 52	Modification of description in 1.6 Outline of Functions
		46, 48	Deletion of description of 52-pin in 1.6 Outline of Functions
		47	Modification of note of 1.6 Outline of Functions
		62, 64, 66, 68, 70, 72	Modification of specifications in 2.3.2 Supply current characteristics

REVISION HISTORY

RL78/G14 Datasheet

-			Description
Rev.	Date	Page	Summary
3.20	Jan 05, 2015	135, 137, 139, 141, 143, 145	Modification of specifications in 3.3.2 Supply current characteristics
		197	Modification of part number in 4.7 52-pin products
3.30	Aug 12, 2016	143, 145	Addition of maximum values in (3) Flash ROM: 384 to 512 KB of 48- to 100-pin products of 3.3.2 Supply current characteristics
3.31	Feb 14, 2020	3	Addition of packaging specifications in Figure 1 - 1 Part Number, Memory Size, and Package of RL78/G14
		4 to 15	Addition of ordering part numbers and RENESAS codes in Table 1 - 1 List of Ordering Part Numbers
		195, 196, 198 to 201, 203, 205 to 207, 209 to 212, 214, 215, 217	Modification of the titles of the subchapters and deletion of product names in Chapter 4
		197	Addition of figure in 4.2 32-pin Package
		202	Addition of figure in 4.5 44-pin Package
		204	Modification of figure in 4.6 48-pin Package
		208	Modification of figure in 4.8 64-pin Package
		213	Modification of figure in 4.9 80-pin Package
		216	Modification of figure in 4.10 100-pin Package
3.32	Oct 31, 2020	3	Modification of Figure 1 - 1 Part Number, Memory Size, and Package of RL78/G14
		4 to 7	Addition of title and modification of description in Table 1 - 1 List of Ordering Part Numbers
		193	Addition of figure in 4.4 40-pin Package
		199	Addition of figure in 4.6 48-pin Package
3.40	Apr 15, 2022	All	The module name for 3-wire SPI was changed to simplified SPI
		All	The module name for CSI was changed to simplified SPI
		All	"Wait" was modified to "clock stretch"
		1	Modification of descriptions of Serial interfaces in 1.1 Features
		1	Addition of Note 1.1 Features
		4 to 7	Modification of description in Table 1-1 List of Ordering Part Numbers (1/4) to (4/4)
		17	Modification of Caution 2 in 1.3.8 64-pin products
		18	Modification of Caution 2 in 1.3.8 64-pin products
		19	Modification of Caution 2 in 1.3.9 80-pin products
		20	Modification of Caution 2 in 1.3.10 100-pin products
		21	Modification of Caution 2 in 1.3.10 100-pin products
		35	Modification of description of Data transfer controller (DTC) in 1.6 Outline of Functions [30-pin, 32-pin, 36-pin, 40-pin products (code flash memory 16 KB to 64 KB)]
		42	Modification of description of Timer in 1.6 Outline of Functions [44-pin, 48-pin, 52-pin, 64-pin products (code flash memory 96 KB to 256 KB)]

```
REVISION HISTORY
```

RL78/G14 Datasheet

Davi	Dete		Description
Rev.	Date	Page	Summary
3.40	Apr 15, 2022	55	Modification of Output current, low in Absolute Maximum Ratings in 2.1 Absolute Maximum Ratings
		61	Modification of Input leakage current, high and low in table ($T_A = -40$ to $+85^{\circ}$ C, 1.6 V \leq EV _{DD0} = EV _{DD1} \leq V _{DD} \leq 5.5 V, V _{SS} = EV _{SS0} = EV _{SS1} = 0 V) (5/5) in 2.3.1 Pin characteristics
		63	Modification of Note 1 in (1) Flash ROM: 16 to 64 KB of 30- to 64-pin products $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = 0 \text{ V}) (1/2)$
		65	Modification of Note 1 in (1) Flash ROM: 16 to 64 KB of 30- to 64-pin products (T _A = -40 to +85°C, 1.6 V \leq EV _{DD0} \leq V _{DD} \leq 5.5 V, Vss = EV _{SS0} = 0 V) (2/2)
		124	Modification of Figure in 2.10 Timing of Entry to Flash Memory Programming Modes
		128	Modification of Output current, low in Absolute Maximum Ratings of 3.1 Absolute Maximum Ratings
		134	Modification of Input leakage current, high and low in table ($T_A = -40$ to $+105^{\circ}$ C, 2.4 V \leq EV _{DD0} = EV _{DD1} \leq V _{DD} \leq 5.5 V, V _{SS} = EV _{SS0} = EV _{SS1} = 0 V) (5/5) of 3.3.1 Pin characteristics
		136	Modification of Note 1 in (1) Flash ROM: 16 to 64 KB of 30- to 64-pin products $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = 0 \text{ V}) (1/2)$
		138	Modification of Note 1 in (1) Flash ROM: 16 to 64 KB of 30- to 64-pin products (T _A = -40 to +105°C, 2.4 V \leq EV _{DD0} \leq V _{DD} \leq 5.5 V, V _{SS} = EV _{SS0} = 0 V) (2/2)
		187	Modification of Figure in 3.10 Timing of Entry to Flash Memory Programming Modes
		192	Addition of figure in 4.2 32-pin Package
		198	Addition of figure in 4.5 44-pin Package
		201	Addition of figure in 4.6 48-pin Package
		205	Addition of figure in 4.7 52-pin Package
		207, 210	Addition of figure in 4.8 64-pin Package
		215	Addition of figure in 4.9 80-pin Package
		219	Addition of figure in 4.10 100-pin Package
3.50	May 31, 2023	4	Table 1 - 1 List of Ordering Part Numbers (1/4) was modified.
		63	2.3.2 Supply current characteristics, (1) Flash ROM: 16 to 64 KB of 30- to 64-pin products (1/2): Notes 1 and 4 were modified.
		65	2.3.2 Supply current characteristics, (1) Flash ROM: 16 to 64 KB of 30- to 64-pin products (2/2): Notes 1 and 5 was modified, and Note 6 was deleted.
		67	2.3.2 Supply current characteristics, (2) Flash ROM: 96 to 256 KB of 30- to 100- pin products (1/2): Notes 1 and 4 were modified.
		69	2.3.2 Supply current characteristics, (2) Flash ROM: 96 to 256 KB of 30- to 100- pin products (2/2): Notes 1 and 5 were modified, and Note 6 was deleted.
		71	2.3.2 Supply current characteristics, (3) Flash ROM: 384 to 512 KB of 48- to 100- pin products (1/2): Notes 1 and 4 were modified.
		73	2.3.2 Supply current characteristics, (3) Flash ROM: 384 to 512 KB of 48- to 100- pin products (2/2): Notes 1 and 5 were modified, and Note 6 were deleted.
		136	3.3.2 Supply current characteristics, (1) Flash ROM: 16 to 64 KB of 30- to 64-pin products (1/2): Notes 1 and 4 were modified.
		138	3.3.2 Supply current characteristics, (1) Flash ROM: 16 to 64 KB of 30- to 64-pin products (2/2): Notes 1 and 5 were modified, and Note 6 were deleted.

REVISION HISTORY	RL78/G14 Datasheet
------------------	--------------------

Rev.	Date		Description
Rev.		Page	Summary
3.50	May 31, 2023	140	3.3.2 Supply current characteristics, (2) Flash ROM: 96 to 256 KB of 30- to 100- pin products (1/2): Notes 1 and 4 were modified.
		142	3.3.2 Supply current characteristics, (2) Flash ROM: 96 to 256 KB of 30- to 100- pin products (2/2): Notes 1 and 5 were modified, and Note 6 were deleted.
		144	3.3.2 Supply current characteristics, (3) Flash ROM: 384 to 512 KB of 48- to 100- pin products (1/2): Notes 1 and 4 were modified.
		146	3.3.2 Supply current characteristics, (3) Flash ROM: 384 to 512 KB of 48- to 100- pin products (2/2): Notes 1 and 5 were modified, and Note 6 were deleted.
		191	4.2 32-pin Package: Figure was added.
		208	4.8 64-pin Package: Figure was modified.
3.60	Mar 29, 2024	3	Modification of figure 1 - 1 Part Number, Memory Size, and Package of RL78/G14
		4	Modification of table in Table 1 - 1 List of Ordering Part Numbers (1/4)
		5	Modification of table in Table 1 - 1 List of Ordering Part Numbers (2/4)
		6	Modification of table in Table 1 - 1 List of Ordering Part Numbers (3/4)
		7	Modification of table in Table 1 - 1 List of Ordering Part Numbers (4/4)
		197	Addition of figure in 4.4 40-pin Package
		206	Addition of figure in 4.6 48-pin Package

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power is supplied until the power is supplied until the power reaches the level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (Max.) and V_{IH} (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (Max.) and V_{IH} (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a systemevaluation test for the given product.

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
- 5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 6. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION ("Vulnerability Issues"). RENESAS ELECTRONICS DISCLAIMS ANY AND ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
- 8. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Renesas Electronics:

QB-R5F104LE-TB QB-R5F104PJ-TB