
ФУНКЦИОНАЛЬНАЯ СХЕМА

(вид сверху)

ПРИМЕНЕНИЕ

- Усилители в трактах РЧ и ПЧ
- СВЧ измерительное оборудование
- Беспроводная и сотовая связь
- Усилители спутникового сигнала

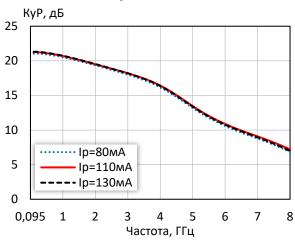
СПЕЦИФИКАЦИЯ

Диапазон рабочих частот	0 – 6	ГГц
Коэффициент усиления	22,0	дБ
Коэффициент шума	3,4	дБ
Линейная выходная мощность	120,0	мВт
Напряжение питания	+5,0	В
Диапазон рабочих температур	-60 до +85	°C
Тип корпуса	KT-47	
Технологический процесс	GaAs ГБТ	

КРАТКОЕ ОПИСАНИЕ

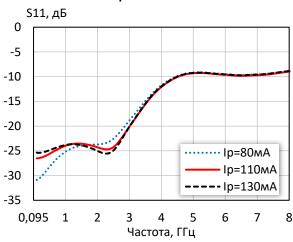
К1324УВ9У1 — СВЧ МИС широкополосного усилителя с выходной мощностью до 120 мВт и диапазоном рабочих частот 0 — 6 ГГц, согласованного по входу и выходу с линией, имеющей волновое сопротивление 50 Ом. СВЧ МИС изготавливается в пластмассовом трехвыводном корпусе КТ-47 размером 4,6х4,25 мм².

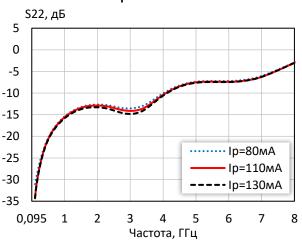
Выходную мощность усилителя можно регулировать в некоторых пределах, изменяя напряжение питания (U_n).

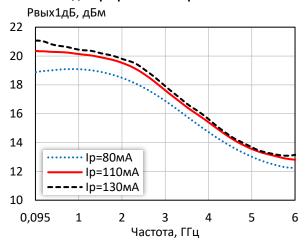

ОСНОВНЫЕ ПАРАМЕТРЫ

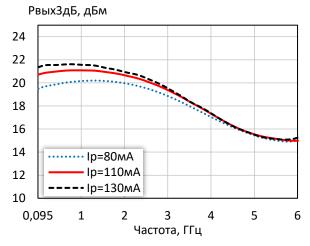
Электрические параметры при I _p = 80 мA, R1 = 5 Ом, T = 25 °C					
Параметр, единица измерения	Условия	мин.	тип.	макс.	
Диапазон рабочих частот, ГГц	КуР > 5 дБ	0,1 - 6,1	0,01 - 6,4		
Коэффициент усиления на частоте 100 МГц, дБ	Р _{вх} = 0,01 мВт		22,0		
Коэффициент усиления на частоте 3,0 ГГц, дБ	Р _{вх} = 0,01 мВт	15,0	17,5	20,0	
Коэффициент усиления на частоте 6,1 ГГц, дБ	Р _{вх} = 0,01 мВт		7,9		
Неравномерность коэффициента усиления, дБ	f = 0,1–2,0 ГГц		1,2	3,0	
Выходная мощность при уровне компрессии коэффициента усиления 1 дБ, мВт	f = 500 МГц, I _p = 130 мА		120,0	150,0	
Коэффициент шума, дБ	f = 500 МГц		3,2	3,6	

E-mail: info@electron-engine.ru Телефон: +7 (495)761-75-23

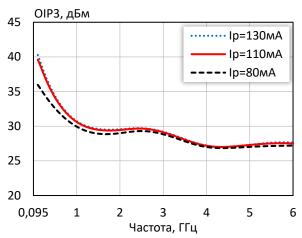

Коэффициент усиления при различных режимных токах


Коэффициент обратной передачи при различных режимных токах

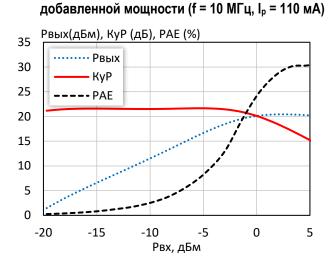

Коэффициент отражения от входа при различных режимных токах


Коэффициент отражения от выхода при различных режимных токах

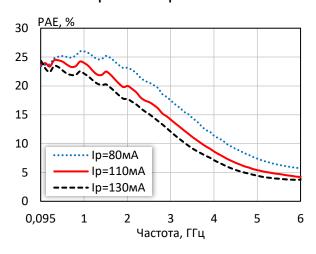
Выходная мощность при уровне компрессии K_{yP} на 1 дБ при различных режимных токах

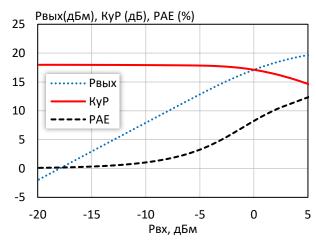


Выходная мощность при уровне компрессии K_{уР} на 3 дБ при различных режимных токах

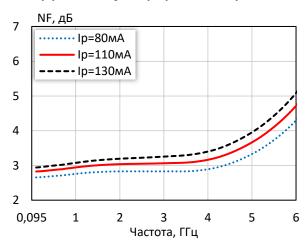


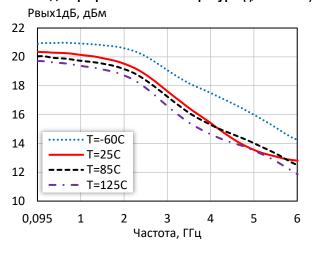
Точка пересечения интермодуляции третьего порядка по выходу при различных режимных токах

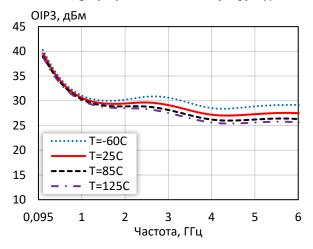

Выходная мощность, коэффициент усиления, КПД по

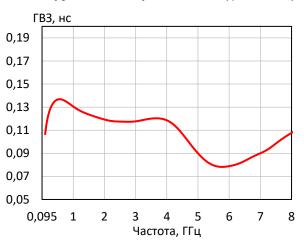

Входное напряжение покоя $U_{\text{вх}}$ при изменении режимного тока I_{p}

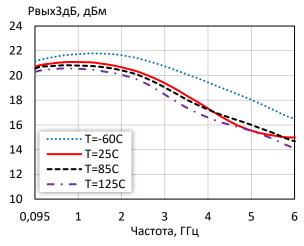
КПД по добавленной мощности в точке Р_{вых3дБ} при различных режимных токах

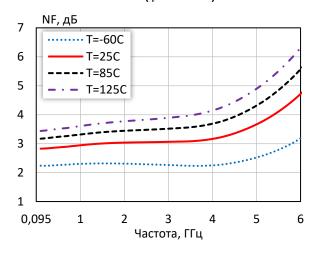

Выходная мощность, коэффициент усиления, КПД по добавленной мощности (f = 3 ГГц, I_p = 110 мA)


Выходное напряжение покоя U_{вых} при изменении режимного тока I_р

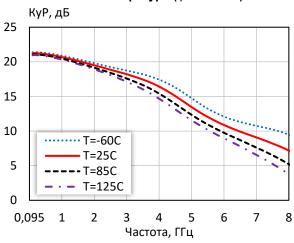

Коэффициент шума при различных режимных токах


Выходная мощность при уровне компрессии K_{yP} на 1 дБ при различной температуре (I_p = 110 мA)

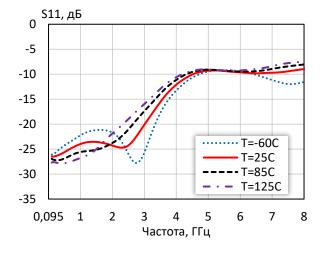

Точка пересечения интермодуляции третьего порядка по выходу при различной температуре ($I_p = 110 \text{ мA}$)

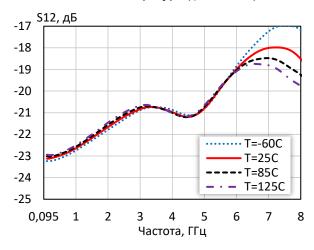

Групповая задержка сигнала (I_p = 110 мА)

Выходная мощность при уровне компрессии K_{yP} на 3 дБ при различной температуре (I_p = 110 мA)



Коэффициент шума при различной температуре (I_p = 110 мA)




Коэффициент усиления при различной температуре (I_p = 110 мA)

Коэффициент отражения от входа при различной температуре (I_p = 110 мA)

Коэффициент обратной передачи при различной температуре (I_p = 110 мA)

Коэффициент отражения от выхода при различной температуре (I_p = 110 мA)

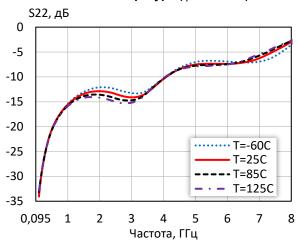


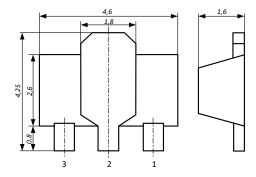
Таблица 1 — S-параметры при I_p = 80 мA, T = 25 °C

Частота, ГГц	S11	Arg S11, град	\$21	Arg S21, град	S12	Arg S12, град	S22	Arg S22, град
0,1	0,03	4,14	11,22	172,86	0,07	-0,20	0,03	142,14
1,0	0,06	33,52	10,62	130,75	0,08	-0,72	0,17	52,42
2,0	0,07	39,88	9,26	85,96	0,08	-5,87	0,23	16,59
3,0	0,11	69,25	7,93	43,15	0,09	-15,85	0,21	8,81
4,0	0,26	51,60	6,42	0,16	0,09	-26,77	0,31	15,07
5,0	0,35	11,43	4,57	-37,97	0,09	-28,12	0,43	-7,48
6,0	0,33	-21,07	3,38	-66,75	0,11	-37,37	0,44	-25,92
7,0	0,33	-46,29	2,74	-96,81	0,12	-55,98	0,50	-38,15
8,0	0,36	-70,92	2,19	-132,41	0,12	-76,10	0,71	-59,78
9,0	0,41	-93,85	1,42	-171,44	0,09	-82,96	0,97	-102,41
10,0	0,43	-113,24	0,72	166,60	0,10	-81,23	0,97	-141,44

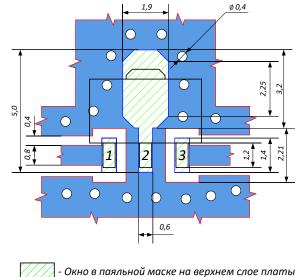
Таблица 2 — S-параметры при I_p = 110 мA, T = 25 °C

Частота, ГГц	S11	Arg S11, град	\$21	Arg S21, град	S12	Arg S12, град	S22	Arg S22, град
0,1	0,05	-1,89	11,33	172,70	0,07	-0,25	0,02	109,47
1,0	0,06	18,46	10,83	130,87	0,07	-0,45	0,17	46,21
2,0	0,06	25,57	9,44	86,26	0,08	-5,24	0,23	12,73
3,0	0,10	69,77	8,14	43,67	0,09	-15,05	0,20	6,33
4,0	0,25	53,43	6,62	0,82	0,09	-26,15	0,30	15,94
5,0	0,34	11,98	4,73	-37,58	0,09	-27,29	0,42	-7,11
6,0	0,33	-21,08	3,50	-66,53	0,11	-36,58	0,43	-25,61
7,0	0,33	-46,49	2,85	-96,59	0,13	-55,45	0,49	-37,10
8,0	0,35	-71,20	2,28	-132,23	0,12	-75,97	0,71	-58,19
9,0	0,41	-93,92	1,49	-171,94	0,10	-83,60	0,98	-101,21
10,0	0,42	-113,39	0,76	165,41	0,10	-81,96	0,98	-140,93

Таблица 3 — S-параметры при I_p = 130 мA, T = 25 °C


Частота, ГГц	\$11	Arg S11, град	\$21	Arg S21, град	S12	Arg S12, град	S22	Arg S22, град
0,1	0,06	-1,56	11,50	172,94	0,07	0,29	0,01	78,35
1,0	0,06	12,90	10,89	130,63	0,07	-0,26	0,16	43,82
2,0	0,06	22,98	9,47	85,91	0,08	-4,85	0,22	10,94
3,0	0,10	72,58	8,13	43,09	0,09	-14,87	0,18	7,25
4,0	0,25	53,78	6,58	0,07	0,09	-25,96	0,29	18,46
5,0	0,35	12,06	4,67	-38,06	0,09	-27,08	0,42	-5,54
6,0	0,33	-20,90	3,46	-66,86	0,11	-36,45	0,42	-24,16
7,0	0,33	-46,51	2,80	-97,09	0,13	-55,26	0,49	-35,94
8,0	0,36	-71,55	2,23	-132,32	0,12	-75,45	0,71	-57,47
9,0	0,41	-94,87	1,45	-170,93	0,10	-83,03	0,97	-100,55
10,0	0,42	-114,01	0,75	167,51	0,11	-82,33	0,97	-140,09

Справочный лист версия 1.0.0, Февраль 2021


E-mail: info@electron-engine.ru Телефон: +7 (495)761-75-23

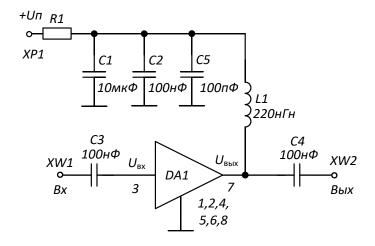
ГАБАРИТНЫЙ ЧЕРТЕЖ КОРПУСА KT-47 (SOT-89)

ПЛОЩАДКА ДЛЯ МОНТАЖА КОРПУСА KT-47 (SOT-89)

- Окно в паяльной маске на верхнем слое платы

- Трассировка на верхнем слое платы

ПРЕДЕЛЬНЫЕ ЭКСПЛУАТАЦИОННЫЕ ПАРАМЕТРЫ

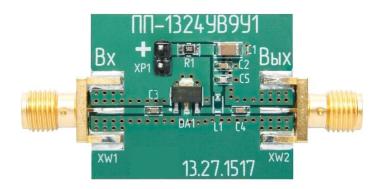

Напряжение питания (U₁)	+6 В при R = 5 Ом
Режимный ток (I _p)	140 мА
Рабочая температура	-60 до +125 °C
Максимальная входная мощность (Р _{вх})	+13 дБм
Максимальная температура перехода (T _j)	+150 °C
Тепловое сопротивление переход-корпус	120 °С/Вт

Наименование корпуса	Материал корпуса	Размер корпуса
KT-47	Пластмасса	4,6х4,25 мм²

НАЗНАЧЕНИЕ ВЫВОДОВ

Номер вывода	Обозначение	Назначение	Схема внутренних цепей вывода
1,2,4,5,6,8	GND	Земля	<u>°</u>
3	IN (Bx)	Вход	OUT/VCC
7	OUT (Вых), VCC (Uп)	Выход и напряжение питания	

ТИПОВАЯ СХЕМА ВКЛЮЧЕНИЯ



РЕКОМЕНДУЕМЫЕ ЗНАЧЕНИЯ РЕЗИСТОРА

Напряжение питания (U _п)	+4,5 B	+ 5 B	+ 5,5 B	
Режимный ток (I _p)	75 мА	80 мА	130 мА	
Номинальное сопротивление (R1)	5 Ом			
Рассеиваемая мощность	0,028 Вт	0,032 Вт	0,084 Вт	

ПРИМЕЧАНИЕ: Номиналы дроссельной катушки индуктивности L1 и разделительных конденсаторов (C3, C4) могут быть изменены в соответствии с используемым частотным диапазоном. Режимный ток I_p задаётся номиналом резистора R1 и напряжением питания U_n . Номинал резистора может быть рассчитан по формуле: R1 = $(U_n - U_{вых})$ / I_p

ДЕМОНСТРАЦИОННАЯ ПЛАТА ПП-К1324УВ9У1

СПИСОК КОМПОНЕНТОВ ПЕЧАТНОЙ ПЛАТЫ

L1	Дроссель 220 нГн
C1	Конденсатор 10 мкФ
C2	Конденсатор 100 нФ
C5	Конденсатор 100 пФ
C3, C4	Конденсатор 100 нФ
R1	Резистор 5 Ом
XW1, XW2	Разъем SMA 50 Ом

ИНФОРМАЦИЯ ДЛЯ ЗАКАЗА

К1324УВ9У1	Пластмассовый корпус КТ-47
ПП-К1324УВ9У1	Демонстрационная плата СВЧ усилителя

По вопросам заказа обращаться:

ООО «ИПК «Электрон-Маш»

124365, г. Москва, г. Зеленоград, к1619, Телефон: +7 (495) 761-75-23

К1324УВ9У1

ШИРОКОПОЛОСНЫЙ УСИЛИТЕЛЬ С ЛИНЕЙНОЙ ВЫХОДНОЙ МОЩНОСТЬЮ ДО 120 мВт И ДИАПАЗОНОМ ЧАСТОТ DC 6 ГГц

1(

E-mail: info@electron-engine.ru