5.0 V ECL 2:1 Multiplexer

Description

The MC10EL/100EL58 is a 2:1 multiplexer. The device is functionally equivalent to the E158 device with higher performance capabilities. With propagation delays and output transition times significantly faster than the E158, the EL58 is ideally suited for those applications which require the ultimate in AC performance.

The 100 Series contains temperature compensation.

Features

- 230 ps Propagation Delay
- PECL Mode Operating Range:
 - $V_{CC} = 4.2 \text{ V}$ to 5.7 V with $V_{EE} = 0 \text{ V}$
- NECL Mode Operating Range:
 - $V_{CC} = 0 \text{ V}$ with $V_{EE} = -4.2 \text{ V}$ to -5.7 V
- Internal Input Pulldown Resistors on Da, Db, and SEL
- These Devices are Pb-Free, Halogen Free and are RoHS Compliant

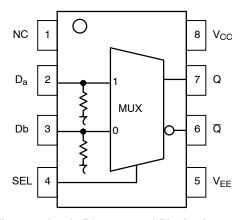


Figure 1. Logic Diagram and Pin Assignment

ON Semiconductor®

www.onsemi.com

SOIC-8 NB D SUFFIX CASE 751-07 TSSOP-8 DT SUFFIX CASE 948R-02

MARKING DIAGRAMS*

 $\begin{array}{lll} H &= MC10 & L &= Wafer\ Lot \\ K &= MC100 & Y &= Year \\ 4Z &= MC10 & W &= Work\ Week \\ 2O &= MC100 & \overline{M} &= Date\ Code \\ A &= Assembly\ Location & \bullet &= Pb\mbox{-}Free\ Package \\ \end{array}$

(Note: Microdot may be in either location)

*For additional marking information, refer to Application Note <u>AND8002/D</u>.

ORDERING INFORMATION

See detailed ordering and shipping information on page 6 of this data sheet.

Table 1. PIN DESCRIPTION

PIN	FUNCTION	
D _a , Db Q, Q SEL V _{CC} V _{EE}	ECL Data Inputs ECL Data Outputs ECL Select Input Positive Supply Negative Supply	

Table 2. FUNCTION TABLE

SEL*	Data
H	a
L	b

^{*} Pin will default low when left open.

Table 3. ATTRIBUTES

Characteristics	Value
Internal Input Pulldown Resistor	75 kΩ
Internal Input Pullup Resistor	N/A
ESD Protection Human Body Model Machine Model	> 1 kV > 100 V
Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1) SOIC-8 TSSOP-8	Level 1 Level 3
Flammability Rating Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in
Transistor Count	45
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test	

^{1.} Refer to Application Note <u>AND8003/D</u> for additional information.

Table 4. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	PECL Mode Power Supply	V _{EE} = 0 V		8	V
V _{EE}	NECL Mode Power Supply	V _{CC} = 0 V		-8	V
VI	PECL Mode Input Voltage NECL Mode Input Voltage	V _{EE} = 0 V V _{CC} = 0 V	$\begin{array}{c} V_I \leq V_{CC} \\ V_I \geq V_{EE} \end{array}$	6 -6	V
l _{out}	Output Current	Continuous Surge		50 100	mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
$\theta_{\sf JA}$	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	SOIC-8 NB	190 130	°C/W
$\theta_{\sf JC}$	Thermal Resistance (Junction-to-Case)		SOIC-8 NB	41 to 44	°C/W
$\theta_{\sf JA}$	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	TSSOP-8	185 140	°C/W
T _{sol}	Wave Solder (Pb-Free)	<2 to 3 sec @ 260°C		265	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Table 5. 10EL SERIES PECL DC CHARACTERISTICS (V_{CC} = 5.0 V; V_{EE} = 0.0 V (Note 1))

		-40°C		25°C			85°C				
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		14	17		14	17		14	17	mA
V _{OH}	Output HIGH Voltage (Note 2)	3920	4010	4110	4020	4105	4190	4090	4185	4280	mV
V _{OL}	Output LOW Voltage (Note 2)	3050	3200	3350	3050	3210	3370	3050	3227	3405	mV
V_{IH}	Input HIGH Voltage	3770		4110	3870		4190	3940		4280	mV
V_{IL}	Input LOW Voltage	3050		3500	3050		3520	3050		3555	mV
I _{IH}	Input HIGH Current			150			150			150	μΑ
I _{IL}	Input LOW Current	0.5			0.5			0.3			μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 1. Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary +0.06 V / -0.5 V.
- 2. Outputs are terminated through a 50 ohm resistor to V_{CC}-2 volts.

^{1.} JEDEC standard multilayer board – 2S2P (2 signal, 2 power)

Table 6. 10EL SERIES NECL DC CHARACTERISTICS (V_{CC}= 0.0 V; V_{EE}= -5.0 V (Note 1))

		-40°C		25°C			85°C				
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		14	17		14	17		14	17	mA
V _{OH}	Output HIGH Voltage (Note 2)	-1080	-990	-890	-980	-895	-810	-910	-815	-720	mV
V _{OL}	Output LOW Voltage (Note 2)	-1950	-1800	-1650	-1950	-1790	-1630	-1950	-1773	-1595	mV
V _{IH}	Input HIGH Voltage	-1230		-890	-1130		-810	-1060		-720	mV
V _{IL}	Input LOW Voltage	-1950		-1500	-1950		-1480	-1950		-1445	mV
I _{IH}	Input HIGH Current			150			150			150	μΑ
I _{IL}	Input LOW Current	0.5			0.5			0.3			μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 1. Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary +0.06 V / -0.5 V.
- 2. Outputs are terminated through a 50 ohm resistor to V_{CC}-2 volts.

Table 7. 100EL SERIES PECL DC CHARACTERISTICS (V_{CC}= 5.0 V; V_{EE}= 0.0 V (Note 1))

		-40°C 25°C		85°C							
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		14	17		14	17		16	19	mA
V _{OH}	Output HIGH Voltage (Note 2)	3915	3995	4120	3975	4045	4120	3975	4050	4120	mV
V _{OL}	Output LOW Voltage (Note 2)	3170	3305	3445	3190	3295	3380	3190	3295	3380	mV
V _{IH}	Input HIGH Voltage	3835		4120	3835		4120	3835		4120	mV
V _{IL}	Input LOW Voltage	3190		3525	3190		3525	3190		3525	mV
I _{IH}	Input HIGH Current			150			150			150	μΑ
I _{IL}	Input LOW Current	0.5			0.5			0.5			μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 1. Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary +0.8 V / -0.5 V.
- 2. Outputs are terminated through a 50 ohm resistor to V_{CC}-2 volts.

Table 8. 100EL SERIES NECL DC CHARACTERISTICS (V_{CC}= 0.0 V; V_{EE}= -5.0 V (Note 1))

			-40°C	C 25°C		85°C					
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		14	17		14	17		16	19	mA
V _{OH}	Output HIGH Voltage (Note 2)	-1085	-1005	-880	-1025	-955	-880	-1025	-955	-880	mV
V _{OL}	Output LOW Voltage (Note 2)	-1830	-1695	-1555	-1810	-1705	-1620	-1810	-1705	-1620	mV
V _{IH}	Input HIGH Voltage	-1165		-880	-1165		-880	-1165		-880	mV
V_{IL}	Input LOW Voltage	-1810		-1475	-1810		-1475	-1810		-1475	mV
I _{IH}	Input HIGH Current			150			150			150	μΑ
I _{IL}	Input LOW Current	0.5			0.5			0.5			μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 1. Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary +0.8 V / -0.5 V.
- 2. Outputs are terminated through a 50 ohm resistor to V_{CC}-2 volts.

Table 9. AC CHARACTERISTICS (V_{CC} = 5.0 V; V_{EE} = 0.0 V or V_{CC} = 0.0 V; V_{EE} = -5.0 V (Note 1))

		-40°C 25°C		85°C							
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
fmax	Maximum Toggle Frequency					1.5					GHz
t _{PLH} t _{PHL}	Propagation Delay to Output D to Q SEL to Q	60 90	220 250	380 410	120 150	230 260	340 370	140 170	250 280	360 390	ps
t _{JITTER}	Random Clock Jitter (RMS)					0.9					ps
t _r t _f	Output Rise/Fall Times Q (20% – 80%)	100	225	350	100	225	350	100	225	350	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. 10 Series: V_{EE} can vary +0.06 V / -0.5 V. 100 Series: V_{EE} can vary +0.8 V / -0.5 V.

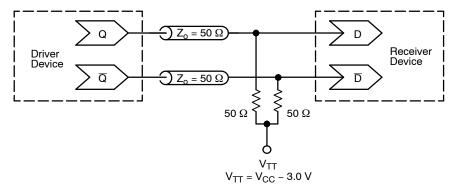


Figure 2. Typical Termination for Output Driver and Device Evaluation (See Application Note <u>AND8020/D</u> – Termination of ECL Logic Devices.)

ORDERING INFORMATION

Device	Package	Shipping [†]
MC10EL58DG	SOIC-8 (Pb-Free)	98 Units / Rail
MC10EL58DR2G	SOIC-8 (Pb-Free)	2500 / Tape & Reel
MC10EL58DTG	TSSOP-8 (Pb-Free)	100 Units / Rail
MC100EL58DG	SOIC-8 (Pb-Free)	98 Units / Rail
MC100EL58DR2G	SOIC-8 (Pb-Free)	2500 / Tape & Reel
MC100EL58DTG	TSSOP-8 (Pb-Free)	100 Units / Rail

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Resource Reference of Application Notes

AN1405/D - ECL Clock Distribution Techniques

AN1406/D - Designing with PECL (ECL at +5.0 V)

AN1503/D - ECLinPS™ I/O SPiCE Modeling Kit

AN1504/D - Metastability and the ECLinPS Family

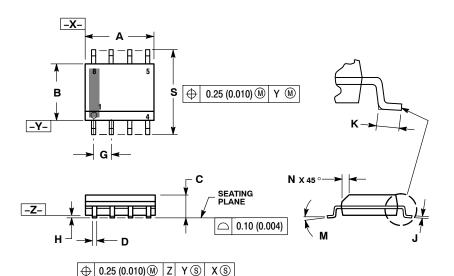
AN1568/D - Interfacing Between LVDS and ECL

AN1672/D - The ECL Translator Guide

AND8001/D - Odd Number Counters Design

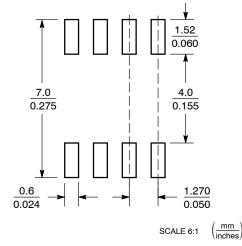
AND8002/D - Marking and Date Codes

AND8020/D - Termination of ECL Logic Devices

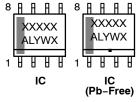

AND8066/D - Interfacing with ECLinPS

AND8090/D - AC Characteristics of ECL Devices

SOIC-8 NB CASE 751-07 **ISSUE AK**

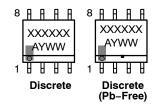

DATE 16 FEB 2011

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER
- ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
- MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE
- DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07.


	MILLIN	IETERS	INC	HES		
DIM	MIN	MAX	MIN	MAX		
Α	4.80	5.00	0.189	0.197		
В	3.80	4.00	0.150	0.157		
С	1.35	1.75	0.053	0.069		
D	0.33	0.51	0.013	0.020		
G	1.27	7 BSC	0.050 BSC			
Н	0.10	0.25	0.004	0.010		
J	0.19	0.25	0.007	0.010		
K	0.40	1.27	0.016	0.050		
М	0 °	8 °	0 °	8 °		
N	0.25	0.50	0.010	0.020		
S	5.80	6.20	0.228	0.244		

SOLDERING FOOTPRINT*

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.


GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code = Assembly Location

= Wafer Lot = Year = Work Week

= Pb-Free Package

XXXXXX = Specific Device Code = Assembly Location Α

= Year ww = Work Week

= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

STYLES ON PAGE 2

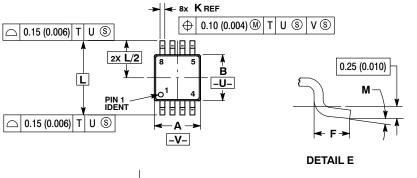
DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document R- Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION:	SOIC-8 NB		PAGE 1 OF 2				

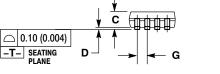
ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

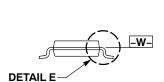
SOIC-8 NB CASE 751-07 ISSUE AK

DATE 16 FEB 2011

STYLE 4: PIN 1. ANODE 1 2. ANODE 2 3. ANODE 2 4. ANODE 5. ANODE #2 6. ANODE #2 7. ANODE #1 8. COMMON CATHODE
STYLE 8: PIN 1. COLLECTOR, DIE #1 2. BASE, #1 3. BASE, #2 4. COLLECTOR, #2 5. COLLECTOR, #2 6. EMITTER, #2 STAGE Vd 7. EMITTER, #1 AGE Vd 8. COLLECTOR, #1
STYLE 12: 1 PIN 1. SOURCE 2 SOURCE 2 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN
STYLE 16: PIN 1. EMITTER, DIE #1 2. BASE, DIE #1 3. EMITTER, DIE #2 4. BASE, DIE #2 5. COLLECTOR, DIE #2 6. COMMON 6. COLLECTOR, DIE #2 6. COMMON 7. COLLECTOR, DIE #1 6. COMMON 8. COLLECTOR, DIE #1
STYLE 20: 1 PIN 1. SOURCE (N) 2. GATE (N) 2 3. SOURCE (P) 4. GATE (P) 5. DRAIN 2 6. DRAIN 7. DRAIN 1 8. DRAIN
STYLE 24: PIN 1. BASE N ANODE/GND 2. EMITTER N ANODE/GND 3. COLLECTOR/ANODE UT 5. CATHODE N ANODE/GND 6. CATHODE N ANODE/GND 7. COLLECTOR/ANODE UT 8. COLLECTOR/ANODE
STYLE 28: PIN 1. SW_TO_GND 2. DASIC_OFF 3. DASIC_SW_DET 4. GND E 5. V_MON E 6. VBULK E 7. VBULK 8. VIN


DOCUMENT NUMBER:	98ASB42564B	Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOIC-8 NB		PAGE 2 OF 2	


ON Semiconductor and IN are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.



TSSOP 8 CASE 948R-02 ISSUE A

DATE 04/07/2000

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: MILLIMETER.

 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH. OR GATE BURRS SHALL NOT EXCEED 0.15
- (0.006) PER SIDE.
 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
 5. TERMINAL NUMBERS ARE SHOWN FOR
- REFERENCE ONLY.
 6. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	2.90	3.10	0.114	0.122
В	2.90	3.10	0.114	0.122
С	0.80	1.10	0.031	0.043
D	0.05	0.15	0.002	0.006
F	0.40	0.70	0.016	0.028
G	0.65 BSC		0.026	BSC
K	0.25	0.40	0.010	0.016
L	4.90 BSC		0.193	BSC
M	٥°	6 °	٥°	6°

DOCUMENT NUMBER:	98AON00236D	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TSSOP 8		PAGE 1 OF 1	

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor:

MC100EL58MNR4G MC100EL58D MC100EL58DG MC100EL58DR2 MC100EL58DR2G MC100EL58DT

MC100EL58DTG MC100EL58DTR2 MC100EL58DTR2G MC10EL58DG MC10EL58DR2

MC10EL58DR2G MC10EL58DT MC10EL58DTG MC10EL58DTR2 MC10EL58DTR2G