1 pC Charge Injection, 100 pA Leakage CMOS $\pm 5 \mathrm{~V} / 5 \mathrm{~V} / 3 \mathrm{~V} 4$-Channel Multiplexer

FEATURES

1 pC Charge Injection (Over the Full Signal Range)
$\pm 2.7 \mathrm{~V}$ to $\pm 5.5 \mathrm{~V}$ Dual Supply
2.7 V to 5.5 V Single Supply

Temperature Range: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
100 pA Max @ $25^{\circ} \mathrm{C}$ Leakage Currents
85Ω Typ On Resistance
Rail-to-Rail Operation
Fast Switching Times
Typical Power Consumption ($<0.1 \mu \mathrm{~W}$)
TTL/CMOS Compatible Inputs
14-Lead TSSOP Package
APPLICATIONS
Automatic Test Equipment
Data Acquisition Systems
Battery-Powered Instruments
Communication Systems
Sample and Hold Systems
Remote-Powered Equipment
Audio and Video Signal Routing
Relay Replacement
Avionics

GENERAL DESCRIPTION

The ADG604 is a CMOS analog multiplexer, comprising four single channels. It operates from a dual supply of $\pm 2.7 \mathrm{~V}$ to $\pm 5.5 \mathrm{~V}$, or from a single supply of 2.7 V to 5.5 V .
The ADG604 switches one of four inputs to a common output, D , as determined by the 3-bit binary address lines, $\mathrm{A} 0, \mathrm{~A} 1$, and EN. A Logic " 0 " on the EN pin disables the device.
The ADG604 offers ultralow charge injection of $\pm 1.5 \mathrm{pC}$ over the entire signal range and leakage currents of 10 pA typical at $25^{\circ} \mathrm{C}$. It offers on resistance of 85Ω typ, which is matched to within 2Ω between channels. The ADG604 also has low power dissipation yet gives high switching speeds. The ADG604 is available in a 14-lead TSSOP package.

REV. A

Document Feedback

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

FUNCTIONAL BLOCK DIAGRAM

PRODUCT HIGHLIGHTS

1. Ultralow Charge Injection $\left(\mathrm{Q}_{\mathrm{INJ}}: \pm 1.5 \mathrm{pC}\right.$ Typ over the Full Signal Range)
2. Leakage Current $<0.5 \mathrm{nA} \max @ 85^{\circ} \mathrm{C}$
3. Dual $\pm 2.7 \mathrm{~V}$ to $\pm 5.5 \mathrm{~V}$ or Single 2.7 V to 5.5 V Supply
4. Fully Specified to $125^{\circ} \mathrm{C}$
5. Small 14-Lead TSSOP Package
[^0]
ADG604-SPECIFICATIONS

DUAL SUPPLY1 ${ }^{1}\left(V_{D D}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{S S}=-5 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}\right.$. All specifications $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ unless otherwise noted.)

Parameter	$25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance (R_{ON}) On Resistance Match Between Channels ($\Delta \mathrm{R}_{\mathrm{ON}}$) On-Resistance Flatness ($\mathrm{R}_{\text {FLAT(ON })}$)	85 115 2 4 25 40	140 5.5 55	V_{Ss} to V_{DD} 160 6.5 60	V Ω Typ Ω Max Ω Typ Ω Max Ω Typ Ω Max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 3 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-1 \mathrm{~mA}, \end{aligned}$ Test Circuit 1 $\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 3 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-1 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 3 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-1 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source OFF Leakage I_{S} (OFF) Drain OFF Leakage $\mathrm{I}_{\mathrm{D}}(\mathrm{OFF})$ Channel ON Leakage $I_{D}, I_{S}(O N)$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.1 \\ & \pm 0.01 \\ & \pm 0.1 \\ & \pm 0.01 \\ & \pm 0.1 \end{aligned}$	$\begin{aligned} & \pm 0.25 \\ & \pm 0.5 \\ & \pm 0.5 \end{aligned}$	$\begin{aligned} & \pm 4 \\ & \pm 8 \\ & \pm 10 \end{aligned}$	nA Typ nA Max nA Typ nA Max nA Typ nA Max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 4.5 \mathrm{~V} \end{aligned}$ Test Circuit 2 $\mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 4.5 \mathrm{~V}$ Test Circuit 2 $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 4.5 \mathrm{~V} \text {, Test Circuit } 3$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, $\mathrm{V}_{\text {INL }}$ Input Current $\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$ C_{IN}, Digital Input Capacitance	$\begin{aligned} & 0.005 \\ & 2 \end{aligned}$		$\begin{aligned} & 2.4 \\ & 0.8 \\ & \\ & \pm 0.1 \end{aligned}$	V Min V Max $\mu \mathrm{A}$ Typ $\mu \mathrm{A}$ Max pF Typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS Transition Time $t_{0 N}$ Enable $\mathrm{t}_{\mathrm{OFF}}$ Enable Break-Before-Make Time Delay, $\mathrm{t}_{\text {BBM }}$ Charge Injection Off Isolation Channel-to-Channel Crosstalk Bandwidth -3 dB C_{S} (OFF) C_{D} (OFF) $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON})$	$\begin{aligned} & 70 \\ & 100 \\ & 80 \\ & 105 \\ & 30 \\ & 45 \\ & 20 \\ & -1 \\ & -75 \\ & -70 \\ & \\ & 280 \\ & 5 \\ & 17 \\ & 18 \end{aligned}$	120 130 55	150 150 65 10	ns Typ ns Max ns Typ ns Max ns Typ ns Max ns Typ ns Min pC Typ dB Typ dB Typ MHz Typ pF Typ pF Typ pF Typ	$\begin{aligned} & \mathrm{V}_{\mathrm{S} 1}=+3 \mathrm{~V}, \mathrm{~V}_{\mathrm{S} 4}=-3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \text { Test Circuit } \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V}, \text { Test Circuit } 6 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V}, \text { Test Circuit } 6 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=3 \mathrm{~V}, \text { Test Circuit } 5 \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \text { Test Circuit } 7 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=10 \mathrm{MHz}, \\ & \text { Test Circuit } 8^{\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=10 \mathrm{MHz},} \\ & \text { Test Circuit } 10 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \text { Test Circuit } 9 \\ & \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$
POWER REQUIREMENTS I_{DD} Iss	0.001 0.001		$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\mu \mathrm{A}$ Typ $\mu \mathrm{A}$ Max $\mu \mathrm{A}$ Typ $\mu \mathrm{A}$ Max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5.5 \mathrm{~V} \\ & \text { Digital Inputs }=0 \mathrm{~V} \text { or } 5.5 \mathrm{~V} \\ & \text { Digital Inputs }=0 \mathrm{~V} \text { or } 5.5 \mathrm{~V} \end{aligned}$

NOTES

${ }^{1}$ Y Version Temperature Range: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
Specifications subject to change without notice.

Parameter	$25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance (R_{ON}) On Resistance Match Between Channels ($\Delta \mathrm{R}_{\mathrm{ON}}$)	$\begin{aligned} & 210 \\ & 290 \\ & 3 \end{aligned}$	350 12	$\begin{aligned} & 0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}} \\ & 380 \\ & 13 \end{aligned}$	V Ω Typ Ω Max Ω Typ Ω Max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=3.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-1 \mathrm{~mA}, \end{aligned}$ Test Circuit 1 $\mathrm{V}_{\mathrm{S}}=3.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-1 \mathrm{~mA}$
LEAKAGE CURRENTS Source OFF Leakage I_{S} (OFF) Drain OFF Leakage $I_{D}(O F F)$ Channel ON Leakage $\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{ON})$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.1 \\ & \pm 0.01 \\ & \pm 0.1 \\ & \pm 0.01 \\ & \pm 0.1 \end{aligned}$	$\begin{aligned} & \pm 0.25 \\ & \pm 0.5 \\ & \pm 0.5 \end{aligned}$	$\begin{aligned} & \pm 4 \\ & \pm 8 \\ & 10 \end{aligned}$	nA Typ nA Max nA Typ nA Max nA Typ nA Max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=4.5 \mathrm{~V} / 1 \mathrm{~V} \end{aligned}$ Test Circuit 2 $\mathrm{V}_{\mathrm{S}}=1 \mathrm{~V} / 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=4.5 \mathrm{~V} / 1 \mathrm{~V}$ Test Circuit 2 $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=4.5 \mathrm{~V} / 1 \mathrm{~V}$ Test Circuit 3
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, $\mathrm{V}_{\text {INL }}$ Input Current $\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$ C_{IN}, Digital Input Capacitance	$\begin{aligned} & 0.005 \\ & 2 \end{aligned}$		$\begin{aligned} & 2.4 \\ & 0.8 \\ & \\ & \pm 0.1 \end{aligned}$	V Min V Max $\mu \mathrm{A}$ Typ $\mu \mathrm{A}$ Max pF Typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS Transition Time t_{ON} Enable $t_{\text {OFF }}$ Enable Break-Before-Make Time Delay, $\mathrm{t}_{\text {ввм }}$ Charge Injection Off Isolation Channel-to-Channel Crosstalk Bandwidth - 3 dB C_{S} (OFF) C_{D} (OFF) $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON})$	90 150 105 150 45 70 30 0.3 -65 -70 250 5 17 18	185 190 80	210 220 90 10	ns Typ ns Max ns Typ ns Max ns Typ ns Max ns Typ ns Min pC Typ dB Typ dB Typ MHz Typ pF Typ pF Typ pF Typ	
POWER REQUIREMENTS I_{DD}	0.001		1.0	$\mu \mathrm{A}$ Typ $\mu \mathrm{A}$ Max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V} \\ & \text { Digital Inputs }=0 \mathrm{~V} \text { or } 5.5 \mathrm{~V} \end{aligned}$

NOTES

${ }^{1} \mathrm{Y}$ Version Temperature Range: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

Specifications subject to change without notice.

SINGLE SUPPLY1 $\quad\left(V_{D D}=3 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{S S}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}\right.$. All specifications $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ unless otherwise noted.)

Parameter	$25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance (R_{ON}) On Resistance Match Between Channels ($\Delta \mathrm{R}_{\mathrm{ON}}$)	380	420	$\begin{aligned} & 0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}} \\ & 460 \\ & 5 \end{aligned}$	V Ω Typ Ω Typ	$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$ $\mathrm{V}_{\mathrm{S}}=1.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-1 \mathrm{~mA}$, Test Circuit 1 $\mathrm{V}_{\mathrm{S}}=1.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-1 \mathrm{~mA}$
LEAKAGE CURRENTS Source OFF Leakage IS (OFF) Drain OFF Leakage $\mathrm{I}_{\mathrm{D}}(\mathrm{OFF})$ Channel ON Leakage $\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{ON})$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.1 \\ & \pm 0.01 \\ & \pm 0.1 \\ & \pm 0.01 \\ & \pm 0.1 \end{aligned}$	$\begin{aligned} & \pm 0.25 \\ & \pm 0.5 \\ & \pm 0.5 \end{aligned}$	$\begin{aligned} & \pm 4 \\ & \pm 8 \\ & \pm 10 \end{aligned}$	nA Typ nA Max nA Typ nA Max nA Typ nA Max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 3 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=3 \mathrm{~V} / 1 \mathrm{~V} \end{aligned}$ Test Circuit 2 $\mathrm{V}_{\mathrm{S}}=1 \mathrm{~V} / 3 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=3 \mathrm{~V} / 1 \mathrm{~V},$ Test Circuit 2 $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} / 3 \mathrm{~V},$ Test Circuit 3
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, $\mathrm{V}_{\text {INL }}$ Input Current $\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$ $\mathrm{C}_{\text {IN }}$, Digital Input Capacitance	0.005 2		$\begin{aligned} & 2.0 \\ & 0.8 \\ & \\ & \pm 0.1 \end{aligned}$	V Min V Max $\mu \mathrm{A}$ Typ $\mu \mathrm{A}$ Max pF Typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS Transition Time t_{ON} Enable $t_{\text {OFF }}$ Enable Break-Before-Make Time Delay, $\mathrm{t}_{\text {BBM }}$ Charge Injection Off Isolation Channel-to-Channel Crosstalk Bandwidth - 3 dB C_{S} (OFF) C_{D} (OFF) $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON})$	$\begin{aligned} & 170 \\ & 320 \\ & 180 \\ & 250 \\ & 100 \\ & 160 \\ & 100 \\ & 0.3 \\ & \\ & -65 \\ & 70 \\ & \\ & 250 \\ & 5 \\ & 17 \\ & 18 \end{aligned}$	390 265 205	450 390 225 10	ns Typ ns Max ns Typ ns Max ns Typ ns Max ns Typ ns Min pC Typ dB Typ dB Typ MHz Typ pF Typ pF Typ pF Typ	$\begin{aligned} & \mathrm{V}_{\mathrm{S} 1}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{S} 4}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \text { Test Circuit } 4 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=2 \mathrm{~V}, \text { Test Circuit } 6 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=2 \mathrm{~V}, \text { Test Circuit } 6 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=2 \mathrm{~V}, \text { Test Circuit } 5 \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } 3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}, \end{aligned}$ Test Circuit 7 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=10 \mathrm{MHz},$ Test Circuit 8 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=10 \mathrm{MHz}$ Test Circuit 10 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \text {, Test Circuit } 9$ $\mathrm{f}=1 \mathrm{MHz}$ $\mathrm{f}=1 \mathrm{MHz}$ $\mathrm{f}=1 \mathrm{MHz}$
POWER REQUIREMENTS I_{DD}	0.001		1.0	$\mu \mathrm{A}$ Typ $\mu \mathrm{A}$ Max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \\ & \text { Digital Inputs }=0 \mathrm{~V} \text { or } 3.3 \mathrm{~V} \end{aligned}$

NOTES

${ }^{1} \mathrm{Y}$ Version Temperature Range: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

Specifications subject to change without notice.

Junction Temperature . $150^{\circ} \mathrm{C}$
TSSOP Package
θ_{JA} Thermal Impedance . $150^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {JC }}$ Thermal Impedance . $27^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering (10 seconds) $300^{\circ} \mathrm{C}$
IR Reflow, Peak Temperature $220^{\circ} \mathrm{C}$

NOTES

${ }^{1}$ Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.
${ }^{2}$ Overvoltages at EN, A0, A1, S, or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

PIN CONFIGURATION

Table I. Truth Table

A1	A0	EN	ON Switch
X	X	0	None
0	0	1	1
0	1	1	2
1	0	1	3
1	1	1	4

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG604 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

TERMINOLOGY

V_{DD}	Most Positive Power Supply Potential
$\mathrm{V}_{\text {SS }}$	Most Negative Power Supply in a Dual Supply Application. In single supply applications, this should be tied to ground at the device.
GND	Ground (0 V) Reference
I_{DD}	Positive Supply Current
$\mathrm{I}_{\text {S }}$	Negative Supply Current
S	Source Terminal. May be an input or output.
D	Drain Terminal. May be an input or output.
R_{ON}	Ohmic Resistance between D and S
$\Delta \mathrm{R}_{\text {ON }}$	On Resistance Match between any two channels, i.e., $\mathrm{R}_{\mathrm{ON}} \mathrm{Max}-\mathrm{R}_{\mathrm{ON}} \mathrm{Min}$
$\mathrm{R}_{\text {FLAT(ON) }}$	Flatness is defined as the difference between the maximum and minimum value of On resistance as measured over the specified analog signal range.
$\mathrm{I}_{\text {S }}$ (OFF)	Source Leakage Current with the Switch "OFF"
I_{D} (OFF)	Drain Leakage Current with the Switch "OFF"
$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{ON})$	Channel Leakage Current with the Switch "ON"
$\mathrm{V}_{\mathrm{D}}, \mathrm{V}_{\mathrm{S}}$	Analog Voltage on Terminals D, S
$\mathrm{V}_{\text {INL }}$	Maximum Input Voltage for Logic "0"
$\mathrm{V}_{\text {INH }}$	Minimum Input Voltage for Logic " 1 "
$\mathrm{I}_{\text {INL }}\left(\mathrm{I}_{\text {INH }}\right)$	Input Current of the Digital Input
$\mathrm{C}_{\text {S }}$ (OFF)	Channel Input Capacitance for "OFF" Condition
C_{D} (OFF)	Channel Output Capacitance for "OFF" Condition
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON})$	"On" Switch Capacitance
C_{IN}	Digital Input Capacitance
$\mathrm{t}_{\mathrm{ON}}(\mathrm{EN})$	Delay time between the 50% and 90% points of the digital input and switch "ON" condition.
$\mathrm{t}_{\text {OFF }}$ (EN)	Delay time between the 50% and 90% points of the digital input and switch "OFF" condition.
$\mathrm{t}_{\text {TRANSITION }}$	Delay time between the 50% and 90% points of the digital input and switch "ON" condition when switching from one address state to another.
$\mathrm{t}_{\text {BBM }}$	"OFF" time or "ON" time measured between the 80% points of both switches, when switching from one address state to another.
Charge Injection	A measure of the glitch impulse transferred from the digital input to the analog output during switching.
Crosstalk	A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.
Off Isolation	A measure of unwanted signal coupling through an "On" switch.
Bandwidth	Frequency Response of the "On" Switch
Insertion Loss	Loss Due to the On Resistance of the Switch

TPC 1. On Resistance vs. $V_{D}\left(V_{S}\right)$, Dual Supply

TPC 2. On Resistance vs. $V_{D}\left(V_{S}\right)$, Single Supply

TPC 3. On Resistance vs. $V_{D}\left(V_{S}\right)$ for Different Temperatures, Dual Supply

TPC 4. On Resistance vs. $V_{D}\left(V_{S}\right)$ for Different Temperatures, Single Supply

TPC 5. Leakage Currents vs. Temperature, Dual Supply

TPC 6. Leakage Currents vs. Temperature, Single Supply

TPC 7. Charge Injection vs. Source Voltage

TPC 8. $t_{\text {ON }} / t_{\text {OFF }}$ Times vs. Temperature

TPC 9. Off Isolation vs. Frequency

TPC 10. Crosstalk vs. Frequency

TPC 11. On Response vs. Frequency

Test Circuits

Test Circuit 1. On Resistance

Test Circuit 2. Off Leakage

Test Circuit 3. On Leakage

Test Circuit 4. Switching Time of Multiplexer, $t_{\text {TRANSItIon }}$

Test Circuit 5. Break-Before-Make Delay, $t_{B B M}$

Test Circuit 6. Enable Delay, $t_{O N}(E N)$, $t_{\text {OFF }}$ (EN)

Test Circuit 7. Charge Injection

Test Circuit 8. Off Isolation

INSERTION LOSS $=20$ LOG $\frac{V_{\text {OUT }} \text { WITH SWITCH }}{V_{\text {OUT }} \text { WITHOUT SWITCH }}$
Test Circuit 9. Bandwidth

OUTLINE DIMENSIONS

Figure 1. 14-Lead Thin Shrink Small Outline Package [TSSOP]
(RU-14)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option
ADG604YRUZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14-Lead Thin Shrink Small Outline Package [TSSOP]	RU-14
ADG604YRUZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14-Lead Thin Shrink Small Outline Package [TSSOP]	RU-14

${ }^{1} Z=$ RoHS Compliant Part.

REVISION HISTORY

7/2018—Rev. 0 to Rev. A
Changed Automotive Temperature Range: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ to
Temperature Range: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.1

Deleted Note 2, Dual Supply Table; Renumbered Sequentially 2
Deleted Note 2, Single Supply Table; Renumbered Sequentially 3
Deleted Note 2, Single Supply Table; Renumbered Sequentially 4
Changed Operating Temperature Range, Automotive (Y Version)
to Operating Temperature Range, (Y Version); Absolute
Maximum Ratings Table .5

Updated Outline Dimensions... 11
Moved Ordering Guide .. 11
Changes to Ordering Guide... 11
2/2002—Revision 0: Initial Version

[^0]: One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700
 ©2018 Analog Devices, Inc. All rights reserved.
 Technical Support
 www.analog.com

