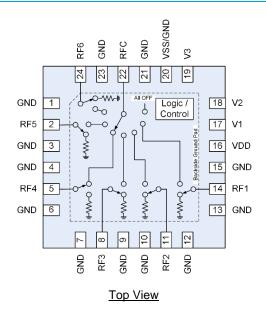


Product Overview

The QPC6064 is a Silicon on Insulator (SOI) Single-Pole 6-Throw (SP6T) switch designed for uses in cellular, 3G, LTE and other high-performance communication systems. It offers a high isolation, identical throw ports with excellent linearity and power handling capability. No DC blocking capacitors are necessary on the RF ports. The design is non-reflective as such the RF1, RF2, RF3, RF4, RF5 and RF6 ports are internally terminated with 50 Ω load(s) in the non-throw or OFF state. The QPC6064 is +1.8V control logic compatible. It incorporates the control to disable the internal Negative Voltage Generator (NVG) and the optional external negative voltage supplied to the same pin.



24-Pin, 4 x 4 mm QFN Package

Key Features

- 5-6000 MHz Operation
- Non-Reflective RF1, RF2, RF3, RF4, RF5 & RF6 Ports, Internally Terminated in OFF and All-OFF State
- No Blocking Capacitors Necessary Unless DC Voltage on RF line
- High Isolation: 50 dB at 2 GHz
- High Input IP3: +59 dBm
- +1.8 V Control Logic Compatible

Functional Block Diagram

Applications

- Cellular, 3G, 4G, 5G Infrastructure
- WiBro, WiMAX, LTE
- High Performance Communication Systems
- Test Equipment

Ordering Information

Part No.	Description		
QPC6064TR13	2,500 pieces on a 13" reel (standard)		
QPC6064 PCK401	5 MHz – 6 GHz Evaluation Board with 5-piece samples		

Absolute Maximum Ratings

Parameter	Rating	
Storage Tempe	−40 to +150 °C	
RF Input Power	+37.5 dBm	
RF Input Power	+29 dBm	
Device Voltage	(VDD) (VSS)	+6 V
Device voltage	-6 V	
Control Voltage	(V1, V2, V3) Low / High	-0.2 V / +6 V

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability.

Recommended Operating Conditions

Parameter	Min	Тур	Max	Units
Device Voltage (VDD)	+2.7	+5.0	+5.5	V
Device Voltage (VSS), External Negative Voltage Supply	-5.5	-5.0	-2.7	V
Device Voltage (VSS), Internal Negative Voltage Generator		0		V
TCASE	-40	+25	+105	°C
Tj for ≥10 ⁶ hours MTTF			+125	°C

Electrical specifications are measured at specified test conditions. Specifications are not guaranteed over all recommended operating conditions.

Electrical Specifications

Parameter	Conditions (1)	Min	Тур	Max	Units
Operational Frequency Range		5		6000	MHz
	450 MHz		1.02		dB
	900 MHz		1.07		dB
Insertion Loss	2100 MHz		1.18	1.30	dB
	2600 MHz		1.25		dB
	4000 MHz		1.41		dB
	6000 MHz		2.02		dB
	450 MHz		72		dB
	900 MHz		66		dB
	2100 MHz, RF1/RF2/RF3/RF4/RF5	45	57		dB
Isolation (RFC - RF1/RF2/RF3/RF4/RF5/RF6)	2100 MHz, RF6	35	40		dB
(10 0 10 1/10 2/10 3/10 4/10 3/10 0)	2600 MHz		56		dB
	4000 MHz		52		dB
	6000 MHz		48		dB
	450 MHz		65		dB
	900 MHz		59		dB
Isolation	2100 MHz		51		dB
(RF1/2/3/4/5/6 - RF1/2/3/4/5/6)	2600 MHz		49		dB
	4000 MHz		44		dB
	6000 MHz		40		dB

Notes

^{1.} Test conditions unless otherwise noted: VDD = +5 V; V1, V2 and V3 = 0/+5V; T_A = +25 °C; Standard application circuit; 50 Ω system,

Electrical Specifications (continued)

Parameter	Conditions (1)	Min	Тур	Max	Units
Operational Frequency Range		5		6000	MHz
	450 MHz		29		dB
	900 MHz		30		dB
Return Loss	2100 MHz		27		dB
(RF1/RF2/RF3/RF4/RF5/RF6 ON-State)	2600 MHz		21		dB
	4000 MHz		20		dB
	6000 MHz		10		dB
	450 MHz		32		dB
	900 MHz		27		dB
Return Loss	2100 MHz		21		dB
(RF1/RF2/RF3/RF4/RF5/RF6 OFF-State)	2600 MHz		21		dB
	4000 MHz		20		dB
	6000 MHz		14		dB
Input IP2	1000 MHz		117		dBm
Input IP3	1.0 GHz, +17 dBm/tone, 1 MHz tone spacing	55	59		dBm
Input 1 dB Compression Power			36		dBm
NVG Spur	Internal NVG ON		-104		dBm
Setting Time	50% V1/V2/V3 to optimum functionality		1	4	μs
Start-up Time	90% VDD to full functionality		5	25	μs
Switching Time	50% control to 10/90% RF		150	240	ns
Supply Current (I _{VDD})	VDD +5.0V		90		μA
Control Current, (I _{V1} , I _{V2} , I _{V3})	V1, V2, V3 at +5.0V		1		μA
VSS Current (I _{VSS})	VSS -5.0V, Internal NVG disabled		100		μA
Low Control Voltage (V1, V2, V3)	+1.8 V Logic compatible	0		0.63	V
High Control Voltage (V1, V2, V3)	+1.6 v Logic compatible	1.1		VDD	V

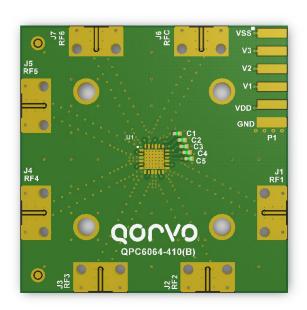
Notes:

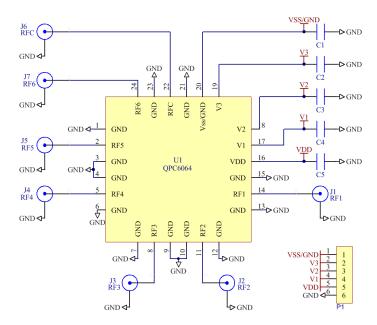
^{1.} Test conditions unless otherwise noted: VDD= +5 V; V1, V2 and V3 = 0/+5 V; T_A = +25 °C; Standard application circuit; 50 Ω system

Truth Table

C	Control Input		Mode
V1	V2	V3	of Signal Path
0	0	0	All OFF, RFC Reflective; RF1, RF2, RF3, RF4, RF5 and RF6 Internally Terminated
1	0	0	RFC RF1, Active ON; RF2, RF3, RF4, RF5 and RF6 Internally Terminated
0	1	0	RFC RF2, Active ON; RF1, RF3, RF4, RF5 and RF6 Internally Terminated
1	1	0	RFC RF3, Active ON; RF1, RF2, RF4, RF5 and RF6 Internally Terminated
0	0	1	RFC RF4, Active ON; RF1, RF2, RF3, RF5 and RF6 Internally Terminated
1	0	1	RFC RF5, Active ON; RF1, RF2, RF3, RF4, and RF6 Internally Terminated
0	1	1	All OFF, RFC Reflective; RF1, RF2, RF3, RF4, RF5 and RF6 Internally Terminated
1	1	1	RFC RF6, Active ON; RF1, RF2, RF3, RF4, and RF5 Internally Terminated

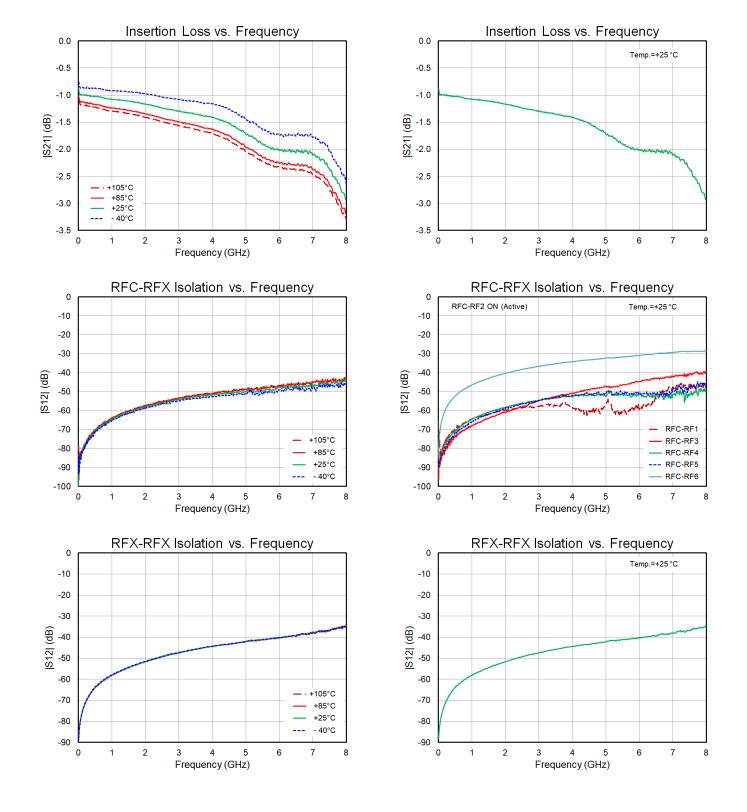
Maximum Operating Power at High Temperature, ≥50 MHz CW, 50 Ω System


Input Port	State	Power at	each port	Thermal Resistance, θ _{ic}	
input Fort	State	Tc +85°C	Tc +105°C	Thermal Resistance, Ojc	
RFC, RF1, RF2, RF3, RF4, RF5 or RF6	ON, Active Throw (1)	35.5 dBm	32.3 dBm	53 °C/W	
RF1, RF2, RF3, RF4, RF5 or RF6	OFF, 1 port (3)	28.1 dBm	25.1 dBm	61 °C/W	
RF1, RF2, RF3, RF4, RF5, RF6	OFF, 2 ports adjacent (2)(3)	26.6 dBm	23.6 dBm	86 °C/W	
RF1, RF2, RF3, RF4, RF5 and RF6	OFF, All 6 ports (3)	26.2 dBm	23.1 dBm	96 °C/W	


Notes:

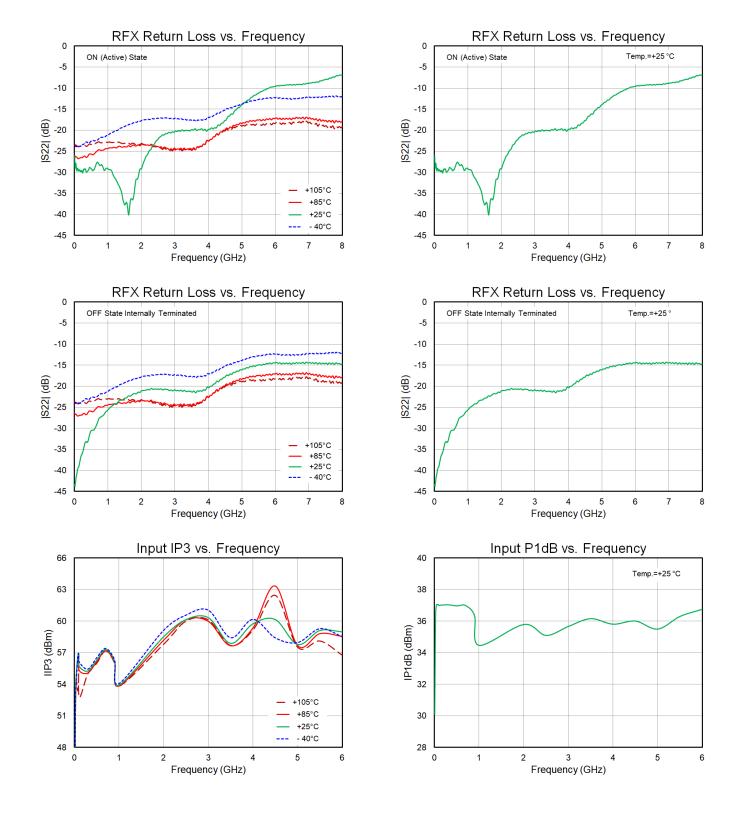
- 1. For frequency <50 MHz, the maximum operating power at all temperatures should be at least 2 dB below P1dB refer to performance plot
- 2. On any two ports adjacent being driven simultaneously
- 3. Internally terminated OFF state

5 MHz to 6 GHz Evaluation Board - QPC6064PCK401

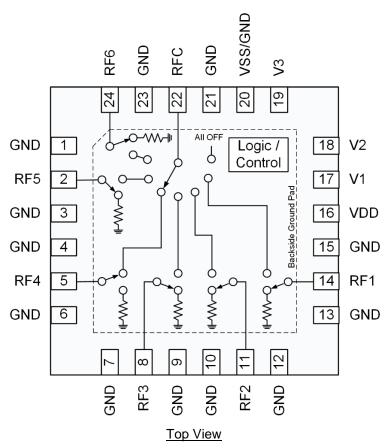


Bill of Material - QPC6064PCK401

Reference Des.	Value	Description	Manuf.	Part Number
-	-	PCB, QPC6064-410(B)	Qorvo	279707
U1	-	SOI, High Isolation SP6T RF switch	Qorvo	QPC6064
C1, C2, C3, C4, C5	100 pF	CAP, 100 pF, 5%, 50V, C0G, 0402	Taiyo Yuden	RM UMK105 CG101JV-F
J1, J2, J3, J4, J5, J6, J7	SMA	CONN, SMA, EL, FLT VIPER, MAT-21-1038	Amphenol	901-10425
P1	-	CONN, HDR, ST, PLRZD, 6-Pin, 0.100"	AMP	640454-6



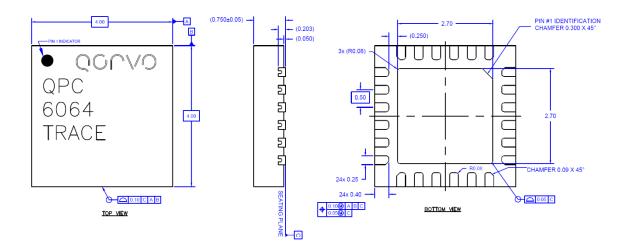
Performance Plots - QPC6064PCK401



Performance Plots - QPC6064PCK410 (Continued)

Pad Configuration and Description

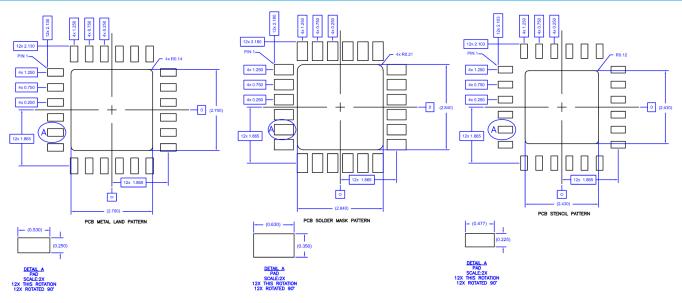
Pad No.	Label	Description
1, 3, 4, 6, 7, 9, 10, 12, 13, 15, 21, 23	GND	DC and RF ground, connect to low inductive path to PCB ground
2	RF5	RF Port 5
5	RF4	RF Port 4
8	RF3	RF Port 3
11	RF2	RF Port 2
14	RF1	RF Port 1
16	VDD	DC Supply Voltage Input
17	V1	Control Input 1
18	V2	Control Input 2
19	V3	Control Input 3
20	VSS/GND	Negative DC Supply Voltage and Internal Negative Voltage Generator (NVG) control input. Provide low inductive ground connection on this pin to enable internal NVG or directly connect -2.7V to -5V external voltage supply to disable the internal NVG. Re-enable internal NVG, VDD cycling required
22	RFC	RF Common Port
24	RF6	RF Port 6
Backside Paddle	GND	RF and DC ground. Must be soldered on PCB ground plane over a bed of via holes to minimize inductance and thermal resistance



Package Marking and Dimensions

Marking: Part Number - QPC

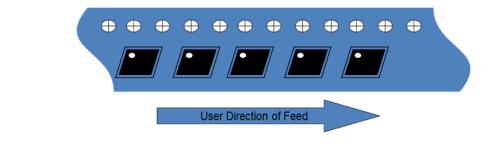
6064

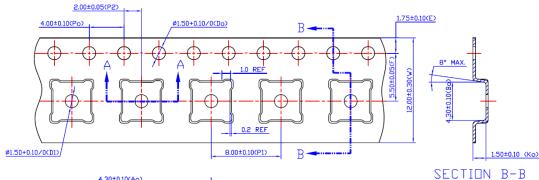

Trace Code – Assigned by subcontractor

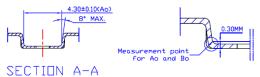
Notes:

- 1. All dimensions are in millimeters. Angles are in degrees.
- 2. The terminal #1 identifier and terminal numbering conform to JESD 95-1 SPP-012.
- 3. Contact plating: NiPdAu

PCB Mounting Pattern

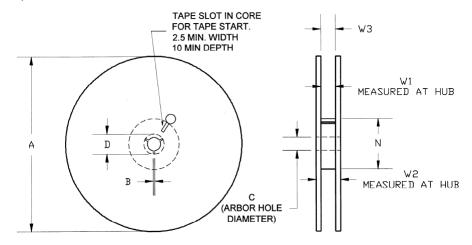



Notes:

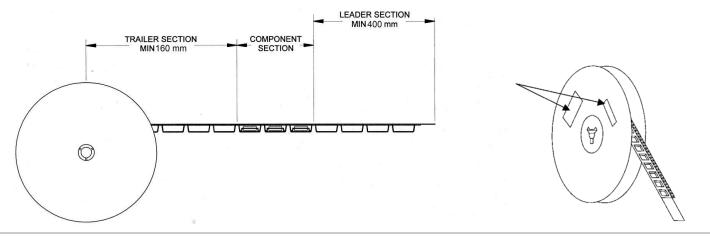

- 1. All dimensions are in millimeters. Angles are in degrees.
- 2. Use 1 oz. copper minimum for top and bottom layer metal.
- 3. Via holes are required under the backside paddle of this device for proper RF/DC grounding and thermal dissipation. We recommend a 0.35mm (#80/.0135") diameter bit for drilling via holes and a final plated thru diameter of 0.25 mm (0.01").
- 4. Ensure good package backside paddle solder attach for reliable operation and best electrical performance.

Tape and Reel Information – Carrier and Cover Tape Dimensions

NOTE:


1.10 SPROCKET HOLE PITCH CUMULATIVE TOLERANGE ± 0.2mm
2.CAMBER-REFERENCE TO CARRIER TAPE INSPECITION MANUAL
3.MATERIAL-BLACK CONDUCTIVE POLVSTYRENE
4.ALL DIMENSIONS ARE IN MILLIMETERS (UNLESS OTHERWISE SPECIFIED)
5.AO AND BO MEASURED ON THE BOTTOM OF THE POCKET
6.KO MEASURED FROM A PLANE ON THE INSIDE BOTTOM OF THE POCKET TO THE TOP
SURFACE OF THE CARRIER
7.POCKET POSITION RELATIVE TO SPROCKET HOLE MEASURED AS TRUE POSITION OF
POCKET, NOT POCKET HOLE
8.DID NOT MARK THE ROUNDED RADIAN IS 0.30MM.

Feature	Measure	Symbol	Size (in)	Size (mm)
	Length	A0	0.169	4.30
Covity	Width	B0	0.169	4.30
Cavity	Depth	K0	0.059	1.50
	Pitch	P1	0.314	8.00
Centerline Distance	Cavity to Perforation - Length Direction	P2	0.079	2.00
Centenine Distance	Cavity to Perforation - Width Direction	F	0.217	5.50
Cover Tape	Width	С	0.362	9.20
Carrier Tape	Width	W	0.472	12.0


Tape and Reel Information – Reel Dimensions

Standard T/R size = 2,500 pieces on a 13" reel.

Feature	Measure	Symbol	Size (in)	Size (mm)
	Diameter	Α	12.992	330.0
Flange	Thickness	W2	0.717	18.2
	Space Between Flange	W1	0.504	12.8
	Outer Diameter	N	4.016	102.0
Hub	Arbor Hole Diameter	С	0.512	13.0
Пub	Key Slit Width	В	0.079	2.0
	Key Slit Diameter	D	0.787	20.0

Tape and Reel Information - Tape Length and Label Placement

Notes

- 1. Empty part cavities at the trailing and leading ends are sealed with cover tape. See EIA 481-1-A.
- 2. Labels are placed on the flange opposite the sprockets in the carrier tape.

Handling Precautions

Parameter	Rating	Standard
ESD-Human Body Model (HBM)	Class 2	ESDA / JEDEC JS-001-2012
ESD - Charged Device Model (CDM)	Class C3	JEDEC JESD22-C101F
MSL-Moisture Sensitivity Level	Level 2	IPC/JEDEC J-STD-020

Caution! ESD-Sensitive Device

Solderability

Compatible with both lead-free (260°C max. reflow temp.) and tin/lead (245°C max. reflow temp.) soldering processes. Solder profiles available upon request.

Contact plating: NiPdAu

RoHS Compliance

This part is compliant with 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment) as amended by Directive 2015/863/EU.

This product also has the following attributes:

- · Lead Free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C₁₅H₁₂Br₄O₂) Free
- SVHC Free

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations:

Web: <u>www.qorvo.com</u>
Tel: 1-844-890-8163

Email: customer.support@gorvo.com

Important Notice

The information contained herein is believed to be reliable; however, Qorvo makes no warranties regarding the information contained herein and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. THIS INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Without limiting the generality of the foregoing, Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

Copyright 2020 © Qorvo, Inc. | Qorvo is a registered trademark of Qorvo, Inc.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Qorvo:

QPC6064SR QPC6064TR13 QPC6064PCK401