Automotive High-Speed, Low-Power Digital Optocoupler with R2Coupler ${ }^{\oplus}$ Isolation in a Stretched 12-Pin Surface Mount Plastic Package Data Sheet

Description

The ACFL-6211T and ACFL-6212T are automotive grade dual channel, bi-directional, high speed digital CMOS optocouplers. The stretched SO-12 stretched package outline is designed to be compatible with standard surface mount processes and occupies the same land area as their single channel equivalent, ACPL-K71T and ACPL-K72T, in stretched SO8 package.

This digital optocoupler uses an insulating layer between the light emitting diode and an integrated photo detector to provide electrical insulation between input and output. Each channel of the digital optocoupler has a CMOS detector IC with an integrated photodiode, a high speed trans-impedance amplifier, and a voltage comparator with an output driver. Each channel is also isolated from the other.

Broadcom R^{2} Coupler technology provides reinforced insulation and reliability that delivers safe signal isolation critical in automotive and high temperature industrial applications.

Functional Diagram

[^0]
Features

- Qualified to AEC Q100 Grade 1 Test Guidelines
- Automotive Wide Temperature Range: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- 5V CMOS compatibility
- $40 \mathrm{kV} / \mu \mathrm{s}$ Common-Mode Rejection at VCM=1000V (typ)
- Low Propagation Delay:
- ACFL-6211T: 25 ns at $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ (typ)
- ACFL-6212T: 60 ns at $\mathrm{I}_{\mathrm{F}}=4 \mathrm{~mA}$ (typ)
- Compact, Auto-Insertable Stretched SO12 Packages
- Worldwide Safety Approval:
- UL 1577 recognized, 5 kV $\mathrm{RMS} / 1 \mathrm{~min}$.
- CSA Approved
- IEC/EN/DIN EN 60747-5-5

Features

- Automotive IPM Driver for DC-DC converters and motor inverters
- CANBus and SPI Communications Interface
- High Temperature Digital/Analog Signal Isolation
- Power Transistor Isolation

CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD. The components featured in this datasheet are not to be used in military or aerospace applications or environments.

Pin Description

Pin No.	Pin Name	Description
1	V $_{\text {DD1 }}$	Primary Side Power Supply
2	V OUT1	Output 1
3	GND1	Primary Side Ground
4	AN2	Anode 2
5	CA2	Cathode 2
6	CA2	Cathode 2

Pin No.	Pin Name	Description
7	GND2	Secondary Side Ground
8	GND2	Secondary Side Ground
9	V OuT2	Output 2
10	V DD2	Secondary Side Power Supply
11	AN1	Anode 1
12	CA1	Cathode 1

Ordering Information

Part Number	Option (RoHS Compliant)	Package	Surface Mount	Tape and Reel	UL 5000 VRMS 1 Minute Rating	IEC/EN/DIN EN 60747-5-5	Quantity
ACFL-6211T	-000E	Stretched SO-12	X		X		80 per tube
	-060E		X		X	X	80 per tube
	-500E		X	X	X		1000 per reel
	-560E		X	X	X	X	1000 per reel
ACFL-6212T	-000E	$\begin{aligned} & \text { Stretched } \\ & \text { SO-12 } \end{aligned}$	X		X		80 per tube
	-060E		X		X	X	80 per tube
	-500E		X	X	X		1000 per reel
	-560E		X	X	X	X	1000 per reel

To order, choose a part number from the part number column and combine with the desired option from the option column to form an order entry.
Example:
ACFL-6212T-560E to order product of SSO-12 Surface Mount package in Tape and Reel packaging with IEC/EN/DIN EN 60747-5-5 Safety Approval in RoHS compliant.

Option datasheets are available. Contact your Broadcom sales representative or authorized distributor for information.

Package Outline Drawing

12-Lead Surface Mount

Dimensions in inches (millimeters)
Lead coplanarity $=0.004$ inches $(0.1 \mathrm{~mm})$

Recommended Pb-Free IR Profile

Recommended reflow condition as per JEDEC Standard, J-STD-020 (latest revision).
Note: Non-halide flux should be used

Regulatory Information

The ACFL-6211T and ACFL-6212T are approved by the following organizations:

UL	UL 1577, component recognition program up to $\mathrm{V}_{\text {ISO }}=5 \mathrm{kV} \mathrm{VMS}_{\text {R }}$
CSA	Approved under CSA Component Acceptance Notice \#5
IEC/EN/DIN EN 60747-5-5	Approved under IEC/EN/DIN EN 60747-5-5

Insulation and Safety Related Specifications

| Parameter | Symbol | ACFL-6211T/
 ACFL-6212T | Unit | Conditions |
| :--- | :---: | :---: | :---: | :--- |$|$| Minimum External Air Gap
 (Clearance) | $\mathrm{L}(101)$ | 8.3 |
| :--- | :---: | :---: |
| Minimum External Tracking
 (Creepage) | $\mathrm{L}(102)$ | 8.5 |
| Minimum Internal Plastic Gap
 (Internal Clearance) | | mm |
| Measured from input terminals to output terminals, shortest
 distance through air. | | |
| Measured from input terminals to output terminals, shortest
 distance path along body. | | |
| (Comparative Tracking Index) | CTI | 175 |
| Isolation Group (DIN VDE0109) | | mm |
| Through insulation distance conductor to conductor, usually
 the straight line distance thickness between the emitter and
 detector. | | |

IEC/EN/DIN EN 60747-5-5 Insulation Related Characteristic (Option 060E and 560E)

Description	Symbol	Characteristic	Unit
Installation classification per DIN VDE 0110/1.89, Table 1 for rated mains voltage $\leq 600 V_{\text {RMS }}$ for rated mains voltage $<1000 \mathrm{~V}_{\text {RMS }}$		$\begin{aligned} & \text { I-IIII } \\ & \text { I-III } \end{aligned}$	
Climatic Classification		40/125/21	
Pollution Degree (DIN VDE 0110/1.89)		2	
Maximum Working Insulation Voltage	V IORM	1140	$V_{\text {PEAK }}$
Input to Output Test Voltage, Method b VIORM $\times 1.875=$ V $_{\text {PR, }} 100 \%$ Production Test with $\mathrm{t}_{\mathrm{m}}=1 \mathrm{sec}$, Partial Discharge $<5 \mathrm{pC}$	$V_{\text {PR }}$	2137	$V_{\text {PEAK }}$
Input to Output Test Voltage, Method a $V_{\text {IORM }} \times 1.6=V_{\text {PR }}$, Type and sample test, $t_{m}=10 \mathrm{sec}$, Partial Discharge $<5 \mathrm{pC}$	$V_{\text {PR }}$	1824	$V_{\text {PEAK }}$
Highest Allowable Overvoltage (Transient Overvoltage, $\mathrm{t}_{\mathrm{ini}}=60 \mathrm{sec}$)	$\mathrm{V}_{\text {IOTM }}$	6000	$V_{\text {PEAK }}$
Safety Limiting Values (Maximum values allowed in the event of a failure) Case Temperature Input Current Output Power	Ts Is,InPuT $\mathrm{P}_{\mathrm{S}, \text { OUTPUT }}$	$\begin{aligned} & 175 \\ & 230 \\ & 600 \end{aligned}$	$\begin{gathered} { }^{\circ} \mathrm{C} \\ \mathrm{~mA} \\ \mathrm{~mW} \end{gathered}$
Insulation Resistance at $\mathrm{T}_{\mathrm{S}}, \mathrm{V}_{1 \mathrm{O}}=500 \mathrm{~V}$	RS	10^{9}	Ω

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Unit	Condition
Storage Temperature	Ts	-55	+150	${ }^{\circ} \mathrm{C}$	
Ambient Operating Temperature ${ }^{\text {[1] }}$	T_{A}	-40	+125	${ }^{\circ} \mathrm{C}$	
Junction Temperature	TJ		+150	${ }^{\circ} \mathrm{C}$	
Supply Voltages	V_{DD}	0	6.5	V	
Output Voltage	V_{0}	-0.5	$V_{D D}+0.5$	V	
Average Forward Input Current	I_{F}		20.0	mA	
Peak Transient Input Current (If at $1 \mu \mathrm{~s}$ pulse width, $<10 \%$ duty cycle)	$\mathrm{I}_{\text {(}(\text { TRAN })}$		$\begin{gathered} 1 \\ 80 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{A} \\ \mathrm{~mA} \end{gathered}$	$\leq 1 \mu \mathrm{~s}$ Pulse Width, 300 pps $\leq 1 \mu \mathrm{~s}$ Pulse Width, <10\% Duty Cycle
Reverse Input Voltage	V_{r}		5	V	
Input Power Dissipation	P_{1}		40	mW	
Average Output Current	lo		10	mA	
Output Power Dissipation	Po		30	mW	
Lead Solder Temperature	$260^{\circ} \mathrm{C}$ for 10 sec ., 1.6 mm below seating plane				
Solder Reflow Temperature Profile	See Solder Reflow Temperature Profile Section				

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Unit	Note
Supply Voltage	V_{DD}	3.0	5.5	V	
Operating Temperature	T_{A}	-40	+125	${ }^{\circ} \mathrm{C}$	
Forward Input Current	$\mathrm{I}_{\mathrm{F}(\mathrm{ON})}$	4.0	15	mA	
Forward Off State Voltage	$\mathrm{V}_{\mathrm{F}(\mathrm{OFF})}$		0.8	V	
Input Threshold Current	I_{TH}		3.5	mA	

Electrical Specifications

Over recommended operating conditions. All typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$.

Parameter	Symbol	Min.	Typ.	Max.	Unit	Test Conditions	Fig.
LED Forward Voltage	V_{F}	1.45	1.5	1.75	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	
		1.25	1.5	1.85	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	
VF Temperature Coefficient			-1.5		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$		
Input Threshold Current	I_{TH}		1.3	3.5	mA		
Input Capacitance	C_{IN}		90		pF		
Input Reverse Breakdown Voltage	BV_{R}	5.0			V	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$	
Logic High Output Voltage	V_{OH}	$\mathrm{V}_{\mathrm{DD}}-0.6$			V	$\mathrm{I}_{\mathrm{OH}}=-3.2 \mathrm{~mA}$	4
Logic Low Output Voltage	V_{OL}			0.6	V	$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$	3
Logic Low Output Supply Current (per channel)	$\mathrm{I}_{\mathrm{DDL}}$		0.9	1.5	mA		
Logic High Output Supply Current (per channel)	$\mathrm{I}_{\mathrm{DDH}}$		0.9	1.5	mA		

ACFL-6211T High Speed Mode Switching Specifications

Over recommended operating conditions: $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$. All typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, $V_{D D}=5 \mathrm{~V}$.

Parameter	Symbol	Min.	Typ.	Max.	Unit	Test Conditions	Fig.	Note
Propagation Delay Time to Logic Low Output	$\mathrm{t}_{\text {PHL }}$		25	35	ns	$\begin{gathered} \mathrm{V}_{\text {in }}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ \mathrm{R}_{\text {in }}=390 \Omega \pm 5 \%, \\ \mathrm{C}_{\text {in }}=100 \mathrm{pF}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ \\ \text { Output low threshold }= \\ 0.8 \mathrm{~V} \\ \text { Output high threshold }= \\ 80 \% \text { of } \mathrm{Vdd} \end{gathered}$	$\begin{gathered} 5,9, \\ 11 \end{gathered}$	1,2,3
Propagation Delay Time to Logic High Output	tplH		25	35	ns			
Pulse Width Distortion	PWD		0	12	ns			
Propagation Delay Skew	tpsk			15	ns			
Output Rise Time (10\% to 90\%)	t_{R}		10		ns			
Output Fall Time (90% to 10%)	t_{F}		10		ns			
Common Mode Transient Immunity at Logic High Output	$\mid \mathrm{CM}_{\mathrm{H}}$ \|	15	25		kV/ $\mu \mathrm{s}$	$\begin{gathered} \mathrm{V}_{\text {in }}=0 \mathrm{~V}, \mathrm{R}_{\text {in }}=390 \Omega \pm 5 \%, \\ \mathrm{C}_{\text {in }}=100 \mathrm{pF}, \mathrm{~V}_{\mathrm{cm}}=1000 \mathrm{~V}, \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{gathered}$		4
Common Mode Transient Immunity at Logic High Output	$\left\|C M_{L}\right\|$	15	25		kV/ $/ \mathrm{s}$	$\begin{gathered} \mathrm{V}_{\text {in }}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ \mathrm{R}_{\text {in }}=390 \Omega \pm 5 \%, \\ \mathrm{C}_{\text {in }}=100 \mathrm{pF}, \mathrm{~V}_{\mathrm{cm}}=1000 \mathrm{~V}, \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{gathered}$		5

ACFL-6212T Low Power Mode Switching Specifications

Over recommended operating conditions: $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, 3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$. All typical specifications at $25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$.

Parameter	Symbol	Min.	Typ.	Max.	Unit	Test Conditions	Fig.	Note
Propagation Delay Time to Logic Low Output	tpHL		60	100	ns	$\mathrm{I}_{\mathrm{F}}=4 \mathrm{~mA}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	7,12	1,2,3
Propagation Delay Time to Logic High Output	$\mathrm{t}_{\text {PLH }}$		35	100	ns			
Pulse Width Distortion	PWD		25	50	ns			
Propagation Delay Skew	tPSK			60	ns			
Output Rise Time (10\% to 90\%)	t_{R}		10		ns			
Output Fall Time (90\% to 10\%)	t_{F}		10		ns			
Common Mode Transient Immunity at Logic High Output	$\left\|\mathrm{CM}_{\mathrm{H}}\right\|$	25	40		kV/ $/ \mathrm{s}$	Using Broadcom LED Driving Circuit, $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$, $\begin{gathered} \mathrm{R}_{1}=330 \Omega \pm 5 \%, \\ \mathrm{R}_{2}=330 \Omega \pm 5 \%, \\ \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{gathered}$		4
Common Mode Transient Immunity at Logic Low Output	$\left\|C M_{L}\right\|$	25	40		kV/ $/$ s	Using Broadcom LED Driving Circuit, $\mathrm{V}_{\text {IN }}=4.5$ to 5.5 V , $\mathrm{R}_{1}=330 \Omega \pm 5 \%$, $\mathrm{R}_{2}=330 \Omega \pm 5 \%$, $\mathrm{V}_{\mathrm{CM}}=1000 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		5

Package Characteristics

All Typical at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Parameter	Symbol	Min.	Typ.	Max.	Unit	Test Conditions	Notes
$\begin{array}{l}\text { Input-Output Momentary } \\ \text { Withstand Voltage }\end{array}$	$\mathrm{V}_{\mathrm{ISO}}$	5000			$\mathrm{~V}_{\mathrm{RMS}}$	$\mathrm{RH} \leq 50 \%, \mathrm{t}=1 \mathrm{~min}$.	6,7
$\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$							

Notes:

1. $\mathrm{t}_{\text {PHL }}$ propagation delay is measured from the $50 \%\left(\mathrm{~V}_{\mathrm{IN}}\right.$ or I_{F}) on the rising edge of the input pulse to the 0.8 V of $\mathrm{V}_{D D}$ of the falling edge of the V_{O} signal. $\mathrm{t}_{\mathrm{PLL}}$ propagation delay is measured from the 50% (V_{IN} or I_{F}) on the falling edge of the input pulse to the 80% level of the rising edge of the V_{O} signal.
2. PWD is defined as $\left|t_{\text {PHL }}-\mathrm{t}_{\mathrm{t} L \mathrm{~L}}\right|$.
3. $t_{P S K}$ is equal to the magnitude of the worst case difference in $t_{P H L}$ and/or $t_{\text {PL }}$ that will be seen between units at any given temperature within the recommended operating conditions.
4. CM_{H} is the maximum tolerable rate of rise of the common mode voltage to assure that the output will remain in a high logic state.
5. $C M_{L}$ is the maximum tolerable rate of fall of the common mode voltage to assure that the output will remain in a low logic state.
6. Device considered a two terminal device: pins 1 to 6 shorted together, and pins 7 to 12 shorted together.
7. In accordance with UL 1577 , each optocoupler is proof tested by applying an insulation test voltage $>6000 \mathrm{~V}_{\text {RMS }}$ for 1 second.

Typical Performance Plots

Figure 1: Typical Diode Input Forward Current Characteristic

Figure 3: Typical Logic Low Output Voltage vs. Logic Low Output Current

Figure 5: ACFL-6211T (High Speed) Typical Propagation Delay vs. Temperature, $\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{IN}}=390 \Omega, \mathrm{C}_{\mathrm{IN}}=100 \mathrm{pF}$

Figure 2: Typical Output Voltage vs. Input Forward Current

Figure 4: Typical Logic High Output Voltage vs. Logic High Output Current

Figure 6: ACFL-6211T (High Speed) Typical Propagation Delay vs. Input Forward Current, $\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}, \mathrm{R}_{\mathbf{I N}}=390 \Omega, \mathrm{C}_{I N}=100 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Figure 7. ACFL-6212T (5V) Typical Propagation Delay vs. Temperature

Figure 9. ACFL-6212T (3V) Typical Propagation Delay vs. Temperature

Figure 8. ACFL-6212T (5V) Typical Propagation Delay vs. Input Forward Current

Figure 10. ACFL-6212T (3V) Typical Propagation Delay vs. Input Forward Current

Application Circuits

Figure 11: Recommended Application Circuit for ACFL-6211T High Speed Performance

Figure 12: Recommended Application Circuit for ACFL-6212T Low Power Performance

Test Circuits

Figure 13: Test Circuit for $\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}, \mathrm{t}_{\mathbf{f}}$, and $\mathrm{t}_{\mathbf{R}}$

Figure 14: Test Circuit for Common Mode Transient Immunity

Thermal Resistance Measurement

The diagram of ACFL-6211T/6212T for measurement is shown in Figure 15. This is a multi-chip package with four heat sources, the effect of heating of one die due to the adjacent dice are considered by applying the theory of linear superposition. Here, one die is heated first and the temperatures of all the dice are recorded after thermal equilibrium is reached. Then, the second die is heated and all the dice temperatures are recorded and so on until the fourth die is heated. With the known ambient temperature, the die junction temperature and power dissipation, the thermal resistance can be calculated. The thermal resistance calculation can be cast in matrix form. This yields a 4×4 matrix for our case of two heat sources.

| R 11 | R 12 | R 13 | R 14 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| R 21 | R 22 | R 23 | R 24 |
| R 31 | R 32 | R 33 | R 34 |
| R 41 | R 42 | R 43 | R 44 |\(\left|\times \begin{array}{c}\mathrm{P} 1

\mathrm{P} 2

\mathrm{P} 3

\mathrm{P} 4\end{array}\right|=\left|$$
\begin{array}{c}\Delta \mathrm{T} 1 \\
\Delta \mathrm{~T} 2 \\
\Delta \mathrm{~T} 3 \\
\Delta \mathrm{~T} 4\end{array}
$$\right|\)
R_{11} : Thermal Resistance of Die1 due to heating of Die1 (${ }^{\circ} \mathrm{C} / \mathrm{W}$) R_{12} : Thermal Resistance of Die1 due to heating of Die2 (${ }^{\circ} \mathrm{C} / \mathrm{W}$) R_{13} : Thermal Resistance of Die1 due to heating of Die3 (${ }^{\circ} \mathrm{C} / \mathrm{W}$) R_{14} : Thermal Resistance of Die1 due to heating of Die4 (${ }^{\circ} \mathrm{C} / \mathrm{W}$)
R_{21} : Thermal Resistance of Die2 due to heating of Die1 (${ }^{\circ} \mathrm{C} / \mathrm{W}$) R_{22} : Thermal Resistance of Die2 due to heating of Die2 (${ }^{\circ} \mathrm{C} / \mathrm{W}$) R_{23} : Thermal Resistance of Die2 due to heating of Die3 (${ }^{\circ} \mathrm{C} / \mathrm{W}$) R_{24} : Thermal Resistance of Die2 due to heating of Die4 (${ }^{\circ} \mathrm{C} / \mathrm{W}$)
R_{31} : Thermal Resistance of Die3 due to heating of Die1 (${ }^{\circ} \mathrm{C} / \mathrm{W}$)
R_{32} : Thermal Resistance of Die3 due to heating of $\mathrm{Die} 2\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
R_{33} : Thermal Resistance of Die3 due to heating of Die3 $\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$ R_{34} : Thermal Resistance of Die3 due to heating of Die4 (${ }^{\circ} \mathrm{C} / \mathrm{W}$)
R_{41} : Thermal Resistance of Die4 due to heating of Die1 (${ }^{\circ} \mathrm{C} / \mathrm{W}$) R_{42} : Thermal Resistance of Die4 due to heating of Die2 (${ }^{\circ} \mathrm{C} / \mathrm{W}$) R_{43} : Thermal Resistance of Die4 due to heating of Die3 (${ }^{\circ} \mathrm{C} / \mathrm{W}$) R_{44} : Thermal Resistance of Die4 due to heating of Die4 (${ }^{\circ} \mathrm{C} / \mathrm{W}$)
P_{1} : Power dissipation of Die1 (W)
P_{2} : Power dissipation of Die2 (W)
P_{3} : Power dissipation of Die3 (W)
P_{4} : Power dissipation of Die4 (W)
T_{1} : Junction temperature of Die1 due to heat from all dice $\left({ }^{\circ} \mathrm{C}\right)$
T_{2} : Junction temperature of Die2 due to heat from all dice $\left({ }^{\circ} \mathrm{C}\right)$
T_{3} : Junction temperature of Die3 due to heat from all dice $\left({ }^{\circ} \mathrm{C}\right)$ T_{4} : Junction temperature of Die4 due to heat from all dice $\left({ }^{\circ} \mathrm{C}\right)$

Ta: Ambient temperature.
$\Delta \mathrm{T}_{1}$:Temperature difference between Die1 junction and ambient (${ }^{\circ} \mathrm{C}$)
ΔT_{2} : Temperature deference between Die2 junction and ambient (${ }^{\circ} \mathrm{C}$)
ΔT_{3} : Temperature difference between Die3 junction and ambient (${ }^{\circ} \mathrm{C}$)
ΔT_{4} : Temperature deference between Die4 junction and ambient (${ }^{\circ} \mathrm{C}$)
$\mathrm{T}_{1}=\left(\mathrm{R}_{11} \times \mathrm{P}_{1}+\mathrm{R}_{12} \times \mathrm{P}_{2}+\mathrm{R}_{13} \times \mathrm{P}_{3}+\mathrm{R}_{14} \times \mathrm{P}_{4}\right)+\mathrm{Ta}--(1)$
$T_{2}=\left(R_{21} \times P_{1}+R_{22} \times P_{2}+R_{23} \times P_{3}+R_{24} \times P_{4}\right)+T a-$ (2)
$T_{3}=\left(R_{31} \times P_{1}+R_{32} \times P_{2}+R_{33} \times P_{3}+R_{34} \times P_{4}\right)+T a-$ (3)
$T_{4}=\left(R_{41} \times P_{1}+R_{42} \times P_{2}+R_{43} \times P_{3}+R_{44} \times P_{4}\right)+T a-(4)$

Figure 15: Diagram of ACFL-6211T/6212T for Measurement

Measurement data on a low K (conductivity) board:
$\mathrm{R}_{11}=181^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{21}=103^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{31}=82^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{41}=110^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{12}=91^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{22}=232^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{32}=97^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{42}=86^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{13}=85^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{23}=109^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{33}=180^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{43}=101^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{14}=112^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{24}=91^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{34}=91^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{44}=277^{\circ} \mathrm{C} / \mathrm{W}$
Measurement data on a high K (conductivity) board:
$\mathrm{R}_{11}=117^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{21}=37^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{31}=35^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{41}=47^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{12}=42^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{22}=161^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{32}=53^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{42}=30^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{13}=32^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{23}=39^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{33}=114^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{43}=29^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{14}=60^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{24}=33^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{34}=34^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{44}=189^{\circ} \mathrm{C} / \mathrm{W}$

For product information and a complete list of distributors, please go to our web site: www.broadcom.com.

Broadcom, the pulse logo, Connecting everything, Avago Technologies, Avago, the A logo, and R^{2} Coupler are among the trademarks of Broadcom and/or its affiliates in the United States, certain other countries and/or the EU.

Broadcom Proprietary and Confidential. Copyright © 2017 Broadcom. All Rights Reserved. The term "Broadcom" refers to Broadcom Limited and/or its subsidiaries.

Broadcom reserves the right to make changes without further notice to any products or data herein to improve reliability, function, or design. Information furnished by Broadcom is believed to be accurate and reliable. However, Broadcom does not assume any liability arising out of the application or use of this information, nor the application or use of any product or circuit described herein, neither does it convey any license under its patent rights nor the rights of others.
AV02-4835EN - May 25, 2017

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Broadcom Limited:
ACFL-6211T-560E ACFL-6212T-500E ACFL-6212T-560E ACFL-6212T-060E ACFL-6211T-000E ACFL-6211T060E ACFL-6211T-500E ACFL-6212T-000E

[^0]: Note: The connection of a $1 \mu \mathrm{~F}$ bypass capacitor between pins 1 and 3 and pins 10 and $7 / 8$ (or 7 and 8) is recommended.

