

High input voltage, 85 mA LDO linear regulator

Features

- 2.5 V to 24 V input voltage
- Low-dropout voltage (500 mV typ. at 85 mA)
- Very low quiescent current (3.8 μA typ. at full load)
- 85 mA guaranteed output current
- Output voltages available on request: from 1.2 V to 5.0 V with 100 mV step and adjustable
- Compatible with ceramic output capacitors from 0.47 μF to 10 μF
- Internal current limit
- Packages: SOT23-5L, SOT323-5L and DFN8 (3x3 mm)
- Temperature range: from -40 °C to 125 °C

Datasheet - production data

Applications

- Mobile phones
- Personal digital assistant (PDAs)
- Cordless phones and similar battery-powered systems

Description

The ST715 is a high voltage, ultra low quiescent current and low drop linear regulator capable of providing an output current in excess of 85 mA.

The device operates over an input voltage range from 2.5 V to 24 V, and it is stable with output ceramic capacitors. Fault condition protection includes short-circuit current limitation. The ultra low quiescent current of 3.8 μ A at full load makes it highly suitable for low power applications and battery-powered systems. The wide input voltage range makes the ST715 an ideal solution for low power industrial applications. The ST715 is available in SOT23-5, SOT323-5L or DFN8 (3x3 mm) 8 leads.

	Output voltage					
SOT23-5L	Marking	SOT323-5L	Marking	DFN8 (3x3 mm)	Marking	Output voltage
ST715MR	71AD	ST715CR	7AD	ST715PUR	715AD	ADJ
ST715M25R	7125			ST715PU25R	71525	2.5 V
ST715M33R	7133	ST715C33R	733	ST715PU33R	71533	3.3 V
		ST715C50R	750			5.0 V

Table 1. Device summary

October 2020

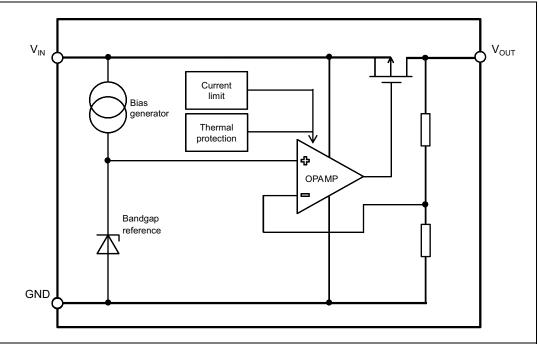
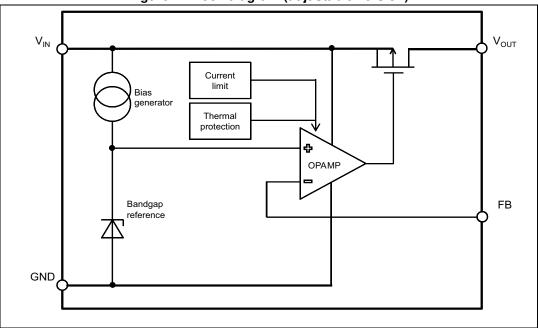
www.st.com

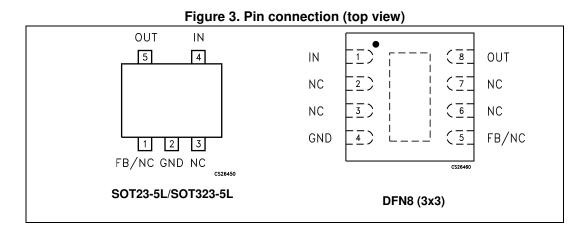
This is information on a product in full production.

Contents

1	Diagram
2	Pin configuration
3	Maximum ratings
4	Electrical characteristics
5	Output voltage selection for adjustable version
	5.1 External capacitor requirements 8
	5.2 Power dissipation and junction temperature
6	Typical application
7	Typical performance characteristics
8	Package mechanical data 13
9	Packaging mechanical data 20
10	Revision history

1 Diagram


Figure 1. Block diagram (fixed version)

57

2 Pin configuration

Table 2. Pin description	(DFN8 3x3 mm)
--------------------------	---------------

Symbol	Pin for fixed	Pin for adjustable	Name and function	
IN	1	1	Input voltage	
NC	2, 3, 5, 6, 7	2, 3, 6, 7	Not internally connected	
GND	4	4	Common ground	
FB	-	5	Feedback pin	
OUT	8	8	Output voltage	
	Exp pad	Exp pad	Leave floating or connect to GND	

Table 3. Pin description	(SOT23-5L/SOT323-5L)
--------------------------	----------------------

Symbol	Pin for fixed	Pin for adjustable	Name and function	
IN	4	4	Input voltage	
NC	1, 3	3	Not internally connected	
GND	2	2	Common ground	
FB	-	1	Feedback pin	
OUT	5	5	Output voltage	

ST715

3 Maximum ratings

Symbol	Parameter	Value	Unit
V _{IN}	DC input voltage	From -0.3 to 26	V
V _{OUT}	DC output voltage	From -0.3 to V _{IN} +0.3	V
FB	Feedback pin	4	V
I _{OUT}	Continuous output current	According to package power dissipation	А
	Maximum power dissipation, DFN package	2	
P _D ⁽¹⁾	Maximum power dissipation, SOT23-5L and SOT323-5L packages	0.45	W
T _{STG}	Storage temperature range	-65 to 150	°C
T _{OP}	Operating junction temperature range	-40 to 125	°C

Table 4. Absolute maximum ratings

1. P_D is based on an operating temperature of 25 °C or less. It must be derated according to the operating temperature.

Note: Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.

Table 5. Thermal data

Symbol	Parameter	SOT23-5L	SOT323-5L	DFN8	Unit
R _{thJA}	Thermal resistance junction-ambient	195	245	52	°C/W

4 Electrical characteristics

 T_J = 25 °C, V_{IN} = $V_{OUT(NOM)}$ + 1 V, C_{IN} = 0.1 μ F, C_{OUT} = 1 μ F, I_{OUT} = 1 mA, unless otherwise specified. $^{(1)}$

Symbol	Parameter	Test conditions	i	Min.	Тур.	Max.	Unit
V _{IN}	Operating input voltage	I _{OUT} = 85 mA		2.5		24	V
I _{OUT}	Output current	V_{IN} = 2.5 to 6 V, T_J = -40 °C t	o 125 °C			85	mA
	$V_{IN} = V_{OUT} + 1 \text{ to } 24 \text{ V},$ $I_{OUT} = 1 \text{ mA to } 30 \text{ mA},$ $T_J = 0 \text{ °C to } 85 \text{ °C}$		1.195		1.245	v	
V _{FB}	V _{FB} accuracy ⁽¹⁾	$V_{IN} = V_{OUT} + 1 \text{ to } 24 \text{ V},$ $I_{OUT} = 1 \text{ mA to } 85 \text{ mA},$ $T_J = -40 \text{ °C to } 125 \text{ °C}$		1.152		1.248	V
ΔV_{OUT}	Line regulation	$V_{IN} = V_{OUT}$ +1 to 24 V, I_{OUT} = T_{J} = -40 °C to 125 °C	1 mA,		0.001	0.004	%/V
ΔV_{OUT}	Load regulation	I _{OUT} = 1 mA to 85 mA, T _J = -40 °C to 125 °C			0.002	0.004	%/mA
e _N	Output noise voltage ⁽²⁾	200 Hz to 100 kHz, $I_{OUT} = 50$ mA, $C_{OUT} = 10 \ \mu\text{F}, T_J = -40 \ ^\circ\text{C}$ to 125 $^\circ\text{C},$ $V_{OUT} = 1.2 \ \text{V}$				95	μV_{RMS}
SVR	Supply voltage rejection		f = 1 kHz		45		dB
		T _J = -40 °C to 125 °C	f = 100 kHz		62		
1		$I_{OUT} = 0 \text{ mA to 85 mA},$ $T_J = -40 \text{ °C to 125 °C}$				5.5	
I _Q Quiescent current		$I_{OUT} = 0$ mA to 85 mA, $V_{IN} = 24$ V T _J = -40 °C to 125 °C				6.5	μΑ
I _{SC}	Short-circuit current	$V_{OUT} = 0$, $T_{J} = -40$ °C to 125 °C $V_{IN} = 3.8$ V		120			mA
T _{ON}	Turn-on time ⁽³⁾	$ V_{IN} = 4.2 \text{ V}, \text{C}_{OUT} = 10 \mu\text{F}, \text{I}_{OUT} = 60 \text{mA}, \\ \text{T}_{J} = -40 ^{\circ}\text{C} \text{ to } 125 ^{\circ}\text{C} $			0.7		ms
C _{OUT}	Output capacitor	Capacitance f = 100 kHz		0.47			μF

Table 6. Electrical characteristics - adjustable ve	rsion
---	-------

1. For $V_{OUT(NOM)} < 2 V$, $V_{IN} = 2.5 V$.

2. Guaranteed by design.

3. Turn-on time is time measured between the input just exceeding 90% of its final value and the output voltage just reaching 95% of its nominal value.

 T_J = 25 °C, V_{IN} = $V_{OUT(NOM)}$ + 1 V, C_{IN} = 0.1 μ F, C_{OUT} = 1 μ F, I_{OUT} = 1 mA, V_{OUT} = 3.3 V unless otherwise specified.⁽¹⁾

Symbol	Parameter	Test conditions		Min.	Тур.	Max.	Unit
V _{IN}	Operating input voltage	$I_{OUT} = 85 \text{ mA}, T_{J} = -40 \text{ °C to } 1$	25 °C	V _{OUT} +V _{DROP}		24	V
I _{OUT}	Output current	V_{IN} = 4.3 to 24 V, T_J = -40 °C f	to 125 °C	0		85	mA
V _{OUT}	V_{OUT} total accuracy $^{(1)}$	$V_{IN} = V_{OUT}$ +1 to 24 V, I_{OUT} = 0 T _J = -40 °C to 125 °C	0 to 85 mA,	-5		+5	%
ΔV_{OUT}	Line regulation	$V_{IN} = 4.3 \text{ to } 24 \text{ V}, I_{OUT} = 1 \text{ mA}$ $T_J = -40 \text{ °C to } 125 \text{ °C}$	1 3		0.001	0.004	%/V
ΔV_{OUT}	Load regulation	$I_{OUT} = 100 \ \mu A \text{ to } 85 \text{ mA},$ $T_{J} = -40 \ ^{\circ}\text{C} \text{ to } 125 \ ^{\circ}\text{C}$			0.002	0.003	%/mA
V _{DROP}	Dropout voltage ⁽²⁾	I _{OUT} = 85 mA, T _J = -40 °C to 1	I _{OUT} = 85 mA, T _J = -40 °C to 125 °C		500	1000	mV
e _N	Output noise voltage ⁽³⁾	200 Hz to 100 kHz, I_{OUT} = 50 mA, C _{OUT} = 10 µF, T _J = -40 °C to 125 °C				210	μV_{RMS}
SVR	Supply voltage rejection		f = 1 kHz		38		dB
		T _J = -40 °C to 125 °C	f = 100 kHz		57		
1	Quiescent current	I _{OUT} =0 mA to 85 mA,			3.75	5.5	
Ι _Q	Quiescent current	T _J = -40 °C to 125 °C	V _{IN} =24 V		4.15	6.5	μA
I _{SC}	Short-circuit current	V_{OUT} = 0, T _J =-40 °C to 125 °C V _{IN} = 3.8 V		120			mA
T _{ON}	Turn-on time ⁽⁴⁾	V_{IN} = 4.2 V, C_{OUT} = 10 $\mu F, \ I_{OUT}$ = 60 mA, T_{J} = -40 °C to 125 °C			0.7		ms
C _{OUT}	Output capacitor	Capacitance f = 100 kHz		0.47			μF

Table 7. Elect	rical characteristics	fixed version
----------------	-----------------------	---------------

1. For $V_{OUT(NOM)}$ < 2 V, V_{IN} = 2.5 V.

2. Dropout voltage is the input-to-output voltage difference at which the output voltage is 100 mV below its nominal value. This specification does not apply to output voltages below 2 V.

3. Guaranteed by design.

4. Turn-on time is time measured between the input just exceeding 90% of its final value and the output voltage just reaching 95% of its nominal value.

5 Output voltage selection for adjustable version

The ST715 features an adjustable output voltage due to two external resistors connected as a voltage divider to the FB pin as shown in *Figure 4*. The output voltage is set by the following equation:

Equation 1

 $V_{OUT} = V_{FB} (1 + R_1/R_2)$

where typically V_{FB} = 1.2 V. Choose R₂ \ge 5 k Ω to optimize the quiescent current, accuracy, and high-frequency power supply rejection. The resistor selection is given by the following equation:

Equation 2

 $R_1 = R_2 x (V_{OUT}/V_{FB} - 1)$

5.1 External capacitor requirements

A 0.1 μ F or a larger input bypass capacitor, connected between IN and GND and located close to the device, is recommended. In this manner, the transient response and noise rejection of the power supply, as a whole, improve. A higher value of the input capacitor may be necessary if large, fast-rise-time load transients are present in the application and if the device is several inches far from the power source.

The ST715 requires an output capacitor connected between OUT and GND to stabilize the internal control loop. Any capacitor, (including ceramic and tantalum) with a value higher than 0.47 μ F, stabilizes this loop.

5.2 Power dissipation and junction temperature

For a reliable operation, junction temperature should not exceed 125 °C. This limits the power dissipation the regulator can handle in any application. To guarantee that the junction temperature is within acceptable limits, calculate the maximum allowable dissipation, $P_{D(max)}$, and the dissipation, P_D , which must be less than or equal to $P_{D(max)}$.

The maximum power dissipation limit is given by the following equation:

Equation 3

 $\mathsf{P}_{\mathsf{D}(\mathsf{max})} = (\mathsf{T}_{\mathsf{JMAX}} - \mathsf{T}_{\mathsf{A}}) / \mathsf{R}_{\mathsf{thJA}}$

where:

 T_{JMAX} is the maximum allowable junction temperature

 $\mathsf{R}_{\mathsf{thJA}}$ is the thermal resistance junction-to-ambient for the package

T_A is the ambient temperature

The regulator dissipation is calculated by the following equation:

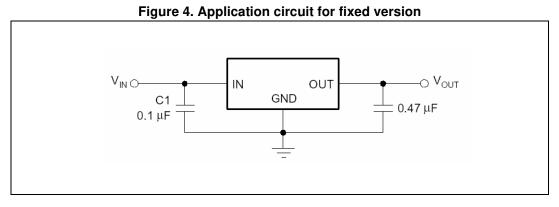
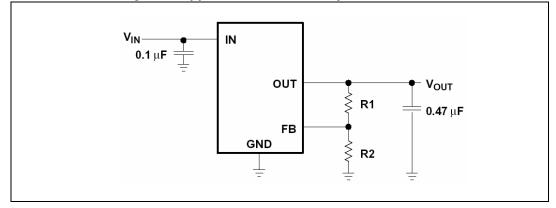
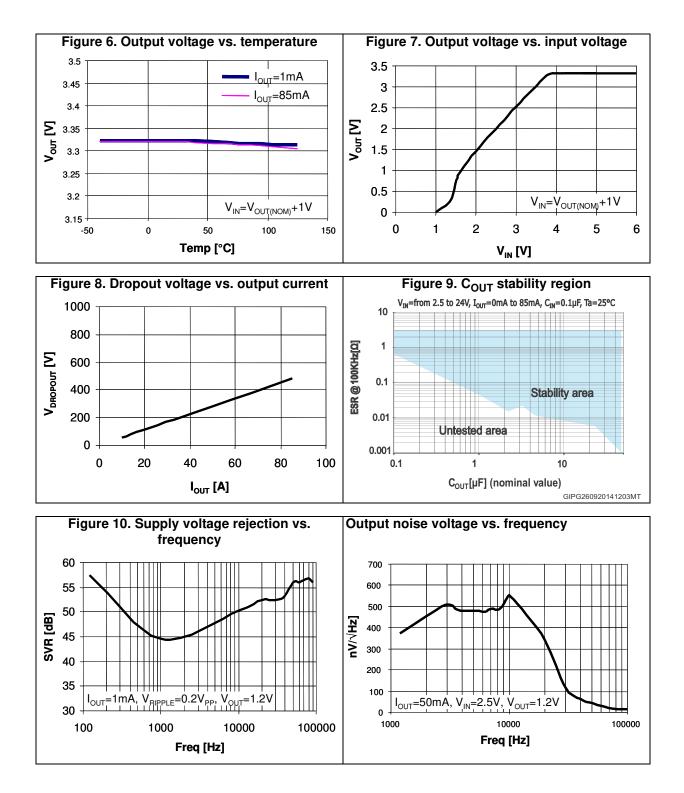
Equation 4

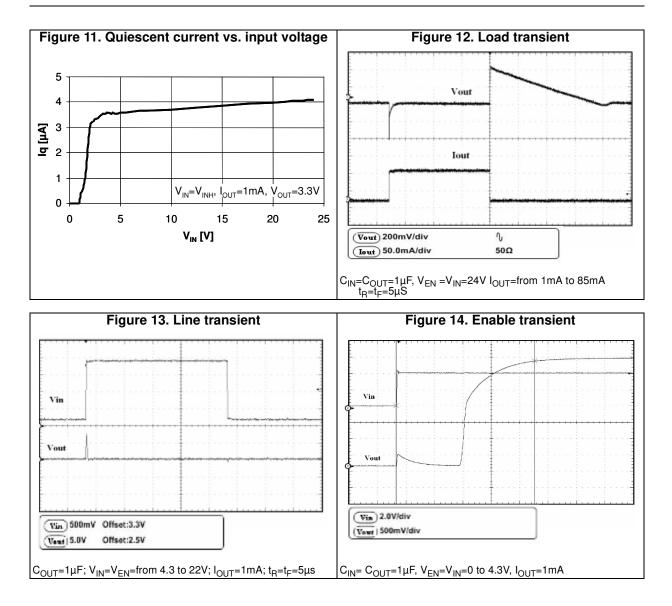
 $P_{D} = (V_{IN} - V_{OUT}) \times I_{OUT}$

Power dissipation coming from quiescent current is negligible.

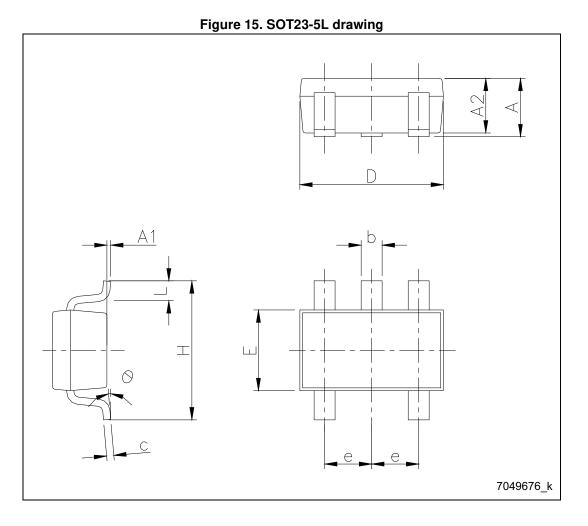
The ST715 features the internal current limit. During normal operation, it limits the output current to approximately 350 mA. When the current limit engages, the output voltage scales back linearly until the overcurrent condition ends. Do not exceed the power dissipation ratings of the package.

6 Typical application

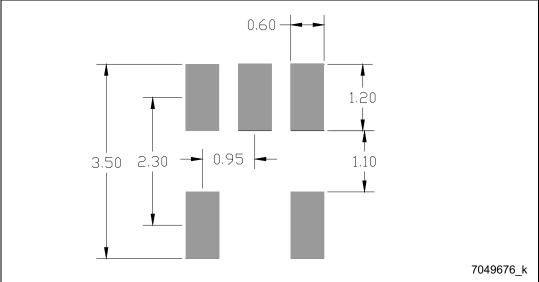

Figure 5. Application circuit for adjustable version

7 Typical performance characteristics



8 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.



Dim.		mm	
	Min.	Тур.	Max.
А	0.90		1.45
A1	0		0.15
A2	0.90		1.30
b	0.30		0.50
C	2.09		0.20
D		2.95	
E		1.60	
е		0.95	
Н		2.80	
L	0.30		0.60
q	0		8

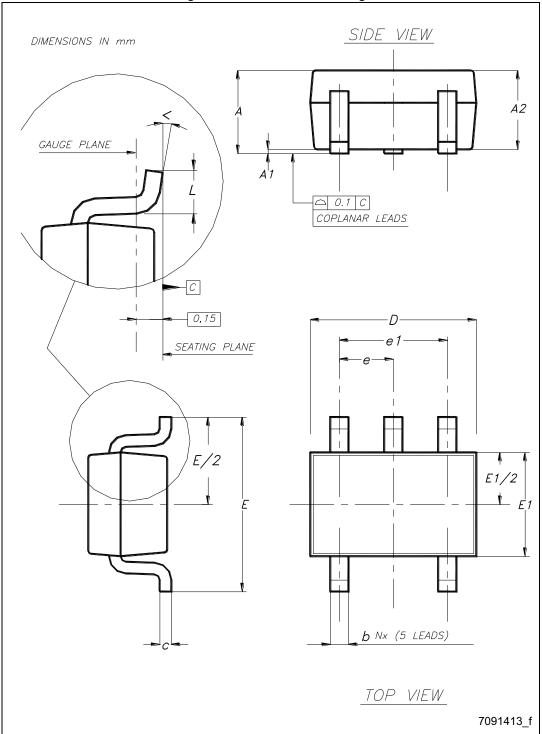
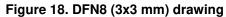
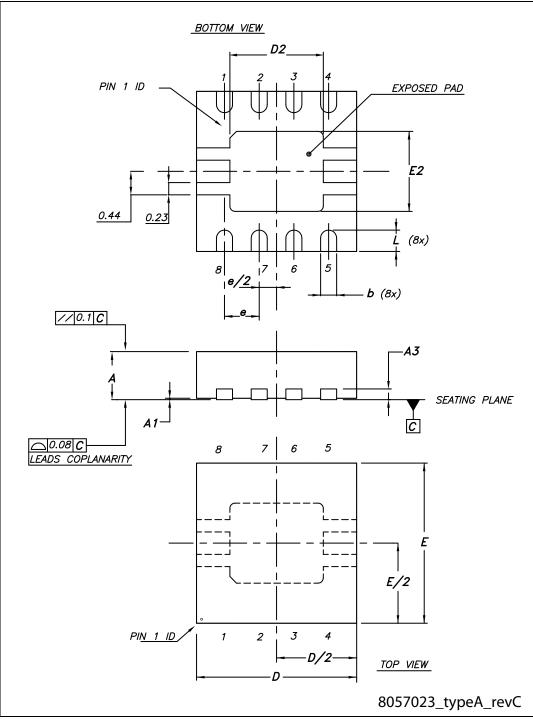

Table 8. SOT23-5L mechanical data

Figure 16. SOT23-5L recommended footprint (dimensions in mm)




57

Dim	mm		
Dim.	Min.	Тур.	Max.
А	0.80		1.10
A1	0		0.10
A2	0.80	0.90	1
b	0.15		0.30
С	0.10		0.22
D	1.80	2	2.20
E	1.80	2.10	2.40
E1	1.15	1.25	1.35
e		0.65	
e1		1.30	
L	0.26	0.36	0.46
<	0°		8°

Table 9. SOT323-5L mechanical data

57

		(0,00)		
Dia		mm		
Dim.	Min.	Тур.	Max.	
А	0.80	0.90	1.00	
A1	0	0.02	0.05	
A3		0.20		
b	0.25	0.30	0.35	
D	2.85	3	3.15	
D2	1.603	1.753	1.853	
E	2.85	3	3.15	
E2	1.345	1.495	1.595	
е		0.65		
L	0.30	0.40	0.50	

Table 10, DFN8	(3x3 mm)	mechanical data
		meenamear aata

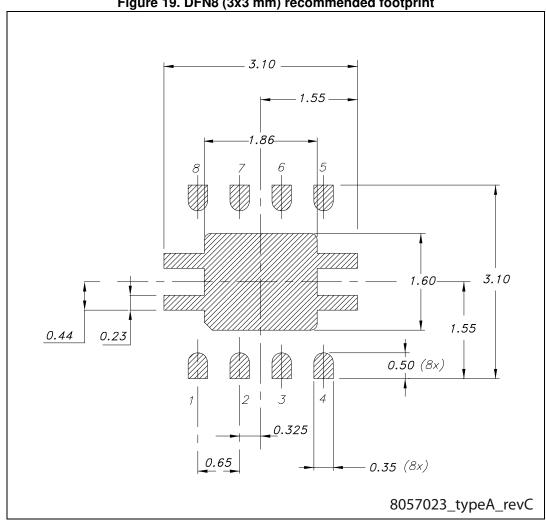
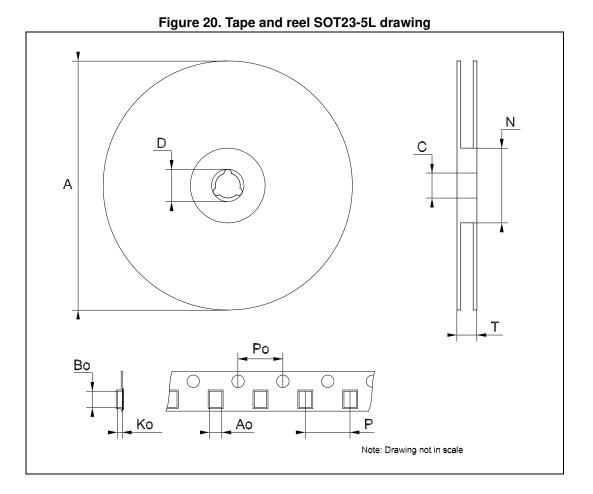



Figure 19. DFN8 (3x3 mm) recommended footprint

9 Packaging mechanical data

20/24

Dim		mm		
Dim.	Min.	Тур.	Max.	
А			180	
С	12.8	13.0	13.2	
D	20.2			
Ν	60			
Т			14.4	
Ao	3.13	3.23	3.33	
Во	3.07	3.17	3.27	
Ко	1.27	1.37	1.47	
Po	3.9	4.0	4.1	
Р	3.9	4.0	4.1	

Table 11. SOT23-5L tape and reel mechanical data

Dim	mm		
Dim.	Min.	Тур.	Max.
А	175	180	185
С	12.8	13	13.2
D	20.2		
N	59.5	60	60.5
Т			14.4
Ao		2.25	
Во		3.17	
Ko		1.2	
Po	3.9	4.0	4.1
Р	3.9	4.0	4.2

Table 12. SOT323-xL tape and reel mechanical data

Dim.		mm		
	Min.	Тур.	Max.	
А			180	
С	12.8		13.2	
D	20.2			
Ν	60			
Т			14.4	
Ao		3.3		
Во		3.3		
Ko		1.1		
Po		4		
Р		8		

10 Revision history

Table 14	Document	revision	history
----------	----------	----------	---------

Date	Revision	Changes
08-Feb-2008	1	Initial release.
19-Feb-2008	2	Modified: Features on page 1.
22-Sep-2008	3	Modified: DFN8 (3x3 mm) mechanical data 10 on page 23.
26-Nov-2008	4	Modified: Section 5 on page 8.
24-Mar-2010	5	Modified: Table 4 on page 5.
24-Mar-2010	6	Modified: I _Q max values <i>Table 6 on page 6</i> and <i>Table 7 on page 7</i> .
20-May-2010	7	Modified: Table 2 and Table 4 on page 4.
28-Jan-2014	8	 Part numbers ST715xx, ST715xx25, ST715xx33 changed to ST715. Added package DFN8 (3 x 3 mm). Updated the title, the features and the description in cover page. Updated Section 1: Diagram, Section 2: Pin configuration, Section 3: Maximum ratings, Section 4: Electrical characteristics and Section 8: Package mechanical data. Added Section 9: Packaging mechanical data. Minor text changes.
21-May-2014	9	Updated <i>Section 8: Package mechanical data.</i> Minor text changes.
26-Sep-2014	10	Updated <i>Table 2: Pin description (DFN8 3x3 mm)</i> and <i>Table 3: Pin description (SOT23-5L/SOT323-5L)</i> . Updated <i>Figure 9: COUT stability region</i> . Minor text changes.
15-Oct-2014	11	Updated <i>Table 6 on page 6</i> and <i>Table 7 on page 7</i> . Minor text changes.
08-Jan-2018	12	Updated Table 6: Electrical characteristics - adjustable version.
06-Jul-2018	13	Added new order code ST715C50R on Table 1: Device summary.
06-Apr-2020	14	Updated Table 2: Pin description (DFN8 3x3 mm).
12-Oct-2020	15	Added new order code ST715CR in <i>Table 1</i> on the cover page.

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to *www.st.com/trademarks*. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2020 STMicroelectronics – All rights reserved

