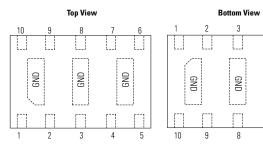


SP3374NUTG 3.3V 40A Diode Array



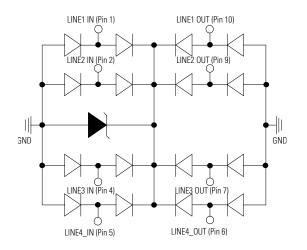
Description

The SP3374NUTG is a low-capacitance, TVS Diode Array designed to provide protection against ESD (electrostatic discharge), CDE (cable discharge events), EFT (electrical fast transients), and lightning induced surges for high-speed, differential data lines. It's packaged in a µDFN package (3.0 x 2.0mm) and each device can protect up 4 channels or 2 differential pairs, up to 40A (IEC 61000-4-5 2nd edition,) and up to 30kV ESD (IEC 61000-4-2). The "flow-through" design minimizes signal distortion, reduces voltage overshoot, and provides a simplified PCB design.

The SP3374NUTG with its low capacitance and low clamping voltage makes it ideal for high-speed data interfaces such as 1GbE applications found in notebooks, switches, etc.

Pinout

NOTE: PIN3. PIN8 are same potential with GND


Features

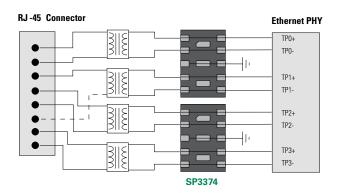
GND

- ESD, IEC 61000-4-2, ±30kV contact, ±30kV air
- EFT, IEC 61000-4-4, 40A (5/50ns)
- Lightning, 40A (8/20µs as defined in IEC 61000-4-5 2nd Edition)
- Low capacitance of 3.5pF@0V (TYP) per I/O
- · Low leakage current of 0.1µA (TYP) at 3.3V

- µDFN-10 package is optimized for high-speed data line routing
- Provides protection for two differential data pairs (4 channels) up to 40A
- · Low operating and clamping voltage
- AEC-Q101 qualified
- Halogen free, Lead free and RoHS compliant

Functional Block Diagram

Life Support Note:


Not Intended for Use in Life Support or Life Saving Applications

The products shown herein are not designed for use in life sustaining or life saving applications unless otherwise expressly indicated.

Applications

- •10/100/1000 Ethernet
- WAN/LAN Equipment
- Desktops, Servers and Notebooks
- LVDS Interfaces
- Integrated Magnetics
- Smart TV

Application Example

TVS Diode Array (SPA®Diodes) Lightning Surge Protection - SP3374NUTG

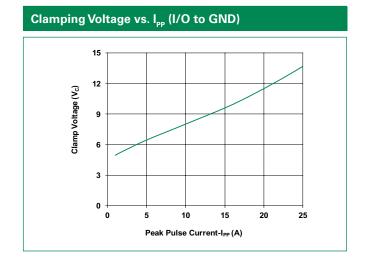
Absolute Maximum Ratings

Symbol	Parameter	Value	Units
l _{PP}	Peak Current (t _p =8/20µs)	40	А
P_{pk}	Peak Pulse Power (t _p =8/20µs)	1000	W
T _{OP}	Operating Temperature	-40 to 125	°C
T _{STOR}	Storage Temperature	-55 to 150	°C

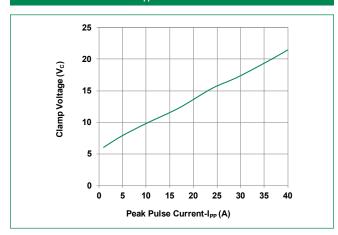
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Characteristics (T_{OP}=25°C)

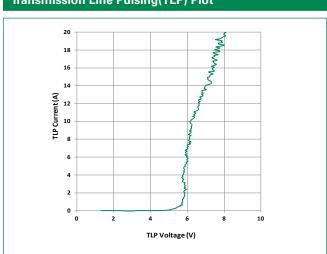
Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
Reverse Standoff Voltage	V _{RWM}	$I_R \le 1\mu A$			3.3	V
Reverse Leakage Current	I _R	V _{RWM} = 3.3V, T = 25°C		0.1	0.5	μΑ
Snap Back Voltage	V _{SB}	I _{SB} = 50mA	2.8			V
Clamp Voltage		$I_{pp} = 1A$, $t_p = 8/20 \mu s$ Any I/O to Ground			5.5	
		$I_{pp} = 10A$, $t_p = 8/20 \mu s$ Any I/O to Ground			10.5	
	V _c	I_{pp} = 25A, t_p = 8/20µs Any I/O to Ground			18.0	V
		I _{pp} = 40A, t _p = 8/20μs Line-to-Line ¹ , two I/O Pins connected together on each line			25.0	
Dynamic Resistance ²	R _{DYN}	TLP, t _p =100ns, Any I/O to Ground		0.15		Ω
ECD \\/ithatand\/altana	V	IEC 61000-4-2 (Contact)	±30			kV
ESD Withstand Voltage	V _{ESD}	IEC 61000-4-2 (Air)	±30			kV
8: 1.0	C _{I/O to GND}	Between I/O Pins and Ground V _R = 0V, f = 1MHz		3.5	5.0	pF
Diode Capacitance	C _{I/O to I/O}	Between I/O Pins V _B = 0V, f = 1MHz		1.7		pF


Notes:

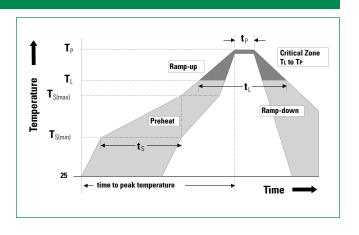
1. Rating with 2 pins connected together per sugguested diagram (For example, pin1 is connected to pin 10, pin 2 is connected to Pin 9, Pin 4 is connected to pin 7 and pin 5 is connected to pin 6)


2. Transmission Line Pulse (TLP) with 100ns width, 2ns rise time, and average window t1=70ns to t2=90ns


Capacitance vs. Reverse Bias 15.0 12.0 9.0 9.0 0.0 0.0 1.5 Bias Voltage (V)

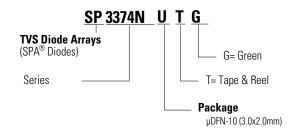

Clamping Voltage vs. I_{PP} (Line-to-Line)

8/20µS Pulse Waveform


Transmission Line Pulsing(TLP) Plot

Soldering Parameters

Reflow Condition		Pb – Free assembly	
Pre Heat	- Temperature Min (T _{s(min)})	150°C	
	-Temperature Max (T _{s(max)})	200°C	
	-Time (min to max) (t _s)	60 – 180 secs	
Average ran	3°C/second max		
T _{S(max)} to T _L - Ramp-up Rate		3°C/second max	
Reflow	- Temperature (T _L) (Liquidus)	217°C	
	- Temperature (t _L)	60 – 150 seconds	
Peak Temperature (T _p)		260+0/-5 °C	
Time within 5°C of actual peak Temperature (tp)		20 - 40 seconds	
Ramp-down Rate		6°C/second max	
Time 25°C to peak Temperature (T _p)		8 minutes Max.	
Do not exceed		260°C	

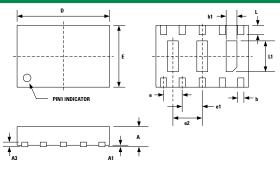

Ordering Information

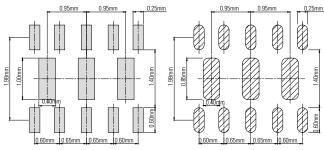
Part Number	Package	Min. Order Qty.
SP3374NUTG	μDFN-10 (3.0x2.0mm)	3000

Product Characteristics

Lead Plating	Pre-Plated Frame
Lead Material	Copper Alloy
Substrate material	Silicon
Body Material	Molded Compound
Flammability	UL Recognized compound meeting flammability rating V-0

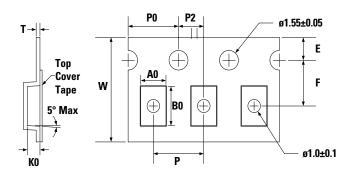
Part Numbering System




Part Marking System

<u>b</u>G4

Package Dimensions - µDFN-10 (3.0x2.0mm)



Recommended Soldering Pads Layout Recommended Stencil Apertures Recommended Stencil thickness 5mils

Package	μDFN-10 (3.0x2.0mm)					
JEDEC	MO-229					
Cumbal	ا	Millimeters			Inches	
Symbol	Min	Nom	Max	Min	Nom	Max
Α	0.50	0.60	0.65	0.020	0.024	0.026
A1	0.00	0.03	0.05	0.000	0.001	0.002
А3	0.15 Ref			C	0.006 Ref	
b	0.15	0.20	0.25	0.006	0.008	0.010
b1	0.25	0.35	0.45	0.010	0.014	0.018
D	2.90	3.00	3.10	0.114	0.118	0.122
E	1.90	2.00	2.10	0.075	0.079	0.083
е	0.60 BSC			0	.024 BSC	
e1	0.65 BSC			0	.026 BSC	
e2	0.95 BSC			0.037		
L	0.25	0.30	0.35	0.010	0.012	0.014
L1	0.95	1.00	1.05	0.037	0.039	0.041

- 1. All dimensions are in millimeters
- Dimensions include solder plating.
 Dimensions are exclusive of mold flash & metal burr.
- 4. Blo is facing up for mold and facing down for trim/form, i.e. reverse trim/form.
- 5. Package surface matte finish VDI 11-13.

Tape & Reel Specification - µDFN-10 (3.0x2.0mm)

De	evice Urient	tation in Tap)e
5	\bigcirc	\bigcirc	
Pin1 Location			

Package	μDFN-10 (3.0x2.0mm)	
Symbol	Millimeters	
Α0	2.30 +/- 0.10	
В0	3.20 +/- 0.10	
E	1.75 +/- 0.10	
F	3.50 +/- 0.05	
K0	1.0 +/- 0.10	
P	4.00 +/- 0.10	
P0	4.00 +/- 0.10	
P2	2.00 +/- 0.10	
Т	0.3 +/- 0.05	
w	8.00 +0.30/- 0.10	

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at http://www.littelfuse.com/disclaimer-electronics.