Инициализация и запуск AD1933 с помощью Master Control Port на ADAU1467.

Схема подключения.

MCLK = 12.288 МГц. В качестве генератора используется модуль DSPO 12.288 I2S LINK.

<u>RDC4-0027v1</u> - SigmaDSP ADAU1467. Модуль цифровой обработки звука. v1

<u>AD1933 DAC</u> - Аудио ЦАП. 8 дифференциальных выходов. Разрешение 24 бита, частота дискретизации 192кГц SigmaStudio

Сделаем настройки для работы модуля AD1933 AD с частотой дискретизации 96кГц и разрешением 24 бит. Шаг 1. Создаем проект в SigmaStudio с одной AD193х.

USB		
SPI 0x1 ADR0	-	AD193x
	-	IC 1
	-	
	-	
USB Interface		

В Register Control изменяем только две установки:

- 1. Enable Internal MCLK
- 2. Sample Rate 64/88,2/96 kHz

AD193x оставляем в Slave. Если хотите ещё что-то изменить делайте это сейчас.

Hardware Configuration							
PLL and Clock Control		DAC Control				Register Contents	
Power Down	OAC Clock Source O PLL Clock	Power Down	Master Mute	LRCLK Master Mode	BCLK Active Edge	PLL and Clock Control 0	b 10000000
Enable Internal MCLK	MCLK	Sample Rate	64/88.2/96 kHz	BCLK Master Mode	C Latch end-cycle	PLL and Clock Control 1	b 00001000
Disable on-chip Vref	ADC Clock Source	SDATA Delay (BCLK	32/44.1/48 kHz	LRCLK Polarity	BCLK Polarity	DAC Control 0	ь 00000010
PLL Lock Status	MCLK	Serial Format	128/176.4/192 kHz Stereo (Normal)	Left Low	Normal	DAC Control 0	ь 00000000
MCLK Pin Functionality (PLL	Active) 256*FS 🗸	Deemphasis Curve	Flat	•	0	DAC Control 0	ь 00000000
MCLK_O pin	Ext. Osc. enabled 🗸	Word Width	24 bit	OAC output polarity ONormal	DBCLK pin	DAC Channel Mutes	ь 00000000
PLL Input	MCIK	BCLKs per frame	64	Inverted	Generate Internal	DAC 1 Left Volume	ь 00000000
						DAC 1 Right Volume	ь 00000000
ADC Control		DAC Volume Controls	5			DAC 2 Left Volume	ь 00000000
Channel Mutes	Power Down					DAC 2 Right Volume	ь 00000000
1L 1R 2L 2R	Enable Highpass Filter	6 -	-66 -	-666	66	DAC 3 Left Volume	ь 00000000
Output Sample Rate	32/44.1/48 kHz 👻		-2626 -	-262626	-2626	DAC 3 Right Volume	ь 00000000
Word Width	24 bits 👻	-36 -	-3636 -	-363636	-3636	DAC 4 Left Volume	ь 00000000
SDATA Delay (BCLK periods)	1 👻	-46 -	-4646 -	-464646	-4646	DAC 4 Right Volume	ь 00000000
Serial Format	Stereo 👻	-56 -	-5656 -	-565656	-5656	ADC Control 0	ь 00000000
BCLKs per frame	64 🗸		-6666 -	-666666		ADC Control 1	ь 00000000
BCLK Master Mode	LRCLK Master Mode	86 -	-8686 -	-868686		ADC Control 2	ь 00000000
BCLK Source	LRCLK Format	96	-9696 -	-969696			
 ABCLK pin Generate Internal 	 50/50 cycle Pulse 	0	0 0	0 0 0	0 0	Get Current Settings F	rom Chip
BCLK Polarity	LRCLK Polarity	Mute	Mute Mute	Mute Mute Mute	Mute Mute		
 Drive falling edge Drive rising edge 	 left low left high 	Channel 1L Char	nnel 1R Channel 2L Cha	nnel 2R Channel 3L Channel 3R	Channel 4L Channel 4R	Write Current Setting	to Chip

Шаг 2.

Очистите окно Capture нажав иконку с крестиком.

Config I	Config IC 1 - AD193x Register Controls							
Capture								₽×
😹 🖬-								«
Mode	Time	Cell Name	Parameter Name	Address	Value	Data	Bytes	
Clear All Outp	ut Data 10 - 232ms		IC 1.DacCtrl2R	0x0004		0x41	1	
Block Write	16:37:10 - 237ms		IC 1.HWConfig	0x0000		0x00	1	
Block Write	16:37:10 - 237ms		IC 1.HWConfig	0x0001		0x72	1	
Block Write	16:37:10 - 237ms		IC 1.HWConfig	0x0002		0x00	1	
Block Write	16:37:10 - 237ms		IC 1.HWConfig	0x0003		0x00	1	
Block Write	16:37:10 - 237ms		IC 1.HWConfig	0x0004		0x41	1	
Block Write	16:37:10 - 237ms		IC 1.HWConfig	0x0005		0x00	1	
Plack Write	16.07.10 007mg		TO 1 HIMConfe	000006		0~00	4	

Вытяните скрытое окно Sequence. Стрелка в правом углу.

Config	IC 1 - AD193x R	egister Controls						-
Capture								φ ×
								× 🖌
Mode	Time	Cell Name	Parameter Name	Address	Value	Data	Bytes (
								Display Sequence Window

Скомпилируете этот проект – нажмите Link Compile Connect. Окно Capture заполнится данными инициализации Address, Data. Создайте последовательность действий Add to sequence.

Capture													
💥 🔟 -										🛃 🕺 🖻 🛍 🕢 🤯			
Mode	Time	Cell Name	Parameter Name	Address	Value	Data	Bytes :	Mode 0	Mode	Address	Bytes	Data	
Block Write	17:3:59 - 680ms		IC 1.DacCtrl2R	0x0004		0x01	1		Write	4	1	0x01	
Block Write	17:3:59 - 680ms		IC 1.HWConfig	0x0000		0x80	1		Write	0	1	0x80	
Block Write	17:3:59 - 680ms		IC 1.HWConfig	0x0001		0,00	1		Write	1	1	0x08	
Block Write	17:3:59 - 680ms		IC 1.HWConfig	0x0002		0x02	1		Write	2	1	0x02	
Block Write	17:3:59 - 680ms		IC 1.HWConfig	0x0003		0x00	1		Write	3	1	0x00	
Block Write	17:3:59 - 680ms		IC 1.HWConfig	0x0004		0x01	1		Write	4	1	0x01	
Block Write	17:3:59 - 680ms		IC 1.HWConfig	0x0005		Copyt	o clipboard		Write	5	1	0x00	
Block Write	17:3:59 - 680ms		IC 1.HWConfig	0x0006					Write	6	1	0x00	
Block Write	17:3:59 - 680ms		IC 1.HWConfig	0x0007		Save a	s Text		Write	7	1	0x00	
Block Write	17:3:59 - 680ms		IC 1.HWConfig	0x0008		Save a	s Raw Data	→	Write	8	1	0x00	
Block Write	17:3:59 - 680ms		IC 1.HWConfig	0x0009		Add to	requence		Write	9	1	0x00	
Block Write	17:3:59 - 680ms		IC 1.HWConfig	0x000A		Audito	sequence		Write	10	1	0x00	
Block Write	17:3:59 - 680ms		IC 1.HWConfig	0x000B		Clear			Write	11	1	0x00	
Block Write	17:3:59 - 680ms		IC 1.HWConfig	0x000C		cicai			Write	12	1	0x00	
Block Write	17:3:59 - 680ms		IC 1.HWConfig	0x000D		Addres	is in Hex		Write	13	1	0x00	
Block Write	17:3:59 - 680ms		IC 1.HWConfig	0x000E		Dete in	Dimension		Write	14	1	0x00	
Block Write	17:3:59 - 680ms		IC 1.HWConfig	0x000F		Data in	Binary		Write	15	1	0x00	
Block Write	17:3:59 - 680ms		IC 1.HWConfig	0x0010		0x00	1		Write	16	1	0x00	
Block Write	17:3:59 - 680ms		IC 1.DacCtrl2R	0x0004		0x00	1		Write	4	1	0x00	

Сохраните последовательность в xml файл. Save Sequence File.

Больше нам этот проект не нужен. Можно закрыть.

Шаг 3.

Создаем или открываем проект в SigmaStudio на ADAU1467. Он может быть любым, но в него должен быть добавлен алгоритм Master Control Port IO. Он никуда не подключается, просто есть. Этот алгоритм разрешает работу через встроенные в ADAU1467 порты I2C и SPI.

Настройки алгоритма. Нажмите синюю кнопку I2C SPI и установите настройки как на рисунке.

	Control Port Properties
Slave 0 V 📴 🔶	Properties Target Bitrate: 1000 ÷ kHz Sub-Address Bytes: 1 ÷ byte Slave Select: SS_M Pin 0 ÷ 1 ÷ byte
ControlPort11	SPI SPI Mode 0 SPI Mode 0 Ormand Length: 1 Write Instruction: 8 Write-Enable:
	Sequence File test1467_ad1933\1933_96_Slave.xml
	OK Cancel

Sequence File это тот xml-файл который записали на втором шаге.

AD1933 управляется только через порт SPI. Но к этому порту уже подключена микросхема памяти, EEPROM 25AA1024. Параллельных разъемов на модуле RDC4-0027 нет, поэтому придется подпаятся к микросхеме памяти. Нас интересуют только два вывода это общие для всех девайсов подключенных к SPI - MOSI (5) и SCLK (6).

Так как читать из AD нам нечего MISO не задействуем. В качестве Чип Селекта SS можно настроить любой GPIO на ADAU. Выбираем для настройки M16.

Шаг 4. Настройка ADAU1467.

Сначала настроим MP16 для работы в качестве выхода SS (чип селект). Вкладка MULTIPURPOSE. Enable MP function of the pin – выбираем MP function of the pin is selected.

Mode Setting For MPx – выбираем Slave select for the master control port

FTDM	1_OUT AUXADC MULTIPUR	POSE MULTIPURPOSE1 SPDIF SP	PDIF_RX_			
	MP5 MODE	MP6 MODE				
tion	Slave select channel selection	Slave select channel selection		MP15 MODE	MP16 MODE	MP17 MOI
	Slave select chanr 👻	Slave select chanr 👻	in.	Slave select channel selection	Slave select channel selection	Slave selec
	Debounce time setting	Debounce time setting		Slave select chanr 👻	Slave select chanr 👻	Slave sele
	No debounce 👻	No debounce 🗸		Debounce time setting	Debounce time setting	Debounce t
	Mode Setting for MPx	Mode Setting for MPx		No debounce 👻	No debounce 👻	No debour
	Input from pin 🛛 👻	Output without pul 💌		Mode Setting for MPx	Mode Setting for MPx	Mode Settin
pin	Enable MP function of the pin	Enable MP function of the pin		Input from pin 👻	master control port 📼	Input from
	Primary function or 👻	the pin is selected	1	Enable MP function of the pin	Input from pin	e MP
	MP12 MODE	Primary function of the pin is selected MP function of the pin is selected		Primary function o' 🔻	Output with pull-up	iary fu
tion	Slave select channel selection	Slave select channel selection		MP21 MODE	Digital microphone data or clock	к <u>змо</u> г
	Slave select chanr 👻	Slave select chanr 👻	n	Slave select channel selection	Output the panic manager flag	selec
	Debounce time setting	Debounce time setting		Slave select chanr 👻	Slave select of the master con	save sele
	No debounce 👻	No debounce 👻		Debounce time setting	Debounce time setting	Debounce t
				No dobouroo -	No debourses -	No dobour

Чтобы проект ADAU1467 тоже работал на частоте 96кГц. Нужно сделать ещё несколько настроек: Sample Rate установите в 96kHz. В Hardware Configuration / CLOCK_CONTROL изменить делитель для CLK GEN1 - вместо 6 установить 3. Больше ничего менять не надо.

icił	,						
	i 🗉 🙃 🗉 🗧 🏞 🖧 🦓	🦧 😽 器 🖅 96 kHz	- i :6:				
-	×	-					
:	Hardware Configuration Schematic	c Block Schematic					
	CLOCK_CONTROL Read This Page	ROUTING_MATRIX SERIAL_PORTS	ASRC POWER_CLOCKING	PIN_DRIVE DIGITAL_MIC	FTDM_IN FTDM_OUT	AUXADC MULTIPURPOSE	MULTIPU
	PLL CLK SRC Clock source select PLL clock	PLL CIRL1 PLL input clock divider Divide by 4	PLL CIFLU PLL Feedback Divider 96.000	System Clock	CLK GEN1		► x 4
	PLLENABLE	MCLK OUT Frequency of CLKOUT Base_Fs x 256 (12.288 MHz for 48 I CLKOUT Enable	kHz) 🔻	÷1024	x N 1.000 x M 3.000	Read	x 2 x 1 ÷ 2 ÷ 4 ÷ 4 x 4
	PLL LOCK	START PULSE Start Pulse Selection		÷1024	× N 1.000 × M 9.000		x 2 x 1 ÷ 2 ÷ 4 x 4
	PLL WATCHDOG PLL watchdog enabled	Base_Fs (48 kHz for 48 kHz base samp	de rate) (Cl ▼	+1024	× N 0.000	Read	x 2 x 1 ÷ 2 ÷ 4
			reference Needs I tells the coming	a for the 3rd Clock Gen. N/M ratio	CLK GEN3 LOC look bit	ĸ	
				Rea	a	Read	
	Config IC 1 - ADAU1467 Re	egister Controls IC 2 - WinE2	PromLoader				
		-11					

Выходные порты I2S должны быть настроены в режим Master.

Hardware Configuration Schematic Block Sch	nematic		
CLOCK_CONTROL CORE_CONTROL ROUTING_MA	ATRIX SERIAL_PORTS	ASRC POWER_CLOCKING	PIN_DRIVE DIGITAL_N
Read This Page SDATA_OUTO Serial Output Port 0			
SERIAL BYTE 4 0 Word Length 24 bits • MSB Position I2S - BCLK delay by 1 •	BCLK BCLK Source BC BCLK Polarity	K is master	Pin 48
specifies Channels/frame and BCLK/channels 2 channels, 32 bit/channel	LRCLK Source	CLK is master V50 duty cycle clock egative polarity	Pin 47 as LRCKL
SERIAL BYTE 4 1 Sampling Rate Fs Selects the clock generator to use Clock generator 1 (48 kHz (FS) generator) Tristate unused output channels Drive every output channel	▼ Read		

Стройте свой проект и загружайте в ADAU1467.