Din Rail Mount $\mathbf{1 7 . 5}$ mm Multifunction MWUA Part number 84873025


- Control of 3-phase networks : phase sequence, phase failure, imbalance (asymmetry), over and undervoltage
- Range includes mono-function product and multi-function product
- Multi-voltage from $3 \times 208$ to $3 \times 480$ V AC
- Controls its own supply voltage
- True RMS measurement
- LED status indication

|  | Type | Functions | Nominal voltage (V) |
| :---: | :---: | :---: | :---: |
| 84873025 | MWUA | Phase sequence, failure, imbalance, under and overvoltage in window mode | $3 \times 208 \rightarrow 3 \times 480 \mathrm{~V}$ AC |

Specifications

| Supply |  |
| :---: | :---: |
| Supply voltage Un | $3 \times 208 \rightarrow 3 \times 480$ V AC * |
| Voltage supply tolerance | -12 \% / +10 \% |
| Operating range | $183 \rightarrow 528$ V AC |
| AC supply voltage frequency | $50 / 60 \mathrm{~Hz} \pm 10$ \% |
| Galvanic isolation of power supply/measurement | No |
| Power consumption at Un | 22 VA in $400 \mathrm{VAC}, 50 \mathrm{~Hz}$ |
| Immunity from micro power cuts | 10 ms |
| Inputs and measuring circuit |  |
| Measurement ranges | $183 \rightarrow 528$ V AC |
| Selection of phase-phase nominal voltage Un | 208-220-380-400-415-440-480 V |
| Frequency of measured signal | $50 \rightarrow 60 \mathrm{~Hz} \pm 10$ \% |
| Max. measuring cycle time | $150 \mathrm{~ms} /$ True RMS measurement |
| Voltage threshold adjustment | $2 \rightarrow 20 \%$ of selected Un <br> (-2 to -12 \% across the $3 \times 208 \mathrm{~V}$ AC range $/-2$ to $-17 \%$ across the $3 \times 220 \mathrm{~V}$ AC range $/ 2$ to $10 \%$ across the $3 \times 480 \mathrm{~V}$ AC range) |
| Voltage threshold hysteresis | $2 \%$ of fixed Un |
| Asymmetry threshold hysteresis | $2 \%$ of fixed Un |
| Asymmetry threshold adjustment | 5 to $15 \%$ of selected Un |
| Display precision | $\pm 3 \%$ of the displayed value |
| Repetition accuracy with constant parameters | $\pm 0,5$ \% |
| Measuring error with voltage drift | $<1 \%$ across the whole range |
| Measuring error with temperature drift | < 0,05 \%/ ${ }^{\circ} \mathrm{C}$ |
| Maximum regeneration (phase failure) | $70 \%$ |
| Timing |  |
| Delay on thresold crossing | 0.1 to 10 s $0+10 \%$ |
| Repetition accuracy with constant parameters | $\pm 3$ \% |
| Reset time | 1500 ms |
| Delay on pick-up | $\leq 650 \mathrm{~ms}$ |
| Alarm on delay time max. | < 200 ms |
| Output |  |
| Type of output | 1 single pole changeover relay |
| Type of contacts | No cadmium |
| Maximum breaking voltage | $250 \mathrm{~V} \mathrm{AC/DC}$ |
| Max. breaking current | 5 A AC/DC |
| Min. breaking current | $10 \mathrm{~mA} / 5 \mathrm{~V}$ DC |
| Electrical life (number of operations) | $1 \times 10^{5}$ |
| Breaking capacity (resistive) | 1250 VA AC |
| Maximum rate | 360 operations/hour at full load |
| Operating categories acc. to IEC/EN 60947-5-1 | AC 12, AC 13, AC 14, AC 15, DC 12, DC 13, DC 14 |
| Mechanical life (operations) | $30 \times 10^{6}$ |
| Insulation |  |
| Nominal insulation voltage IEC/EN 60664-1 | 400 V |
| Insulation coordination (IEC/EN 60664-1) | Overvoltage category III : degree of pollution 3 |
| Rated impulse withstand voltage (IEC/EN 60664-1) | 4 KV (1,2/50 s ) |

$>500 \mathrm{M} \Omega / 500 \mathrm{~V}$ DC

General characteristics

| Display power supply | Green LED |
| :--- | :--- |
| Display relay | Yellow LED - This LED flashes during the threshold delay |
| Casing | $17,5 \mathrm{~mm}$ |
| Mounting | On 35 mm symmetrical DIN rail, IEC/EN 60715 |
| Mounting position | All positions |

Material : enclosure plastic type VO to UL94 standard Protection (IEC/EN 60529)

## Weight

## Connecting capacity IEC/EN 60947-1

Max. tightening torques IEC/EN 60947-1
Operating temperature IEC/EN 60068-2
Storage temperature IEC/EN 60068-2
Humidity IEC/EN 60068-2-30
Vibrations according to IEC/EN60068-2-6
Shocks IEC/EN 60068-2-6
Incandescent wire test according to IEC 60695-2-11 \& NF EN 60695-2-11
Terminal block : IP20
Casing : IP30
80 g
Rigid : $1 \times 4^{2}-2 \times 2.5^{2} \mathrm{~mm}^{2}$
$1 \times 11$ AWG $-2 \times 14$ AWG
Flexible with ferrules: $1 \times 2.5^{2}-2 \times 1.5^{2} \mathrm{~mm}^{2}$
$1 \times 14$ AWG $-2 \times 16$ AWG
$0,6 \mathrm{Nm} \rightarrow 1 / 5,3 \rightarrow 8,8$ Lbf.In
$-20 \rightarrow+50^{\circ} \mathrm{C}$
$-40 \rightarrow+70^{\circ} \mathrm{C}$
$2 \times 24 \mathrm{hr}$ cycle $95 \% \mathrm{RH}$ max. without condensation $55^{\circ} \mathrm{C}$
$10 \rightarrow 150 \mathrm{~Hz}, \mathrm{~A}=0.035 \mathrm{~mm}$

Standards

| Standards |
| :--- | :--- |
| Certifications |

Conformity with environmental directives

IEC/EN 50178, IEC/EN 61000-6-2, IEC/EN 61000-6-3
CE, UL, CSA, GL
RoHS, WEEE

Comments

Accessories

| Description | Code |
| :--- | :--- |
| Removable sealable cover for 17.5 mm casing | 84800000 |



## Operating principle

MWUA : Phase controller with voltage regeneration + Asymmetry + Under/Overvoltage
Voltage selector switch :
Set the selector switch to the 3-phase network voltage Un.
The position of this selector switch is only taken into account when the unit is powered up.
If the switch position changes while the unit is operating, all the LEDs flash but the product continues to work normally with the voltage selected on energisation prior to the change of position.
The LEDs return to their normal state if the switch is reset to its initial position defined before the last energisation.

## The relay monitors its own supply voltage.

The relay controls :

- correct sequencing of the three phases
- failure of one of the three phases ( $U$ measured $<0.7 \times U n$ ).
- asymmetry, adjustable from 5 to $15 \%$ of Un,
and the under and overvoltage drift adjustable from 2 to $20 \%$ of Un ( -2 to $-12 \%$ across the $3 \times 208 \mathrm{VAC}$ range, -2 to $-17 \%$ across the $3 \times 220 \mathrm{VAC}$ range due to the minimum voltage 183 V
AC ; +2 to $+10 \%$ across the $3 \times 480 \vee \mathrm{AC}$ range due to the maximum voltage 528 VAC ).
In the event of a phase sequence or failure fault, the relay opens instantaneously.
In the event of an asymmetry or voltage fault, the relay opens at the end of the time delay set by the user.
When the unit is powered up with a measured fault, the relay stays open.
Asymmetry is defined as follows : (Vrms max. - Vrms min.) /Vrms mains.
Vrms mains corresponds to the voltage selected by the switch on the front face.

| No | Legend |
| :---: | :---: |
| (1) | Phase L1 |
| (2) | Phase L2 |
| (3) | Phase L3 |
| (4) | Asymmetry threshold |
| (5) | Hysteresis |
| (6) | Relay |
| (1) | Delay on threshold crossing (Tt) |

## Principles



Operating principle
MWUA : Phase controller with voltage regeneration + Asymmetry + Under/Overvoltage
Voltage selector switch :
Set the selector switch to the 3-phase network voltage Un.
The position of this selector switch is only taken into account when the unit is powered up.
If the switch position changes while the unit is operating, all the LEDs flash but the product continues to work normally with the voltage selected on energisation prior to the change of position.
The LEDs return to their normal state if the switch is reset to its initial position defined before the last energisation.

## The relay monitors its own supply voltage.

The relay controls :

- correct sequencing of the three phases
- failure of one of the three phases ( $U$ measured $<0.7 \times U n$ ).
- asymmetry, adjustable from 5 to $15 \%$ of Un,
and the under and overvoltage drift adjustable from 2 to $20 \%$ of Un ( -2 to $-12 \%$ across the $3 \times 208 \mathrm{~V}$ AC range, -2 to $-17 \%$ across the $3 \times 220 \mathrm{~V}$ AC range due to the minimum voltage 183 V
$\mathrm{AC} ;+2$ to $+10 \%$ across the $3 \times 480 \mathrm{VAC}$ range due to the maximum voltage 528 VAC ).
In the event of a phase sequence or failure fault, the relay opens instantaneously.
In the event of an asymmetry or voltage fault, the relay opens at the end of the time delay set by the user.
When the unit is powered up with a measured fault, the relay stays open.
Asymmetry is defined as follows : (Vrms max. - Vrms min.) /Vrms mains.
Vrms mains corresponds to the voltage selected by the switch on the front face.

| No | Legend |
| :---: | :---: |
| (1) | Overvoltage |
| (2) | Hysteresis |
| (3) | Undervoltage |
| (1) | Phases L1, L2, L3 |
| (3) | Relay |
| (0) | Delay on threshold crossing (Tt) |

## Dimensions (mm)

MWG - MWA - MWU - MWUA

mm

## Connections

MWG - MWA - MWU - MWUA


| $\mathrm{N}^{\circ}$ | Legend |
| :--- | :--- |
| (1) | 100 mA fast-blow fuse |

- Adjustable fixed hysteresis
- Fixed or adjustable time delay except for MWG

Dedicated adaptation on MWG :

- Adjustable regeneration rate

Dedicated adaptation on MWU

- Fixed undervoltage threshold in the generic range

Dedicated adaptation on MWA :

- Fixed asymmetry threshold in the generic range

Adaptations dedicated to MWUA :

- Fixed undervoltage threshold in the generic range
- Fixed overvoltage threshold in the generic range
- Fixed asymmetry threshold in the generic range or adjustable $5 \rightarrow 25 \%$

