8-Bit Shift and Store Register with LSTTL Compatible Inputs

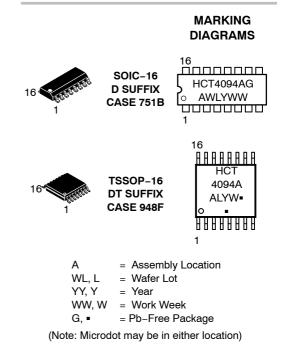
High-Performance Silicon-Gate CMOS

The MC74HCT4094A is a high speed CMOS 8-bit serial shift and storage register. This device consists of an 8-bit shift register and latch with 3-state output buffers. Data is shifted on positive clock (CP) transitions. The data in the shift register is transferred to the storage register when the Strobe (STR) input is high. The output buffers are enabled when the Output Enable (OE) input is set high. Two serial outputs (QS₁, QS₂) are available for cascading multiple devices.

The MC74HCT4094A can be used to interface TTL or CMOS outputs to high speed CMOS inputs.

Features

- Wide Operating Voltage Range: 4.5 to 5.5 V
- Low Power Dissipation: $I_{CC} = < 10 \,\mu A$
- In Compliance with the Requirements Defined by JEDEC Standard No. 7A
- These are Pb–Free Devices


Typical Applications

- Serial-to-Parallel Conversion
- Remote Control Storage Register

ON Semiconductor®

http://onsemi.com

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 9 of this data sheet.

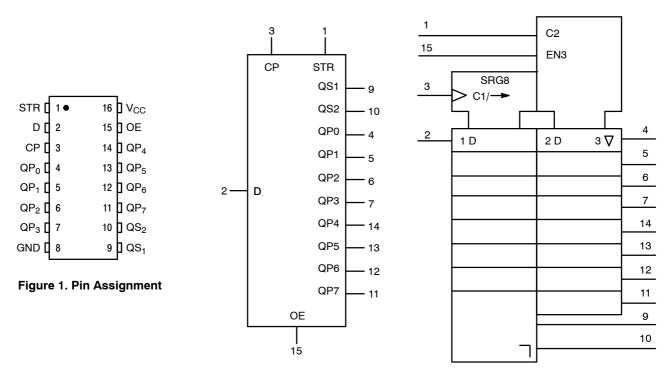


Figure 2. Logic Symbol

Figure 3. IEC Logic Symbol

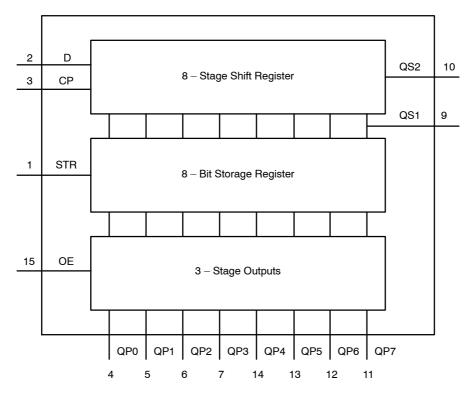


Figure 4. Functional Diagram

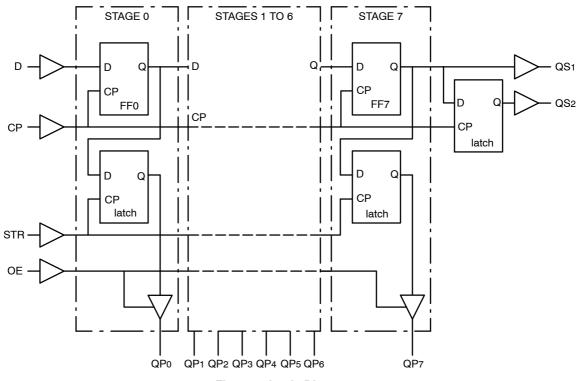


Figure 5. Logic Diagram

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)	- 0.5 to + 7.0	V
V _{in}	DC Input Voltage (Referenced to GND)	$-$ 0.5 to V_{CC} + 0.5	V
V _{out}	DC Output Voltage (Referenced to GND)	$-$ 0.5 to V_{CC} + 0.5	V
l _{in}	DC Input Current, per Pin	± 20	mA
l _{out}	DC Output Current, per Pin	± 35	mA
I _{CC}	DC Supply Current, V_{CC} and GND Pins	± 75	mA
P _D	Power Dissipation in Still Air, SOIC Package TSSOP Package		mW
T _{stg}	Storage Temperature	- 65 to + 150	°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range GND $\leq (V_{in} \text{ or } V_{out}) \leq V_{CC}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

†Derating - SOIC Package: - 7 mW/°C from 65° to 125°C

TSSOP Package: - 6.1 mW/°C from 65° to 125°C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)	4.5	5.5	V
V _{in} , V _{out}	DC Input Voltage, Output Voltage (Referenced to GND)	0	V _{CC}	V
T _A	Operating Temperature, All Package Types	-55	+125	°C
t _r , t _f	Input Rise and Fall Time (Figure 1)	0	500	ns

FUNCTIONAL TABLE

	INPUTS			PARALLEL OUTPUTS		SERIAL OUTPUTS	
СР	OE	STR	D	QP0	QPn	QS1	QS2
↑	L	Х	Х	Z	Z	Q'6	NC
\downarrow	L	Х	Х	Z	Z	NC	QP7
\uparrow	Н	L	Х	NC	NC	Q'6	NC
\uparrow	Н	Н	L	L	QPn-1	Q'6	NC
\uparrow	Н	Н	Н	Н	QPn-1	Q'6	NC
\downarrow	Н	Н	Н	NC	NC	NC	QP7

Notes

1. H = HIGH voltage level

L = LOW voltage level

X = don't care

Z = high impedance OFF-state

NC = no change

 $\uparrow = LOW-to-HIGH CP \text{ transition}$ $\downarrow = HIGH-to-LOW CP \text{ transition}$

Q'6 = the information in the seventh register stage is transferred to the 8th register stage and QSn output at the positive clock edge

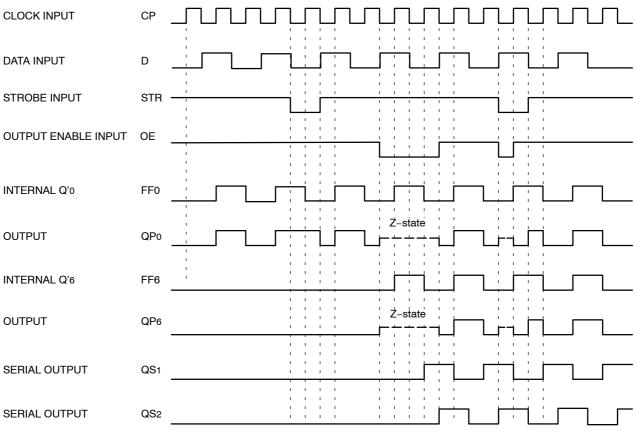


Figure 6. Timing Diagram

DC CHARACTERISTICS

				Guaranteed Limits				
Symbol	Parameter	Test Conditions	V _{CC} (V)	-55°C to 25°C	≤ 85°C	≤ 125°C	Unit	
V _{IH}	Minimum High-Level Input	$V_{OUT} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V}$	4.5	2.0	2.0	2.0	V	
	Voltage	Ι _{ΟUT} ≤ 20 μΑ	5.5	2.0	2.0	2.0		
V _{IL}	Maximum Low-Level Input	$V_{OUT} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V}$	4.5	0.8	0.8	0.8	V	
	Voltage	Ι _{ΟUT} ≤ 20 μΑ	5.5	0.8	0.8	0.8		
V _{OH}	Minimum High-Level Output	$V_{IN} = V_{IH} \text{ or } V_{IL}$	4.5	4.4	4.4	4.4	V	
	Voltage	Voltage I _{OUT} I≤ 20 μA	I _{OUT} I≤ 20 μA	5.5	5.4	5.4	5.4	
		$V_{IN} = V_{IH} \text{ or } V_{IL}, _{OUT} = 6 \text{ mA}$	4.5	4.25	4.2	4.1		
V _{OL}	V _{OL} Maximum Low-Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}, \ I_{OUT} \mid \le 20 \ \mu A$	4.5	0.1	0.1	0.1	V	
			5.5	0.1	0.1	0.1		
		$V_{IN} = V_{IH} \text{ or } V_{IL}, _{OUT} = 6 \text{ mA}$	4.5	0.25	0.3	0.4		
I _{IN}	Maximum Input Leakage Current	$V_{IN} = V_{CC}$ or GND	5.5	±0.1	±1	±1	μΑ	
I _{OZ}	Maximum Tri-State Output Leakage Current	$V_{IN} = V_{CC}$ or GND $V_{OUT} = V_{CC}$ or GND	5.5	±0.5	±5	±10	μΑ	
ICC	Maximum Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND	5.5	4.0	40	80	μΑ	
ΔI_{CC}	Additional Quiescent Supply	V _{in} = 2.4V, Any One Input		≥ -55°C	25 to 125°C			
<u>⊐</u> .00	Current	$V_{in} = V_{CC}$ or GND, Other Inputs $I_{out} = 0\mu A$	5.5	≥ -55°C 2.9		125°C	mA	

		Guaranteed Limits			ts		
Symbol	Parameter	Test Conditions	V _{CC} (V)	-55°C to 25°C	≤ 85°C	≤ 125°C	Unit
t _{PHL} , t _{PLH}	Maximum Propagation Delay CP to QS ₁	Figure 7	4.5	30	38	45	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay CP to QS ₂	Figure 7	4.5	27	34	41	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay CP to QP _n	Figure 7	4.5	39	49	59	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay STR to QP _n	Figure 8	4.5	36	45	54	ns
t _{PZH} , t _{PZL}	Maximum 3-State Output Enable Time OE to QP _n	Figure 9	4.5	35	44	53	ns
t _{PHZ} , t _{PLZ}	Maximum 3-State Output Enable Time OE to QP _n	Figure 9	4.5	25	31	38	ns
t _{THL} , t _{TLH}	Maximum Output Transition Time	Figure 7	4.5	18	22	25	ns
t _W	Minimum Clock Pulse Width High or Low	Figure 7	4.5	16	20	24	ns
t _W	Minimum Strobe Pulse Width High	Figure 8	4.5	16	20	24	ns
t _{SU}	Minimum Set–up Time D to CP	Figure 10	4.5	10	13	15	ns
t _{SU}	Minimum Set–up Time CP to STR	Figure 8	4.5	20	25	30	ns
t _h	Minimum Hold Time D to CP	Figure 10	4.5	3	3	3	ns
t _h	Minimum Hold Time CP to STR	Figure 8	4.5	0	0	0	ns
f _{MAX}	Minimum Clock Pulse Frequency	Figure 7	4.5	30	24	20	MHz
C _{in}	Maximum Input Capacitance		-	10	10	10	pF
C _{out}	Maximum Output Capacitance		-	15	15	15	pF
C _{PD}	Power Dissipation Capacitance (Note 2)		-	140	140	140	pF

AC CHARACTERISTICS (t_f = t_r = 6 ns, C_L = 50 pF)

2. C_{PD} is defined as the value of the IC's equivalent capacitance from which the operating current can be calculated from: I_{CC} (operating) $\approx C_{PD} \times V_{CC} \times f_{IN} \times N_{SW}$ where N_{SW} = total number of outputs switching and f_{IN} = switching frequency.

AC WAVEFORMS

(V_M = 1.3 V)

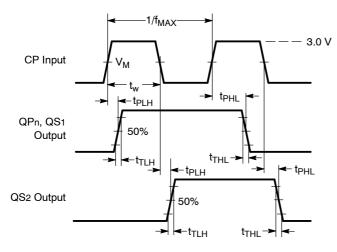


Figure 7. Waveforms showing the clock (CP) to output (QPn, QS1, QS2) propagation delays, the clock pulse width and the maximum clock frequency.

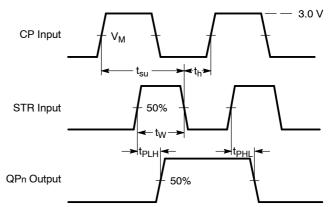
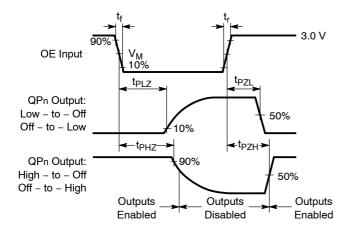
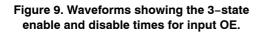
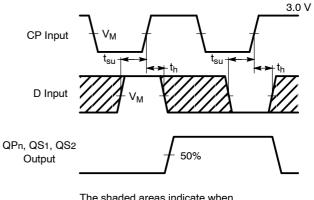
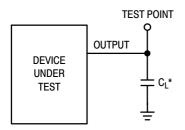
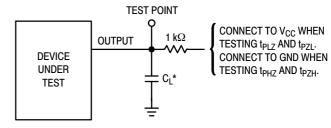





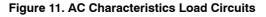
Figure 8. Waveforms showing the strobe (STR) to output (QPn) propagation delays, the strobe pulse width, the clock set-up and hold times for the strobe input.





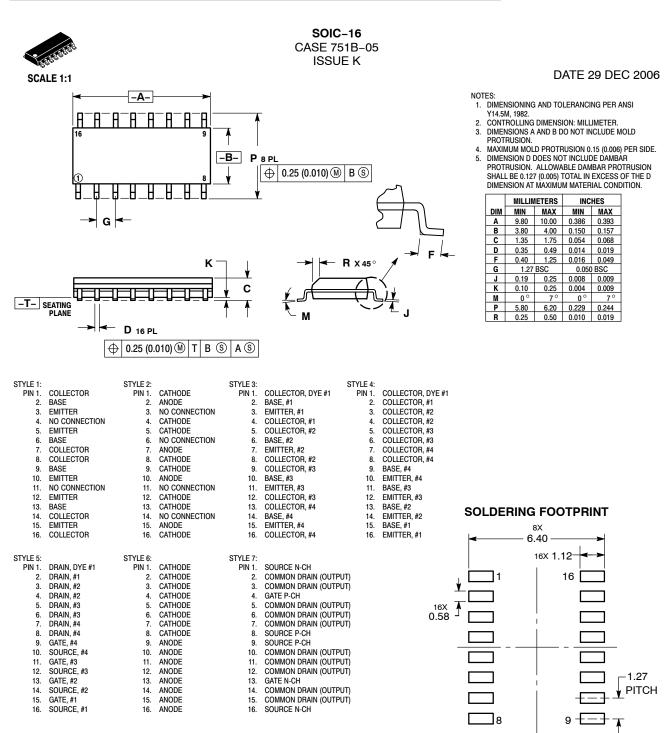
The shaded areas indicate when the input is permitted to change for predictable output performance.

Figure 10. Waveforms showing the data set-up and hold times for the data input.


TEST CIRCUITS

*Includes all probe and jig capacitance

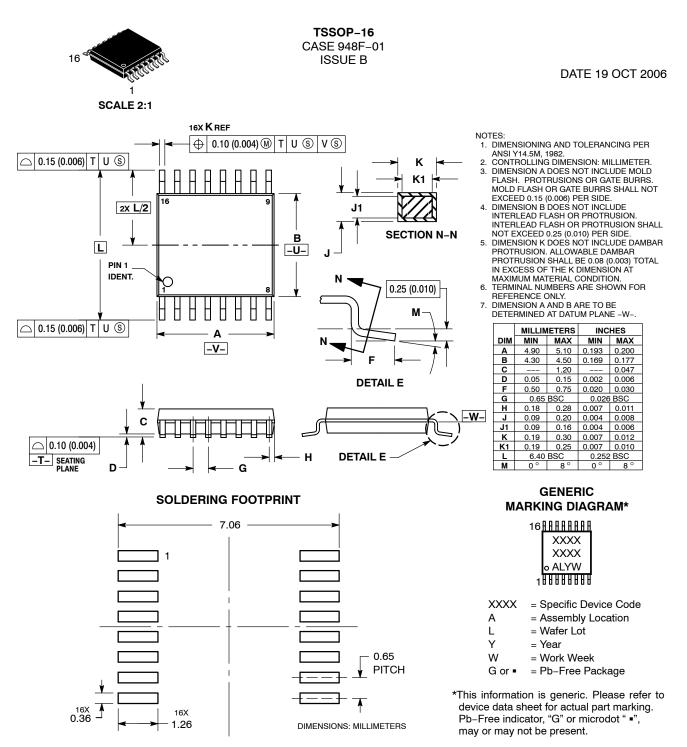
*Includes all probe and jig capacitance



ORDERING INFORMATION

Device	Package	Shipping [†]
MC74HCT4094ADG	SOIC-16 (Pb-Free)	48 Units / Rail
MC74HCT4094ADR2G	SOIC-16 (Pb-Free)	2500 Tape & Reel
MC74HCT4094ADT	TSSOP-16*	96 Units / Rail
MC74HCT4094ADTR2G	TSSOP-16*	2500 Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
*This package is inherently Pb-Free.



DIMENSIONS: MILLIMETERS

DOCUMENT NUMBER:	98ASB42566B	I2566B Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	SOIC-16		PAGE 1 OF 1			
ON Semiconductor and use are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding						

ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

DOCUMENT NUMBER:	98ASH70247A	70247A Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	TSSOP-16	-	PAGE 1 OF 1			
ON Semiconductor and up are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.						

ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houteds for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: M74HCT4094ADTR2G MC74HCT4094ADG MC74HCT4094ADR2G MC74HCT4094ADTG