

DATA SHEET SURFACE-MOUNT CERAMIC

MULTILAYER CAPACITORS Mid-voltage

NPO/X7R 100 V TO 630 V 0.47 pF to 2.2 µF

RoHS compliant & Halogen Free

YAGEO

Surface-Mount Ceramic Multilayer Capacitors Mid-voltage NP0/X7R 100 V to 630 V

<u>SCOPE</u>

This specification describes Midvoltage NP0/X7R series chip capacitors with lead-free terminations.

APPLICATIONS

PCs, Hard disk, Game PCs Power supplies, Charger LCD panel ADSL, Modem

FEATURES

Supplied in tape on reel Nickel-barrier end termination RoHS compliant MSL class MSL I Halogen Free compliant

ORDERING INFORMATION - GLOBAL PART NUMBER, PHYCOMP

CTC & 12NC

All part numbers are identified by the series, size, tolerance, TC material, packing style, voltage, process code, termination and capacitance value. **YAGEO BRAND ordering code**

GLOBAL PART NUMBER (PREFERRED)

CC <u>XXXX</u> <u>X</u> <u>X</u> <u>XXX</u> <u>X</u> <u>B</u> <u>X</u> <u>XXX</u> (1) (2) (3) (4) (5) (6) (7)

(I) SIZE - INCH BASED (METRIC)

0201 (0603) / 0402 (1005) / 0603 (1608) / 0805 (2012) / 1206 (3216) / 1210 (3225) 1808 (4520) / 1812 (4532) / 2220 (5750)

(2) TOLERANCE

 $C = \pm 0.25 \text{ pF}$ $D = \pm 0.5 \text{ pF}$ $F = \pm 1\%$ $G = \pm 2\%$ $J = \pm 5\%$ $K = \pm 10\%$ $M = \pm 20\%$

(3) PACKING STYLE

- R = Paper/PE taping reel; Reel 7 inch
- K = Blister taping reel; Reel 7 inch
- P = Paper/PE taping reel; Reel 13 inch
- F = Blister taping reel; Reel 13 inch

(4) TC MATERIAL

NPO X7R

(5) RATED VOLTAGE

- $0 = 100 \vee$
- A = 200 V
- Y = 250 V
- B = 500 V
- Z = 630 V

(6) PROCESS

- N = NPO
- B = Class 2 MLCC

(7) CAPACITANCE VALUE

2 significant digits+number of zeros

The 3rd digit signifies the multiplying factor, and letter R is decimal point

Example: $121 = 12 \times 10^{1} = 120 \text{ pF}$

Surface-Mount Ceramic Multilayer Capacitors Mid-voltage NP0/X7R 100 V to 630 V

CONSTRUCTION

The capacitor consists of a rectangular block of ceramic dielectric in which a number of interleaved metal electrodes are contained. This structure gives rise to a high capacitance per unit volume.

The inner electrodes are connected to the two end terminations and finally covered with a layer of plated tin (NiSn). The terminations are lead-free. A cross section of the structure is shown in Fig. I.

DIMENSION Table I For outlines see fig. 2 L₂ / L₃ (mm) L_4 (mm) TYPE L_I (mm) W (mm) T (MM) min. min. max. 0201 0.6 ±0.03 0.3±0.03 0.3±0.03 0.10 0.20 0.20 0402 1.0 ±0.05 0.5 ± 0.05 0.5 ± 0.05 0.15 0.35 0.30 0603 0.20 1.6 ±0.10 0.8 ±0.10 0.8 ±0.10 0.60 0.40 2.0 ±0.10 1.25 ±0.10 0.6 ±0.10 0805 0.25 0.75 0.85 ±0.10 0.70 2.0 ±0.20 1.25 ±0.20 1.25 ±0.20 0.6 ±0.10 3.2 ±0.15 1.6 ±0.15 0.85 ±0.10 0.25 0.75 1.40 1206 1.25 ±0.20 3.2 ±0.30 1.6 ±0.20 1.6 ±0.20 1.6 ±0.30 3.2 ±0.30 1.6 ±0.30 0.3 0.9 1.4 3.2 ±0.20 0.85 ±0.10 2.5 ±0.20 1.25 ±0.20 1210 0.25 0.75 1.40 1.6 ±0.20 3.2 ±0.40 2.5 ±0.30 2.0 ±0.20 1808 4.5 ±0.40 2.0 ±0.30 1.25 ±0.20 0.25 0.75 2.20

0.85 ±0.10

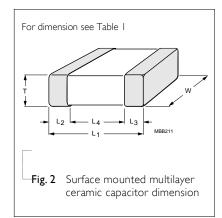
1.25 ±0.20

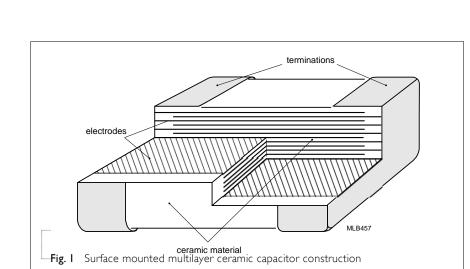
1.60 ±0.20

2.0 ±0.20

0.25

0.25


0.75


0.75

2.20

3.40

OUTLINES

1812

2020

4.5 ±0.40

 5.7 ± 0.40

3.2 ±0.30

5.0 ±0.30

Table 2 S	izes from 02	01 to 0805								
CAP.	0201 100V	0402 ⊺00∨	0603 100 ∨	200 V	250 V	0805 100 ∨	200 V	250 V	500 V	630V
0.22 pF				<u> </u>						
0.47 pF										
0.56 pF										
0.68 pF										
0.82 pF										
I.0 pF										
I.2 pF										
1.5 pF										
I.8 pF										
2.2 pF										
2.7 pF										
3.3 pF										
3.9 pF										
4.7 pF										
5.6 pF	0.2 + 0.02		00101	00101		04101	0(101	0 (+ 0 +	0 (+ 0 +	0(10)
6.8 pF	0.3±0.03	0.5±0.05	0.8±0.1	0.8±0.1	0.8±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1
8.2 pF										
10 pF										
I2 pF										
I5 pF										
18 pF										
22 pF										
27 pF										
33 pF										
39 pF										
47 pF										
56 pF										
68 pF										
82 pF										
100 pF										

ΝΟΤΕ

YAGEO

I. Values in shaded cells indicate thickness class in mm

2. Capacitance value of non E-12 series is on request

4

22

Product specification

 Product specification

 Surface-Mount Ceramic Multilayer Capacitors
 Mid-voltage
 NP0/X7R
 100 V to 630 V

CAPACITANCE RANGE & THICKNESS FOR NPO

Table 3 Sizes from 0603 to 0805 (continued)

CAP.	0402 ⊺00 ∨	0603 100 V	200 V	250 V	0805 100 ∨	200 V	250 V	500 V	630 V
120 pF									
150 pF						0.6± 0.1	0.6± 0.1	0.6± 0.1	0.6± 0.1
180 pF									
220 pF									
270 pF									
330 pF			0.8± 0.1	0.8± 0.1				0.85±0.1	0.85±0.1
390 pF	0.5± 0.05				0.6± 0.1				
470 pF						0.85±0.1	0.85±0.1		
560 pF									
680 pF									
820 pF								1.25±0.2	1.25±0.2
I.0 nF		0.8± 0.1							
I.2 nF		0.0± 0.1							
I.5 nF					0.85±0.1				
I.8 nF									
2.2 nF						1.25±0.2	I.25±0.2		
2.7 nF						1,25±0,2	1.23±0.2		
3.3 nF									
3.9 nF									
4.7 nF					1.25±0.2				
5.6 nF									
6.8 nF									
8.2 nF									
I0 nF									
I2 nF									
15 nF									
18 nF									
22 nF									

NOTE

I. Values in shaded cells indicate thickness class in mm

2. Capacitance value of non E-12 series is on request

5

22

YAGEC		e-Mount C	eramic l	Nultilayer	Capacitor	S Mid-v	oltage NI	P0/X7R 100	V to 630 V	pecification 2
CAPACITA	ance ra	NGE & TH	ICKNESS	FOR NPO						
		1206 to 1210								
CAP.	1206 100 V	200 V	250 V	500 V	630 V	1210 100 V	200 V	250 V	500 V	630
0.47 pF								-	-	
0.56 pF										
0.68 pF										
0.82 pF										
I.0 pF										
I.2 pF										
I.5 pF										
1.8 pF										
2.2 pF										
2.7 pF										
3.3 pF										
3.9 pF										
4.7 pF										
5.6 pF	0.6±0.1	0.6±0.1	0.6±0.1							
6.8 pF	0.0±0.1	0.0±0.1	0.6±0.1							
8.2 pF										
10 pF										
I2 pF										
I5 pF										
18 pF										
22 pF										
27 pF				0.6±0.1	1.25±0.2					
33 pF				0.0±0.1	1,2310,2					
39 pF										
47 pF										1.25±0
56 pF						1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1,231
68 pF						1,2010,2	1,2010,2	1,23±0,2	1,2940,2	
82 pF										

ΝΟΤΕ

- I. Values in shaded cells indicate thickness class in mm
- 2. Capacitance value of non E-12 series is on request

Product specification

7

22

Surface-Mount Ceramic Multilayer Capacitors Mid-voltage NP0/X7R 100 V to 630 V

CAPACITANCE RANGE & THICKNESS FOR NPO

Table 5	Sizes from	1206 to	1210	(continued)
---------	------------	---------	------	-------------

CAP.	1206	11200 to 12)		1210				
	100 V	200 V	250 V	500 V	630 V	100 V	200 V	250 V	500 V	630 V
100 pF										
120 pF										
150 pF										
180 pF										
220 pF										
270 pF		0.6±0.1	0.6±0.1	0.6±0.1						
330 pF										1.25±0.2
390 pF										
470 pF	0 () 0				1.25±0.2					
560 pF	0.6±0.1									
680 pF							1.25±0.2	1.25±0.2	1.25±0.2	
820 pF										
I.0 nF		0.05 + 0.4	0.05 + 0.4	0.05 + 0 +						
I.2 nF		0.85±0.1	0.85±0.1	0.85±0.1		1.25±0.2				
I.5 nF										
I.8 nF										
2.2 nF				1.25±0.2						
2.7 nF		1.25±0.2	1.25±0.2							
3.3 nF										
3.9 nF										
4.7 nF	0.85±0.1									
5.6 nF										
6.8 nF					1.60±0.2					
8.2 nF										
I0 nF	1.25±0.2				1.60±0.2					
I2 nF										
I5 nF										
18 nF										
22 nF						1.6±0.2				2.0±0.2

ΝΟΤΕ

- I. Values in shaded cells indicate thickness class in mm
- 2. Capacitance value of non E-12 series is on request

Table 6	Sizes 1812					
CAP.		1812				
	<u>.</u>	100 V	200 V	250 V	500 V	630\
	IO pF					
	12 pF					
	15 pF 18 pF					
	22 pF					
	27 pF					
	33 pF					
	39 pF					
	47 pF					
	56 pF					
	68 pF					
	82 pF					
	100 pF					
	120 pF					
	150 pF					
	180 pF					
	220 pF					
	270 pF					1.25±0.1
	330 pF					
	390 pF					
	470 pF				1.25±0.2	
	560 pF					
	680 pF 820 pF					
	l nF					
	I.2 nF			1.25±0.2		
	1.5 nF		1.25±0.2			
	1.8 nF					
	2.2 nF					
	2.7 nF	1.25±0.2				
	3.3 nF					
	3.9 nF					
	4.7 nF					
	5.6 nF					
	6.8 nF					
	8.2 nF					
	10 nF					
	I2 nF					
	I5 nF					
	18 nF 22 nF					1.6±0.2

Surface-Mount Ceramic Multilayer Capacitors Mid-voltage

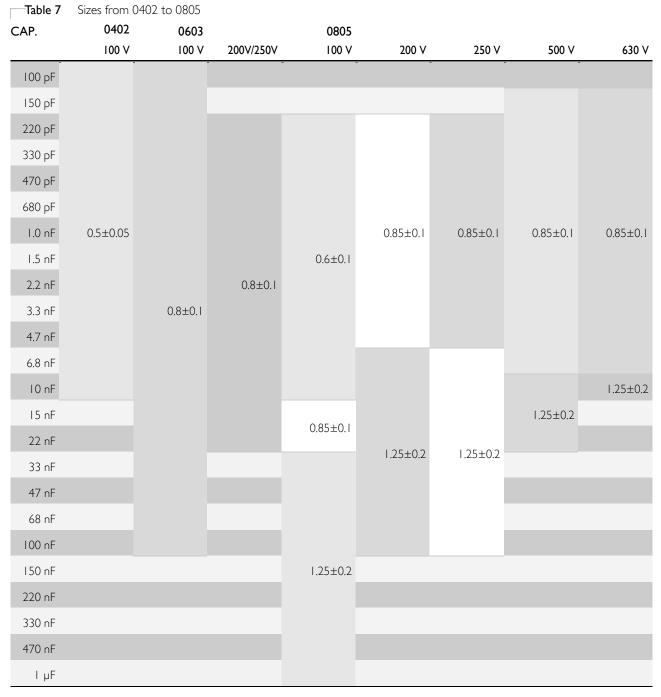
ΝΟΤΕ

YAGEO

I. Values in shaded cells indicate thickness class in mm

2. Capacitance value of non E-12 series is on request

8


22

Product specification

NP0/X7R 100 V to 630 V

Surface-Mount Ceramic Multilayer Capacitors Mid-voltage NP0/X7R 100 V to 630 V

CAPACITANCE RANGE & THICKNESS FOR X7R

ΝΟΤΕ

I. Values in shaded cells indicate thickness class in mm

- 2. Capacitance value of non E-6 series is on request
- 3. For special ordering code, please contact local sales force before order
- 4. For product with 5% tolerance, please contact local sales force before order

9

22

Product specification

YAGE									Product speci	
CADACIT		:e-Mount (Ange & Ti		Aultilayer FOR Y7R	Capacitor	S Mid-volt	age NP0/	×7R 100 V	to 630 V	22
Table 8		n 1206 to 12								
CAP.	1206					1210				
	100 V	200 V	250 V	500 V	630 V	100 V	200 V	250 V	500 V	630V
100 pF										
150 pF										
220 pF										
330 pF										
470 pF										
680 pF										
I.0 nF										
I.5 nF		0.85±0.1	0.85±0.1	125.02	1.25±0.2					
2.2 nF				1.25±0.2						
3.3 nF 4.7 nF	0.85±0.1									
6.8 nF							0.85±0.1	0.85±0.1		1.25±0.2
10 nF										1.23±0.2
15 nF						0.85±0.1			1.25±0.2	
22 nF										1.6±0.2
33 nF				1.6±0.2	1.6±0.2					
47 nF		1.25±0.2	1.25±0.2							2.0±0.2
68 nF							I.25±0.2	1.25±0.2		
100 nF		1.6±0.2	1.6±0.2						2.0±0.2	
150 nF	1.25±0.2									
220 nF										
330 nF						I.25±0.2				
470 nF										
680 nF	1.6±0.2									
ΙµF						2.0±0.2				
2.2 µF										

ΝΟΤΕ

I. Values in shaded cells indicate thickness class in mm

2. Capacitance value of non E-6 series is on request

3. For product with 5% tolerance, please contact local sales force before order

TAGEC								Product
	Surface	-Mount Ce	ramic Mul	tilayer Cap	acitors	Mid-voltage	NP0/X7R	100 V to 630 V
<u>CAPACIT</u>	<u>'ANCE RAP</u>	NGE & THIO	<u>CKNESS FOI</u>	<u>r X7r</u>				
Table 9 CAP.	Sizes from 1812 100 V	1808 to 1812 200 V	250 V	500 V	630 V	2020 630 V		
100 pF								
150 pF								
220 pF								
330 pF								
470 pF								
680 pF								
I.0 nF								
I.5 nF								
2.2 nF								
3.3 nF								
4.7 nF		0.85±0.1	0.85±0.1		1.35±0.2			
6.8 nF	0.85±0.1	0.0J±0.1	0.0J±0.1	1.25±0.2				
10 nF	0.03±0.1			1.23±0.2				
15 nF								
22 nF								
33 nF								
47 nF					1.6±0.2			
68 nF		1 25 + 0 2	1 25+0.2 -		1.0±0.2			
100 nF		1.25±0.2	1.25±0.2	1.6±0.2				
150 nF	1.25±0.2					2.0±0.2		
220 nF	1.2J±0.2					2.0±0.2		
330 nF		1.6±0.2	1.6±0.2					
470 nF								
680 nF	1.6±0.2							
ΙµF								

ΝΟΤΕ

YAGEO

- I. Values in shaded cells indicate thickness class in mm
- 2. Capacitance value of non E-6 series is on request
- 3. For product with 5% tolerance, please contact local sales force before order

Product specification 11

22

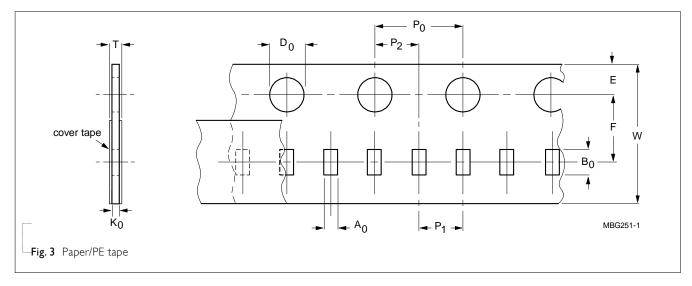
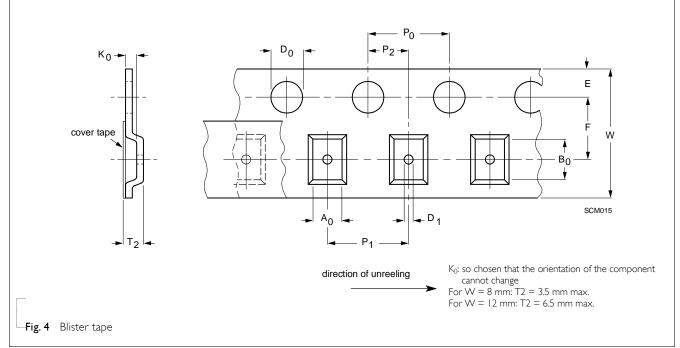

THICKNESS CLASSES AND PACKING QUANTITY

Table 10

-					QUANTIT	Y PER REEL		
SIZE	THICKNESS	PACKIN	IG CODE.		Ø180 N	1M / 7 INCH	Ø330 MM	/ 13 INCH
CODE	CLASSIFICATION	7 INCH	13 INCH	TAPE WIDTH	Paper	Blister	Paper	Blister
0201	0.3 ±0.03 mm	R	Р	8 mm	15,000		50,000	
0402	0.5 ±0.05 mm	R	Р	8 mm	10,000		50,000	
0603	0.8 ±0.1 mm	R	Р	8 mm	4,000		15,000	
	0.6 ±0.1 mm	R	Р	8 mm	4,000		20,000	
0805	0.8 / 0.85 ±0.1 mm	R	Р	8 mm	4,000		15,000	
	1.25 ±0.2 mm	К	F	8 mm		3,000		10,000
	0.6 ±0.1 mm	R	Р	8 mm	4,000		20,000	
	0.8 / 0.85 ±0.1 mm	R	Р	8 mm	4,000		15,000	
1206	1.00 / 1.15 ±0.1 mm	К	F	8 mm		3,000		10,000
1200	1.25 ±0.2 mm	К	F	8 mm		3,000		10,000
	1.6 ±0.15 mm	К	F	8 mm		2,500		10,000
	1.6 ±0.2 mm	К	F	8 mm		2,000		8,000
	0.6 / 0.7 ±0.1 mm	К	F	8 mm		4,000		15,000
	0.85 ±0.1 mm	К	F	8 mm		4,000		10,000
	1.15 ±0.1 mm	К	F	8 mm		3,000		10,000
	1.15 ±0.15 mm	К	F	8 mm		3,000		10,000
	1.25 ±0.2 mm	К		8 mm		3,000		
1210	1.5 ±0.1 mm	К		8 mm		2,000		
	1.6 / 1.9 ±0.2 mm	К		8 mm		2,000		
	2.0 ±0.2 mm	К		8 mm		2,000		
-	2,0 ±0,2 mm			0 11111		1,000		
	2.5 ±0.2 mm	К		8 mm		1,000		
	1.15 ±0.15 mm			12		500		
	1.15 ± 0.15 mm 1.25 ± 0.2 mm	K K		12 mm 12 mm		3,000		
-	1.35 ±0.15 mm	K				2,000		
1808	1.5 ±0.15 mm	K		12 mm 12 mm		2,000		
-	1.6 ±0.2 mm	K	F	12 mm		2,000		
-	2.0 ±0.2 mm	K	Г	l2 mm		2,000		8,000
	0.6 / 0.85 ±0.1 mm	K		12 mm		2,000		
	1.15 ±0.1 mm	K		12 mm		1,000		
	1.15 ±0.15 mm	K		12 mm		1,000		
	1.15 ±0.15 mm					1,000		
1812		K		12 mm				
1012	1.35 ±0.15 mm 1.5 ±0.1 mm	K		12 mm		1,000		
-		K		12 mm		1,000		
	1.6 ±0.2 mm	K		12 mm		1,000		
-	2.0 ±0.2 mm	K		12 mm		1,000		
2220	2.5 ±0.2 mm	K		12 mm		500		
2220	2.0 ±0.2 mm	K		l2 mm		1000		

PAPER/PE TAPE SPECIFICATION

Table II Dimensions of paper/PE tape for relevant chip size; see Fig.3


SIZE	SYMBO	L									Unit: mm
CODE	A ₀	B ₀	W	Е	F	$P_0^{(1)}$	PI	P ₂	ØD ₀	K ₀	Т
0201	0.39 ± 0.06	0.70 ± 0.06	8.0 ± 0.20	1.75 ± 0.1	3.50 ± 0.05	4.0 ± 0.05	2.0 ± 0.05	2.0 ± 0.05	1.55 ± 0.03	0.38 ± 0.05	(0.47 / 0.55)±0.10
0402	0.70 ± 0.15	1.21 ± 0.12	8.0 ± 0.20	1.75 ± 0.1	3.50 ± 0.05	4.0 ± 0.05	2.0 ± 0.05	2.0 ± 0.05	1.50 +0.1 /-0	(0.75 / 0.60)±0.10	(0.85 / 0.70)±0.10
0603	1.05 ± 0.14	1.86 ± 0.13	8.0 ± 0.20	1.75 ± 0.1	3.50 ± 0.05	4.0 ± 0.10	4.0 ± 0.10	2.0 ± 0.05	1.50 +0.1 /-0	(1.05 / 0.95 / 0.75)±0.10	(1.15 / 1.05 / 0.85)±0.10
0805	1.50 ± 0.15	2.26 ± 0.20	8.0 ± 0.20	1.75 ± 0.1	3.50 ± 0.05	4.0 ± 0.10	4.0 ± 0.10	2.0 ± 0.05	1.50 +0.1 /-0	(1.05 / 0.95 / 0.75)±0.10	(1.15 / 1.05 / 0.85)±0.10
1206	1.90 ± 0.15	3.50 ± 0.20	8.0 ± 0.20	1.75 ± 0.1	3.50 ± 0.05	4.0 ± 0.10	4.0 ± 0.10	2.0 ± 0.05	1.50 +0.1 /-0	(0.95 / 0.75)±0.10	(1.05 / 0.85)± 0.10

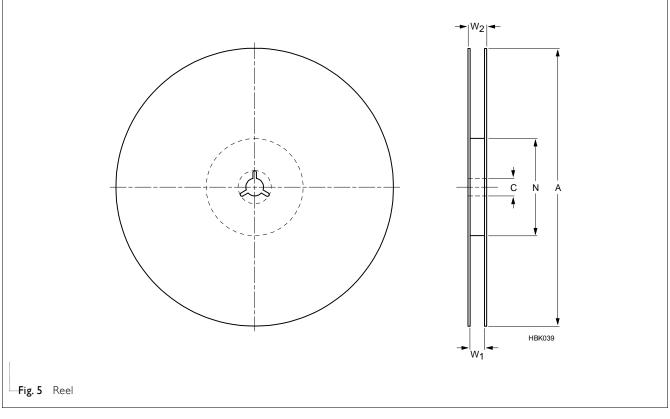
ΝΟΤΕ

1. P_0 pitch tolerance over any 10 pitches is $\pm 0.2 \mbox{ mm}$

BLISTER TAPE SPECIFICATION

Table 12 Dimensions of blister tape for relevant chip size; see Fig.4

	SYM	SYMBOL														Unit: mm	
size code	A ₀		B ₀		K ₀		W	E	F	ØD ₀	ØDI	P ₀ ⁽²⁾	PI	P ₂	Т2		
	Min.	Max.	Min.	Max.	Min.	Max.					Min.				Min,	Max.	
0805	1.29	1.65	2.09	2.60	1.25	1.62	8.1 ±0.20	1.75 ±0.1	3.5 ±0.05	1.5 +0.1/-0.0	+0.1/-0.0	4.0 ±0.10	4.0 ±0.10	2.0 ±0.05	1.30	1.67	
1206	1.65	2.12	3.30	3.75	1.22	2.15	8.1 ±0.20	1.75 ±0.1	3.5 ±0.05	1.5 +0.1/-0.0	+0.1/-0.0	4.0 ±0.10	4.0 ±0.10	2.0 ±0.05	1.27	2.20	
1210	2.55	3.02	3.31	3.88	0.97	2.92	8.1 ±0.20	1.75 ±0.1	3.5 ±0.05	1.5 +0.1/-0.0	+0.1/-0.0	4.0 ±0.10	4.0 ±0.10	2.0 ±0.05	1.02	2.97	
1808	2.05	2.55	4.80	5.45	1.30	2.45	12.1 ±0.20	1.75 ±0.1	5.5 ±0.05	1.5 +0.1/-0.0	1.5 +0.1/-0.0	4.0 ±0.10	4.0 ±0.10	2.0 ±0.05	1.35	2.50	
1812	3.35	3.75	4.70	5.33	0.70	2.40	12.1 ±0.20	1.75 ±0.1	5.5 ±0.05	1.5 +0.1/-0.0	1.5 +0.1/-0.0	4.0 ±0.10	8.0 ±0.10	2.0 ±0.05	0.75	2.45	


NOTE

I. Typical capacitor displacement in pocket

2. P_0 pitch tolerance over any 10 pitches is ±0.2 mm

REEL SPECIFICATION

Table 13 Reel dimensions; see Fig.5

	SYMBOL				Unit: mm	
TAPE WIDTH	A	N	С	WI	W _{2max.}	
8 (Ø178 mm/7")	178 ±1.0	60 ±1.0	13 +0.50/-0.20	9.4 ±1.5	4.4	
8 (Ø330 mm/13")	330 ±1.0	100 ±1.0	13 +0.50/-0.20	9.0 ±0.2	4.4	
12 (Ø178 mm/7")	178 ±1.0	60 ±1.0	3 +0.50/-0.20	3.4 ± .5	18.4	

PROPERTIES OF REEL

Material: polystyrene

Surface resistance: $<10^{10}$ X/sq.

ELECTRICAL CHARACTERISTICS

NP0/X7R DIELECTRIC CAPACITORS; NISN TERMINATIONS

Unless otherwise specified, all test and measurements shall be made under standard atmospheric conditions for testing as given in 5.3 of IEC 60068-1:

- Temperature: 15 °C to 35 °C
- Relative humidity: 25% to 75%
- Air pressure: 86 kPa to 106 kPa

Before the measurements are made, the capacitor shall be stored at the measuring temperature for a time sufficient to allow the entire capacitor to reach this temperature.

The period as prescribed for recovery at the end of a test is normally sufficient for this purpose.

Table	14		
DESCRIPT	TION		VALUE
Capacitand	ce range	0.47 pF	F to 2.2 µF
Capacitand	ce tolerance		
NP0	C < 10 pF	±0.25 p	oF, ±0.5 pF
	C ≥ 10 pF	±2%, ±	5%, ±10%
X7R		±5% ^(I) , ±I	0%, ±20%
Dissipatior	n factor (D.F.)		
NP0	C < 30 _P F	≤ I / (40)0 + 20C)
	C ≥ 30 pF		≤ 0.1 %
X7R	General		≤ 2.5 %
	Exception	1206/100V/ 560nF to 1uF, 1210/100V/1uF and 2.2uF	≤ 3.5%
		0603/100V/12nF to 100nF, 0805/100V/560nF to 1uF, 1206/100V/2.2uF	≤ 5%
Insulation resistance after 1 minute at U_r (DC)		$R_{ins} ≥ 10 GΩ$ or $R_{ins} × C ≥ 500Ω·F$ whichever is les $R_{ins} × C ≥ 100Ω·F$ ⁽²⁾	ŝS
	capacitance change as a function of to ure characteristic/coefficient):	emperature	
NP0		±3	30 ppm/°C
X7R			±15%
Operating	temperature range:		
NP0/X7F	र	–55 °C to	o +125 ℃

NOTE

I. Capacitance tolerance ±5% doesn't available for X7R full product range, please contact local sales force before order

2. 1210/ X7R/ 630V/ 27nF to 47nF 1210/ X7R/ 500V/ 56nF to 100nF 1812/ X7R/ 630V/ 39nF to 100nF

SOLDERING RECOMMENDATION

Table 15

SOLDERING METHOD	SIZE 0201	0402	0603	0805	1206	≥ 1210
Reflow	Reflow only	> 100 nF	> 1.0 µF	> 2.2 µF	> 2.2 µF	Reflow only
Reflow/Wave		≤ 100 nF	≤ I.0 µF	≤ 2.2 µF	≤ 2.2 µF	

TESTS AND REQUIREMENTS

TEST	TEST METH	HOD	PROCEDURE	REQUIREMENTS
Mounting	IEC 60384- 21/22	4.3	The capacitors may be mounted on printed-circuit boards or ceramic substrates	No visible damage
Visual Inspection and Dimension Check		4.4	Any applicable method using × 10 magnification	In accordance with specification
Capacitance		4.5.1	NP0: $f = 1$ MHz for C ≤ 1 nF, measuring at voltage 1 V _{rms} at 20°C $f = 1$ KHz for C ≥ 1 nF, measuring at voltage 1 V _{rms} at 20°C X7R: $f = 1$ KHz for C ≤ 10 µF, measuring at voltage 1 V _{rms} at 20°C	Within specified tolerance
Dissipation Factor (D.F.)		4.5.2	NP0: $f = 1$ MHz for C ≤ 1 nF, measuring at voltage V _{rms} at 20°C f = 1 KHz for C > 1 nF, measuring at voltage V _{rms} at 20°C X7R: $f = 1$ KHz for C ≤ 10 µF, measuring at voltage V _{rms} at 20°C	In accordance with specification (in Table 14)
Insulation Resistance		4.5.3	$U_r \le 500$ V: At Ur for 1 minute $U_r > 500$ V: At 500 V for 1 minute	In accordance with specification (in Table 14)

TEST	TEST METH	HOD	PROCEDURE	REQUIREMENTS		
Temperature coefficient		4.6	Capacitance shall be measured by the steps shown in the following table. The capacitance change should be measured after 5 min at each specified temperature stage. Step Temperature(°C) a 25±2 b Lower temperature±3°C c 25±2 d Upper Temperature±2°C e 25±2 (1) NP0 Temperature Coefficient shall be calculated from the formula as below Temp, Coefficient = $\frac{C2 - CI}{CI \times \Delta T} \times 10^{6}$ [ppm/°C] C1: Capacitance at step c C2: Capacitance at 125°C ΔT : 100°C (=125°C -25°C) (2) X7R Capacitance Change shall be calculated from the formula as below $\Delta C = \frac{C2 - CI}{CI} \times 100\%$ C1: Capacitance at step c C2: Capacitance at step c C2: Capacitance the step c	<general purpose="" series=""> NP0: Δ C/C: ±30ppm/°C X7R: Δ C/C: ±15% <high capacitance="" series=""> Class2: X7R: Δ C/C: ±15%</high></general>		
Adhesion	IEC 60384- 21/22	4.7	A force applied for 10 seconds to the line joining the terminations and in a plane parallel to the substrate	Force size ≥ 0603: 5N size = 0402: 2-5N size = 0201: 1N		
Bending Strength		4.8	Mounting in accordance with IEC 60384-22 paragraph 4.3	No visible damage		
			Conditions: bending I mm at a rate of I mm/s, radius jig 5 mm	Δ C/C Class 1: NP0: within ±1% or 0.5 pF, whichever is greater Class2: X7R: ±10%		

22

_	YA	G	E	0

TEST	TEST METH	HOD	PROCEDURE	REQUIREMENTS	
Resistance to Soldering		4.9 Precondition: $150 \pm 0/-10$ °C for 1 hour, then keep for 24 ±1 hours at room	Dissolution of the end face plating shall not exceed 25% of the length of the edge concerned		
Heat			temperature Preheating: for size ≤ 1206: 120 °C to 150 °C for 1 minute Preheating: for size >1206: 100 °C to 120 °C for 1 minute and 170 °C to 200 °C for 1 minute —	Δ C/C Class 1: NP0: within ±0.5% or 0.5 pF, whichever is greater Class2: X7R: ±10% D.F. within initial specified value	
			Solder bath temperature: 260 ±5 °C Dipping time: 10 ±0.5 seconds Recovery time: 24 ±2 hours	R _{ins} within initial specified value	
Solderability		4.10	Preheated the temperature of 80 °C to 140 °C and maintained for 30 seconds to 60 seconds.	The solder should cover over 95% of the critical area of each termination	
			 Temperature: 235±5°C / Dipping time: 2 ±0.5 s Temperature: 245±5°C / Dipping time: 3 ±0.5 s (lead free) Depth of immersion: 10mm 		
Rapid Change of	IEC 60384- 21/22	4.11	Preconditioning; 50 +0/–10 °C for I hour, then keep for _	No visual damage	
Temperature			24 ±1 hours at room temperature5 cycles with following detail:30 minutes at lower category temperature30 minutes at upper category temperature	24 ±1 hours at room temperature5 cycles with following detail:30 minutes at lower category temperature	Δ C/C Class 1: NP0: within ±1% or 1 pF, whichever is greater Class2: X7R: ±15%
			Recovery time 24 ±2 hours -	D.F. meet initial specified value R _{ins} meet initial specified value	

TEST	TEST METH	HOD	PROCEDURE			REQUIREMENTS	
Damp Heat	4.13		3. Preconditi	ioning, class 2	2 only:	No visual damage after recovery	
		сı. т	 150 +0/-1 24 ±1 hor 4. Initial means Spec: reference 5. Damp heans 500 ±12 hor 90 to 95% 6. Recovery: Class 1: 6 Class 2: 2- 7. Final means P.S. If the comparison of the second second	50 +0/-10 °C /1 hour, then keep for 4 ±1 hour at room temp iitial measure: pec: refer initial spec C, D, IR Pamp heat test: 00 ±12 hours at 40 ±2 °C; 0 to 95% R.H.		$eq:linear_line$	
Endurance						is less	
	IEC 60384- 21/22	4.14	1. Preconditioning, X7R only: 150 +0/-10 °C /1 hour, then keep for 24 ±1 hour at room temp 2. Initial measure: Spec: refer initial spec C, D, IR 3. Endurance test: Temperature: NP0/X7R: 125 °C Specified stress voltage applied for 1,000 hours: 4. High voltage series follows with below stress condition: Voltage NPO X7R $\leq 100V$ 2.0 × Ur 2.0 × Ur 200/250V 1.5 × Ur 1.5 × Ur 500/630V 1.3 × Ur 1.2 × Ur $\geq 1KV$ 1.2 × Ur 1.1 × Ur * NPO, 0603, 100V, 5.1 nF to 10nF, apply voltage : 1.5 × Ur 5. Recovery time: 24 ±2 hours 6. Final measure: C, D, IR P.S. If the capacitance value is less than the		r, then keep for emp C, D, IR R: 125 °C e applied for 1,000 hours: ows with below stress X7R 2.0 × Ur 1.5 × Ur 1.2 × Ur 1.1 × Ur F to 10nF, apply voltage : hours value is less than the ted, then after the other	No visual damage $\Delta C/C$ Class I: NP0: within ±2% or 1 pF, whichever is greater Class 2: X7R: ±15% D.F. Class 1: NP0: $\leq 2 \times$ specified value Class 2: X7R: $\geq 25 \lor : \leq 5\%$ R _{ins} Class 1: NP0: $\geq 4,000 \text{ M}\Omega \text{ or}$ R _{ins} $\propto C_r \geq 40\Omega$ ·F whichever is less Class 2: X7R: $\geq 1,000 \text{ M}\Omega \text{ or}$ R _{ins} $\propto C_r \geq 50\Omega$ ·F whichever is less	
Voltage Proof 4.6		4.6	measurements have been made the capacitor shall be precondition according to "IEC 60384 4.1" and then the requirement shall be met. Specified stress voltage applied for 1~5 seconds $100 \lor < Ur \le 200 \lor$ series applied (1.5 Ur + 100) $200 \lor < Ur \le 500 \lor$ series applied (1.3 Ur + 100) $Ur > 500 \lor: 1.3 Ur$ $Ur \ge 1000 \lor: 1.2 Ur$ Charge/Discharge current is less than 50 mA		ccording to "IEC 60384 irement shall be met. e applied for 1~5 seconds eries applied eries applied	No breakdown or flashover	

Surface-Mount Ceramic Multilayer Capacitors Mid-voltage NP0/X7R 100 V to 630 V

<u>REVISION HISTORY</u>

	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version 25	Dec. 08, 2022	-	- 0805 / 1210 dimension spec updated
Version 24	Jun. 11, 2021	-	- Add
			X7R : 1812/630V/ 39nF to100nF
			- R_{ins} revised to $R_{ins} \times C \ge 100 \ \Omega \cdot F$
			X7R : 1210/630V/27nF to 47nF
			1210/500V/56nF to 100nF
Version 23	Mar. 25, 2021	-	- Add
			NPO : 1206/630V 6.8nF/10nF
			1210/630V/22nF
			1812/630V/22nF
			X7R : 2220/630V/I 50nF to 220nF
Version 22	Jun. 10, 2020	-	- Add
			NPO : 0603/100V/1.8nF to 10nF, 1206/250V/3.3nF to 3.9nF
			1206/630V/2.2nF
			X7R : 0805/100V330nF to 1µF, 0805/250V/68nF to 100nF
			1206/100V/680nF, 1210/500V/68nF to 100nF, 1210/630V/47nF
			- Modify NPO :1210/100V/12nF to 15nF thickness to 1.25mm
			X7R :1210/630V/22nF thickness to 1.6mm
			1210/630V/27nF to 33nF thickness to 2.0mm
Version 21	Jul. 13, 2018	-	- Add
			NPO : 0402/120pF to 1nF/100V, 0603/1.2nF to 1.5nF/100V,
			1206/1.8nF/630V, 1210/12nF to 22nF/100V
			X7R : 0805/33nF to 47nF/200 to 250V
Version 20	Sep. 14, 2017	-	- Dimension outlines updated
Version 19	Mar 7, 2017	-	- 0805 L4 spec updated
Version 18	Dec 9, 2016	-	- Soldering recommendation update
Version 17	Aug 16, 2016	-	- Capacitance range & thickness update
Version 16	Apr. 16, 2015	-	- Capacitance range & thickness
Version 15	Apr. 16, 2015	-	- Electrical characteristics update
Version 14	Sep. 25, 2014	-	- Electrical characteristics update
Version 13	Apr. 21, 2014	-	- Electrical characteristics update
Version 12	Dec. 12, 2013	-	- Electrical characteristics update
Version 11	Jun. 17, 2013	-	- Test method and procedure updated
Version 10	Nov 22, 2012	-	- Test method and procedure updated
Version 9	Feb 02, 2012	-	- Test method and procedure updated
Version 8	Apr 22, 2011	-	- NP0 0402 100V added
Version 7	Mar 01, 2011	-	- Dimension updated

Product specification 22 630 V Surface-Mount Ceramic Multilayer Capacitors Mid-voltage NP0/X7R 100 V to 630 V

<u>REVISION HISTORY</u>

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version 6	Sep 30, 2010	-	- Update the thickness of 0805 100V
Version 5	Sep 28, 2010	-	- Product range updated
			- Thickness classes and packing quantity table updated
Version 4	Jun 17, 2010	-	- Update the dimension of 0805, 1206 and 1812
Version 3	Mar 25, 2010	-	- Product range update
Version 2	Mar 15, 2010	-	- Product range update
Version I	Oct 30, 2009		- Change to dual brand datasheet that describe Mid-voltage NP0/X7R series with RoHS compliant
		-	- Replace the "100V to 630V" part of pdf files: UP-NP0X7R_MV_100-to- 500V_0, UY-NP0X7R_MV_100-to-500V_0, NP0_16V-to-100V_6, NP0_50-to-500V_10, X7R_16-to-500V_9 and X7R_16V-to-100V_9
			- Define global part number
			- Description of "Halogen Free compliant" added
			- Test method and procedure updated
Version 0	Sep 08, 2005	-	- New