

Reference Specification

150°C Operation Leaded MLCC for Automotive with AEC-Q200 RHE Series

Product specifications in this catalog are as of Dec. 2017, and are subject to change or obsolescence without notice.

Please consult the approval sheet before ordering. Please read rating and Cautions first.

⚠ CAUTION

1. OPERATING VOLTAGE

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the Vp-p value of the applied voltage or the Vo-p which contains DC bias within the rated voltage range. When the voltage is started to apply to the circuit or it is stopped applying, the irregular voltage may be generated for a transit period because of resonance or switching. Be sure to use a capacitor within rated voltage containing these irregular voltage.

When DC-rated capacitors are to be used in input circuits from commercial power source (AC filter), be sure to use Safety Recognized Capacitors because various regulations on withstand voltage or impulse withstand established for each equipment should be taken into considerations.

Voltage	DC Voltage	DC+AC Voltage	AC Voltage	Pulse Voltage(1)	Pulse Voltage(2)
Positional Measurement	Vo-p	Vo-p	Vp-p	Vp-p	Vp-p

2. OPERATING TEMPERATURE AND SELF-GENERATED HEAT

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself.

When the capacitor is used in a high-frequency current, pulse current or the like, it may have the self-generated heat due to dielectric-loss. In case of Class 2 capacitors (Temp.Char. : X7R,X7S,X8L, etc.), applied voltage should be the load such as self-generated heat is within 20 °C on the condition of atmosphere temperature 25 °C. Please contact us if self-generated heat is occurred with Class 1 capacitors (Temp.Char. : C0G,U2J,X8G, etc.). When measuring, use a thermocouple of small thermal capacity-K of ϕ 0.1mm and be in the condition where capacitor is not affected by radiant heat of other components and wind of surroundings. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability.

3. Fail-safe

Be sure to provide an appropriate fail-safe function on your product to prevent a second damage that may be caused by the abnormal function or the failure of our product.

4. OPERATING AND STORAGE ENVIRONMENT

The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Before cleaning, bonding, or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed 5 to 40 °C and 20 to 70%. Use capacitors within 6 months.

5. VIBRATION AND IMPACT

Do not expose a capacitor or its leads to excessive shock or vibration during use.

6. SOLDERING

When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specification of the capacitor. Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element.

7. BONDING AND RESIN MOLDING, RESIN COAT

In case of bonding, molding or coating this product, verify that these processes do not affect the quality of capacitor by testing the performance of a bonded or molded product in the intended equipment. In case of the amount of applications, dryness / hardening conditions of adhesives and molding resins containing organic solvents (ethyl acetate, methyl ethyl ketone, toluene, etc.) are unsuitable, the outer coating resin of a capacitor is damaged by the organic solvents and it may result, worst case, in a short circuit.

The variation in thickness of adhesive or molding resin may cause a outer coating resin cracking and/or ceramic element cracking of a capacitor in a temperature cycling.

8. TREATMENT AFTER BONDING AND RESIN MOLDING, RESIN COAT

When the outer coating is hot (over 100 °C) after soldering, it becomes soft and fragile. So please be careful not to give it mechanical stress.

Failure to follow the above cautions may result, worst case, in a short circuit and cause fuming or partial dispersion when the product is used.

9. LIMITATION OF APPLICATIONS

Please contact us before using our products for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property.

1. Aircraft equipment 2. Aerospace equipment

3. Undersea equipment 4. Power plant control equipment

5. Medical equipment6. Transportation equipment (vehicles, trains, ships, etc.)7. Traffic signal equipment8. Disaster prevention / crime prevention equipment

9. Data-processing equipment exerting influence on public

10. Application of similar complexity and/or reliability requirements to the applications listed in the above.

NOTICE

1. CLEANING (ULTRASONIC CLEANING)

To perform ultrasonic cleaning, observe the following conditions.

Rinse bath capacity: Output of 20 watts per liter or less.

Rinsing time: 5 min maximum.

Do not vibrate the PCB/PWB directly.

Excessive ultrasonic cleaning may lead to fatigue destruction of the lead wires.

2. Soldering and Mounting

Insertion of the Lead Wire

- When soldering, insert the lead wire into the PCB without mechanically stressing the lead wire.
- Insert the lead wire into the PCB with a distance appropriate to the lead space.

3. CAPACITANCE CHANGE OF CAPACITORS

• Class 2 capacitors (Temp.Char. : X7R,X7S,X8L, etc.)

Class 2 capacitors an aging characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor leaves for a long time. Moreover, capacitance might change greatly depending on a surrounding temperature or an applied voltage. So, it is not likely to be able to use for the time constant circuit.

Please contact us if you need a detail information.

⚠ NOTE

- 1. Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product.
- 2. You are requested not to use our product deviating from this specification.

1. Application

This specification is applied to 150°C Operation Leaded MLCC RHE series in accordance with AEC-Q200 requirements used for Automotive Electronic equipment.

2. Rating

• Applied maximum temperature up to 150°C

Note: Maximum accumulative time to 150°C is within 2000 hours.

• Part number configuration

ex.)	RHE	L8	1H	103	K	0	A2	H03	В
	Series	Temperature	Rated	Capacitance	Capacitance	Dimension	Lead	Individual	Packing
		Characteristic	voltage		tolerance	code	code	specification	style
								code	code

Series

Code	Content
RHE	Epoxy coated, 150°C max.

• Temperature characteristic

	Code	Temp. Char.	Temp. Range	Cap. Change (Within%)	Standard Temp.	Operating Temp. Range		
Ī	L8	-55~+125°C		+/-15	25°C	-55∼+150°C		
		AOL	+125~+150°C	+15/-40	25°C	-55~+150°C		

Rated voltage

- <u></u>						
Code	Rated voltage					
1E	DC25V					
1H	DC50V					
2A	DC100V					
	1E 1H					

Capacitance

The first two digits denote significant figures; the last digit denotes the multiplier of 10 in pF. ex.) In case of 103.

$$10 \times 10^3 = 10000 pF$$

• Capacitance tolerance

Code	Capacitance tolerance					
K	+/-10%					
М	+/-20%					

• Dimension code

Code	Dimensions (LxW) mm max.					
0	3.6 x 3.5					
1	4.0 x 3.5					
2	5.5 x 4.0					
3	5.5 x 5.0					
W	5.5 x 7.5					

• Lead code

Code	Lead style	Lead spacing (mm)				
A2	Straight type	2.5+/-0.8				
DB Straight taping type		2.5+0.4/-0.2				
K1	Inside crimp type	5.0+/-0.8				
M1	Inside crimp taping type	5.0+0.6/-0.2				

Lead wire is solder coated CP wire.

Individual specification code
 Murata's control code
 Please refer to [Part number list].

• Packing style code

Code	Packing style
Α	Taping type of Ammo
В	Bulk type

3. Marking

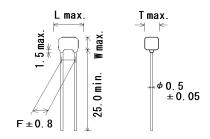
Temp. char. : Letter code : 8 (X8L char.)

Capacitance : 3 digit numbers

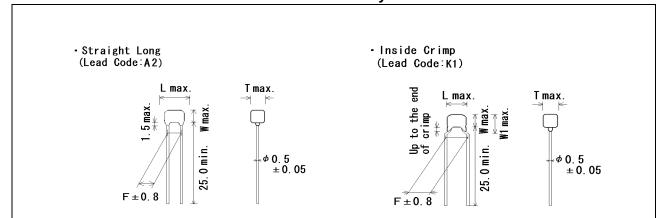
Capacitance tolerance: Code

Rated voltage : Letter code : 2 (DC25V only, Except dimension code : 0,1)

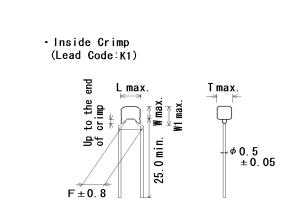
Letter code: 5 (DC50V only, Except dimension code: 0,1) Letter code: 1 (DC100V only, Except dimension code: 0,1)


Company name code : Abbreviation : (Except dimension code : 0,1)

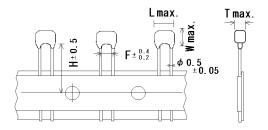
(Ex.)


(Ex.)						
Rated voltage Dimension code	25V	50V	100V			
0,1	8 105K	8 102K	8 103K			
2	G ⁴⁷⁵ K28	G _{K58}	G _{K18}			
3, W	@ 106 K28	G 4335 K58				

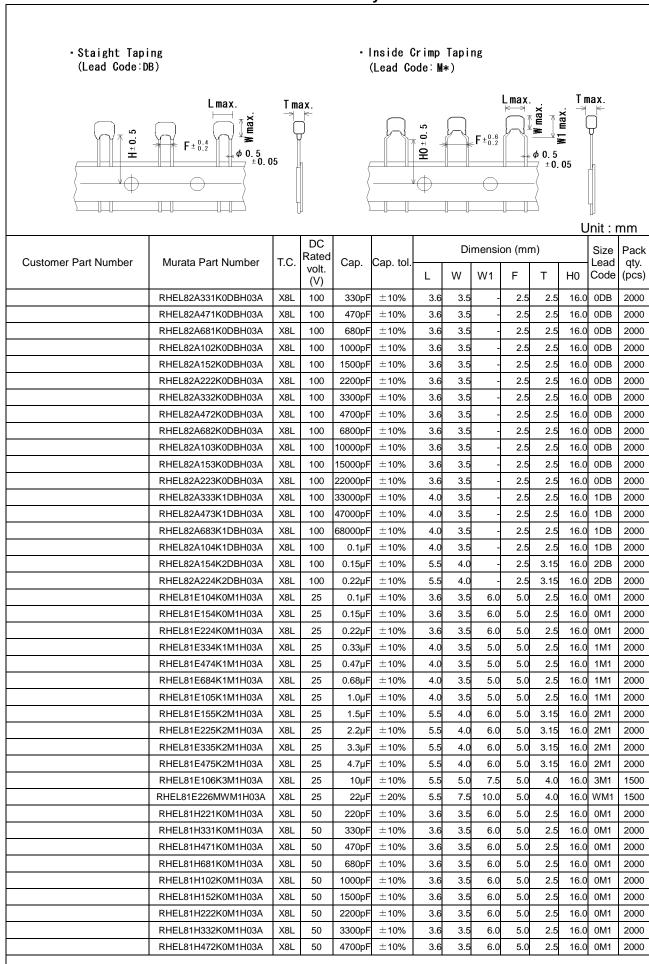
4. Part number list


• Straight Long (Lead Code: A2)

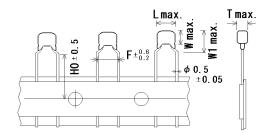
Customer Part Number	Murata Part Number	T.C.	DC Rated	Cap.	Cap.		Dime	nsion	(mm)		Size Lead	Pack qty.
Customer Fait Number	Murata Fart Number	1.0.	Volt. (V)	Сар.	tol.	L	W	W1	F	Т	Code	
	RHEL81E104K0A2H03B	X8L	25	0.1µF	$\pm 10\%$	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81E154K0A2H03B	X8L	25	0.15µF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81E224K0A2H03B	X8L	25	0.22µF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81E334K1A2H03B	X8L	25	0.33µF	±10%	4.0	3.5	-	2.5	2.5	1A2	500
	RHEL81E474K1A2H03B	X8L	25	0.47µF	$\pm 10\%$	4.0	3.5	-	2.5	2.5	1A2	500
	RHEL81E684K1A2H03B	X8L	25	0.68µF	±10%	4.0	3.5	-	2.5	2.5	1A2	500
	RHEL81E105K1A2H03B	X8L	25	1.0µF	$\pm 10\%$	4.0	3.5	-	2.5	2.5	1A2	500
	RHEL81E155K2A2H03B	X8L	25	1.5µF	$\pm 10\%$	5.5	4.0	-	2.5	3.15	2A2	500
	RHEL81E225K2A2H03B	X8L	25	2.2µF	±10%	5.5	4.0	-	2.5	3.15	2A2	500
	RHEL81E335K2A2H03B	X8L	25	3.3µF	$\pm 10\%$	5.5	4.0	-	2.5	3.15	2A2	500
	RHEL81E475K2A2H03B	X8L	25	4.7µF	±10%	5.5	4.0	-	2.5	3.15	2A2	500
	RHEL81E106K3A2H03B	X8L	25	10µF	±10%	5.5	5.0	-	2.5	4.0	3A2	500
	RHEL81H221K0A2H03B	X8L	50	220pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81H331K0A2H03B	X8L	50	330pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81H471K0A2H03B	X8L	50	470pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81H681K0A2H03B	X8L	50	680pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81H102K0A2H03B	X8L	50	1000pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81H152K0A2H03B	X8L	50	1500pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81H222K0A2H03B	X8L	50	2200pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81H332K0A2H03B	X8L	50	3300pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81H472K0A2H03B	X8L	50	4700pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81H682K0A2H03B	X8L	50	6800pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81H103K0A2H03B	X8L	50	10000pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81H153K0A2H03B	X8L	50	15000pF	$\pm 10\%$	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81H223K0A2H03B	X8L	50	22000pF	$\pm 10\%$	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81H333K0A2H03B	X8L	50	33000pF	$\pm 10\%$	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81H473K0A2H03B	X8L	50	47000pF	$\pm 10\%$	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81H683K0A2H03B	X8L	50	68000pF	$\pm 10\%$	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81H104K0A2H03B	X8L	50	0.1µF	$\pm 10\%$	3.6	3.5	-	2.5	2.5	0A2	500
	RHEL81H154K1A2H03B	X8L	50	0.15µF	$\pm 10\%$	4.0	3.5	-	2.5	2.5	1A2	500
	RHEL81H224K1A2H03B	X8L	50	0.22µF	±10%	4.0	3.5	-	2.5	2.5	1A2	500
	RHEL81H334K1A2H03B	X8L	50	0.33µF	$\pm 10\%$	4.0	3.5	-	2.5	2.5	1A2	500
	RHEL81H474K2A2H03B	X8L	50	0.47µF	$\pm 10\%$	5.5	4.0	-	2.5	3.15	2A2	500
	RHEL81H684K2A2H03B	X8L	50	0.68µF	±10%	5.5	4.0	-	2.5	3.15	2A2	500
	RHEL81H105K2A2H03B	X8L	50	1.0µF	±10%	5.5	4.0	-	2.5	3.15	2A2	500
	RHEL81H155K2A2H03B	X8L	50	1.5µF	±10%	5.5	4.0	-	2.5	3.15	2A2	500
	RHEL81H225K2A2H03B	X8L	50	2.2µF	±10%	5.5	4.0	-	2.5	3.15	2A2	500
	RHEL81H335K3A2H03B	X8L	50	3.3µF	±10%	5.5	5.0	-	2.5	4.0	3A2	500
	RHEL81H475K3A2H03B	X8L	50	4.7µF	±10%	5.5	5.0	-	2.5	4.0	3A2	500
	RHEL82A221K0A2H03B	X8L	100	220pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500
									-			



Customer Port Number	Murata Part Number		DC Rated	Rated Can		Cap.	Cap.	Cap.		Dimension (mm)					Pack
Customer Part Number	Wardia Fart Nambor	T.C.	Volt. (V)	tol.	L		W	W1	F	Т	Lead Code	qty. (pcs)			
	RHEL82A331K0A2H03B	X8L	100	330pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500			
	RHEL82A471K0A2H03B	X8L	100	470pF	±10%	3.6	3.5		2.5	2.5	0A2	500			
	RHEL82A681K0A2H03B	X8L	100	680pF	±10%	3.6	3.5		2.5	2.5	0A2	500			
	RHEL82A102K0A2H03B	X8L	100	1000pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500			
	RHEL82A152K0A2H03B	X8L	100	1500pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500			
	RHEL82A222K0A2H03B	X8L	100	2200pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500			
	RHEL82A332K0A2H03B	X8L	100	3300pF	±10%	3.6	3.5		2.5	2.5	0A2	500			
	RHEL82A472K0A2H03B	X8L	100	4700pF	±10%	3.6	3.5		2.5	2.5	0A2	500			
	RHEL82A682K0A2H03B	X8L	100	6800pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500			
	RHEL82A103K0A2H03B	X8L	100	10000pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500			
	RHEL82A153K0A2H03B	X8L	100	15000pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500			
	RHEL82A223K0A2H03B	X8L	100	22000pF	±10%	3.6	3.5	-	2.5	2.5	0A2	500			
	RHEL82A333K1A2H03B	X8L	100	33000pF	±10%	4.0	3.5	-	2.5	2.5	1A2	500			
	RHEL82A473K1A2H03B	X8L	100	47000pF	±10%	4.0	3.5	-	2.5	2.5	1A2	500			
	RHEL82A683K1A2H03B	X8L	100	68000pF	±10%	4.0	3.5	-	2.5	2.5	1A2	500			
	RHEL82A104K1A2H03B	X8L	100	0.1µF	±10%	4.0	3.5	-	2.5	2.5	1A2	500			
	RHEL82A154K2A2H03B	X8L	100	0.15µF	±10%	5.5	4.0	-	2.5	3.15	2A2	500			
	RHEL82A224K2A2H03B	X8L	100	0.22µF	±10%	5.5	4.0		2.5	3.15	2A2	500			
	RHEL81E104K0K1H03B	X8L	25	0.1µF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500			
	RHEL81E154K0K1H03B	X8L	25	0.15µF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500			
	RHEL81E224K0K1H03B	X8L	25	0.22µF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500			
	RHEL81E334K1K1H03B	X8L	25	0.33µF	±10%	4.0	3.5	5.0	5.0	2.5	1K1	500			
	RHEL81E474K1K1H03B	X8L	25	0.47µF	±10%	4.0	3.5	5.0	5.0	2.5	1K1	500			
	RHEL81E684K1K1H03B	X8L	25	0.68µF	±10%	4.0	3.5	5.0	5.0	2.5	1K1	500			
	RHEL81E105K1K1H03B	X8L	25	1.0µF	±10%	4.0	3.5	5.0	5.0	2.5	1K1	500			
	RHEL81E155K2K1H03B	X8L	25	1.5µF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500			
	RHEL81E225K2K1H03B	X8L	25	2.2µF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500			
	RHEL81E335K2K1H03B	X8L	25	3.3µF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500			
	RHEL81E475K2K1H03B	X8L	25	4.7µF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500			
	RHEL81E106K3K1H03B	X8L	25	10µF	±10%	5.5	5.0	7.5	5.0	4.0	3K1	500			
	RHEL81E226MWK1H03B	X8L	25	22µF	±20%	5.5	7.5	10.0	5.0	4.0	WK1	500			
	RHEL81H221K0K1H03B	X8L	50	220pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500			
	RHEL81H331K0K1H03B	X8L	50	330pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500			
	RHEL81H471K0K1H03B	X8L	50	470pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500			
	RHEL81H681K0K1H03B	X8L	50	680pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500			
	RHEL81H102K0K1H03B	X8L	50	1000pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500			
	RHEL81H152K0K1H03B	X8L	50	1500pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500			
	RHEL81H222K0K1H03B	X8L	50	2200pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500			
	RHEL81H332K0K1H03B	X8L	50	3300pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500			
	RHEL81H472K0K1H03B	X8L	50	4700pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500			
			•	•											



		_										
0 1 0 1			DC Rated		Cap.		Dime	nsion	(mm)		Size	Pack
Customer Part Number	Murata Part Number	T.C.	Volt. (V)	Cap.	tol.	L	W	W1	F	Т	Lead Code	qty. (pcs)
	RHEL81H682K0K1H03B	X8L	50	6800pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL81H103K0K1H03B	X8L	50	10000pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL81H153K0K1H03B	X8L	50	15000pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL81H223K0K1H03B	X8L	50	22000pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL81H333K0K1H03B	X8L	50	33000pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL81H473K0K1H03B	X8L	50	47000pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL81H683K0K1H03B	X8L	50	68000pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL81H104K0K1H03B	X8L	50	0.1µF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL81H154K1K1H03B	X8L	50	0.15µF	±10%	4.0	3.5	5.0	5.0	2.5	1K1	500
	RHEL81H224K1K1H03B	X8L	50	0.22µF	±10%	4.0	3.5	5.0	5.0	2.5	1K1	500
	RHEL81H334K1K1H03B	X8L	50	0.33µF	±10%	4.0	3.5	5.0	5.0	2.5	1K1	500
	RHEL81H474K2K1H03B	X8L	50	0.47µF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RHEL81H684K2K1H03B	X8L	50	0.68µF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RHEL81H105K2K1H03B	X8L	50	1.0µF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RHEL81H155K2K1H03B	X8L	50	1.5µF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RHEL81H225K2K1H03B	X8L	50	2.2µF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RHEL81H335K3K1H03B	X8L	50	3.3µF	±10%	5.5	5.0	7.5	5.0	4.0	3K1	500
	RHEL81H475K3K1H03B	X8L	50	4.7µF	±10%	5.5	5.0	7.5	5.0	4.0	3K1	500
	RHEL81H106MWK1H03B	X8L	50	10µF	±20%	5.5	7.5	10.0	5.0	4.0	WK1	500
	RHEL82A221K0K1H03B	X8L	100	220pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL82A331K0K1H03B	X8L	100	330pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL82A471K0K1H03B	X8L	100	470pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL82A681K0K1H03B	X8L	100	680pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL82A102K0K1H03B	X8L	100	1000pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL82A152K0K1H03B	X8L	100	1500pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL82A222K0K1H03B	X8L	100	2200pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL82A332K0K1H03B	X8L	100	3300pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL82A472K0K1H03B	X8L	100	4700pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL82A682K0K1H03B	X8L	100	6800pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL82A103K0K1H03B	X8L	100	10000pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL82A153K0K1H03B	X8L	100	15000pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL82A223K0K1H03B	X8L	100	22000pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	500
	RHEL82A333K1K1H03B	X8L	100	33000pF	±10%	4.0	3.5	5.0	5.0	2.5	1K1	500
	RHEL82A473K1K1H03B	X8L	100	47000pF	±10%	4.0	3.5	5.0	5.0	2.5	1K1	500
	RHEL82A683K1K1H03B	X8L	100	68000pF	±10%	4.0	3.5	5.0	5.0	2.5	1K1	500
	RHEL82A104K1K1H03B	X8L	100	0.1µF	±10%	4.0	3.5	5.0	5.0	2.5	1K1	500
	RHEL82A154K2K1H03B	X8L	100	0.15µF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RHEL82A224K2K1H03B	X8L	100	0.22µF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500


• Staight Taping (Lead Code:DB)

Customer Part Number	Murata Part Number	T.C.	DC Rated volt.	Cap.	Cap. tol.				on (mr			Size Lead	Pack qty.
			(V)			L	W	W1	F	Т	H0	Code	(pcs)
	RHEL81E104K0DBH03A	X8L	25	0.1µF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHEL81E154K0DBH03A	X8L	25	0.15µF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHEL81E224K0DBH03A	X8L	25	0.22µF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHEL81E334K1DBH03A	X8L	25	0.33µF	±10%	4.0	3.5	-	2.5	2.5	16.0	1DB	2000
	RHEL81E474K1DBH03A	X8L	25	0.47µF	±10%	4.0	3.5	-	2.5	2.5	16.0	1DB	2000
	RHEL81E684K1DBH03A	X8L	25	0.68µF	±10%	4.0	3.5	-	2.5	2.5	16.0	1DB	2000
	RHEL81E105K1DBH03A	X8L	25	1.0µF	±10%	4.0	3.5	-	2.5	2.5	16.0	1DB	2000
	RHEL81E155K2DBH03A	X8L	25	1.5µF	±10%	5.5	4.0	-	2.5	3.15	16.0	2DB	2000
	RHEL81E225K2DBH03A	X8L	25	2.2µF	±10%	5.5	4.0	-	2.5	3.15	16.0	2DB	2000
	RHEL81E335K2DBH03A	X8L	25	3.3µF	±10%	5.5	4.0	-	2.5	3.15	16.0	2DB	2000
	RHEL81E475K2DBH03A	X8L	25	4.7µF	±10%	5.5	4.0	-	2.5	3.15	16.0	2DB	2000
	RHEL81E106K3DBH03A	X8L	25	10µF	±10%	5.5	5.0	-	2.5	4.0	16.0	3DB	1500
	RHEL81H221K0DBH03A	X8L	50	220pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHEL81H331K0DBH03A	X8L	50	330pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHEL81H471K0DBH03A	X8L	50	470pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHEL81H681K0DBH03A	X8L	50	680pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHEL81H102K0DBH03A	X8L	50	1000pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHEL81H152K0DBH03A	X8L	50	1500pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHEL81H222K0DBH03A	X8L	50	2200pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHEL81H332K0DBH03A	X8L	50	3300pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHEL81H472K0DBH03A	X8L	50	4700pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHEL81H682K0DBH03A	X8L	50	6800pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHEL81H103K0DBH03A	X8L	50	10000pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHEL81H153K0DBH03A	X8L	50	15000pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHEL81H223K0DBH03A	X8L	50	22000pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHEL81H333K0DBH03A	X8L	50	33000pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHEL81H473K0DBH03A	X8L	50	47000pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHEL81H683K0DBH03A	X8L	50	68000pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHEL81H104K0DBH03A	X8L	50	0.1µF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000
	RHEL81H154K1DBH03A	X8L	50	0.15µF	±10%	4.0	3.5	-	2.5	2.5	16.0	1DB	2000
	RHEL81H224K1DBH03A	X8L	50	0.22µF	±10%	4.0	3.5	-	2.5	2.5	16.0	1DB	2000
	RHEL81H334K1DBH03A	X8L	50	0.33µF		4.0	3.5	-	2.5	2.5			2000
	RHEL81H474K2DBH03A	X8L	50	0.47µF	±10%	5.5	4.0	-	2.5	3.15	16.0	2DB	2000
	RHEL81H684K2DBH03A	X8L	50	0.68µF	±10%	5.5	4.0	-	2.5	3.15	16.0	2DB	2000
	RHEL81H105K2DBH03A	X8L	50	1.0µF	±10%	5.5	4.0	-	2.5	3.15	16.0	2DB	2000
	RHEL81H155K2DBH03A	X8L	50	-	±10%	5.5		-	2.5	3.15	16.0	2DB	2000
	RHEL81H225K2DBH03A	X8L	50	-	±10%	5.5		-	2.5			2DB	2000
	RHEL81H335K3DBH03A	X8L	50		±10%	5.5		-	2.5	4.0	16.0	3DB	2000
	RHEL81H475K3DBH03A	X8L	50		±10%	5.5		-	2.5				2000
	RHEL82A221K0DBH03A	X8L	100	220pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2000

Inside Crimp Taping (Lead Code: M*)

Customer Part Number	Murata Part Number	T.C.	DC Rated				Dir	mensi	on (mr	n)		Size	Pack
Odstomor r dir rambor	Marata Fatt Namber			Cap.	Cap. tol.							Lead	qty.
		1.0.	volt. (V)	Оар.	Oap. toi.	L	W	W1	F	Т	НО	Code	
	RHEL81H682K0M1H03A	X8L	50	6800pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHEL81H103K0M1H03A	X8L	50	10000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHEL81H153K0M1H03A	X8L	50	15000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHEL81H223K0M1H03A	X8L	50	22000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHEL81H333K0M1H03A	X8L	50	33000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHEL81H473K0M1H03A	X8L	50	47000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHEL81H683K0M1H03A	X8L	50	68000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHEL81H104K0M1H03A	X8L	50	0.1µF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHEL81H154K1M1H03A	X8L	50	0.15µF	±10%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	2000
	RHEL81H224K1M1H03A	X8L	50	0.22µF	±10%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	2000
	RHEL81H334K1M1H03A	X8L	50	0.33µF	±10%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	2000
	RHEL81H474K2M1H03A	X8L	50	0.47µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RHEL81H684K2M1H03A	X8L	50	0.68µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RHEL81H105K2M1H03A	X8L	50	1.0µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RHEL81H155K2M1H03A	X8L	50	1.5µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RHEL81H225K2M1H03A	X8L	50	2.2µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RHEL81H335K3M1H03A	X8L	50	3.3µF	±10%	5.5	5.0	7.5	5.0	4.0	16.0	3M1	1500
	RHEL81H475K3M1H03A	X8L	50	4.7µF	±10%	5.5	5.0	7.5	5.0	4.0	16.0	3M1	1500
	RHEL81H106MWM1H03A	X8L	50	10μF	±20%	5.5	7.5	10.0	5.0	4.0	16.0	WM1	1500
	RHEL82A221K0M1H03A	X8L	100	220pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHEL82A331K0M1H03A	X8L	100	330pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHEL82A471K0M1H03A	X8L	100	470pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHEL82A681K0M1H03A	X8L	100	680pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHEL82A102K0M1H03A	X8L	100	1000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHEL82A152K0M1H03A	X8L	100	1500pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHEL82A222K0M1H03A	X8L	100	2200pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHEL82A332K0M1H03A	X8L	100	3300pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHEL82A472K0M1H03A	X8L	100	4700pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHEL82A682K0M1H03A	X8L	100	6800pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHEL82A103K0M1H03A	X8L	100	10000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHEL82A153K0M1H03A	X8L	100	15000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHEL82A223K0M1H03A	X8L	100	22000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	2000
	RHEL82A333K1M1H03A	X8L	100	33000pF	±10%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	2000
	RHEL82A473K1M1H03A	X8L	100	47000pF		4.0	3.5	5.0	5.0	2.5	16.0	1M1	2000
	RHEL82A683K1M1H03A	X8L	100	68000pF	±10%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	2000
	RHEL82A104K1M1H03A	X8L	100	0.1µF	±10%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	2000
	RHEL82A154K2M1H03A	X8L	100	0.15µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RHEL82A224K2M1H03A	X8L	100	0.22µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000

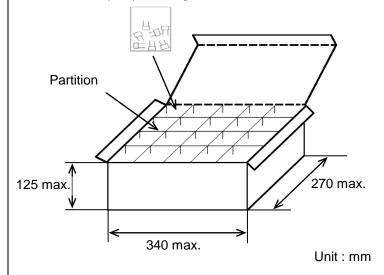
lo.		-Q200 t Item	Specification	AEC-Q200 Test Method						
1	Pre-and Post									
	Electrical Tes			-						
2	Exposure	Appearance Capacitance Change	No defects or abnormalities within ±12.5%	Sit the capacitor for 1,000±12h at 150±3°C. Let sit for 24±2h at *room condition , then measure.						
	(Storage)	D.F. I.R.	0.04 max. More than 1,000M Ω or 50 M Ω ·μF	Pretreatment Perform the heat treatment at 150+0/-10°C for 60±5 min and then let sit for 24±2 h at *room condition.						
3	Temperature	Appearance	(Whichever is smaller) No defects or abnormalities except color							
	Cycling	Capacitance	change of outer coating. within ±12.5%	Perform the 1,000 cycles according to the four heat treatments listed in the following table. Let sit for 24±2 h at *room condition						
		Change	0.05	then measure.						
		D.F. I.R.	0.05 max. 1,000MΩ or 50MΩ·μF min.	Step 1 2 3 4						
		i.K.	(Whichever is smaller)	Temp. (°C) -55+0/-3 Room Temp. 150+3/-0 Room Temp. Time (min.) 15±3 1 15±3 1						
4	Moisture	Annogrange	No defects or apparmalities	Perform the heat treatment at 150+0/-10°C for 60±5 min and then let sit for 24±2 h at *room condition.						
7	Resistance	Appearance Capacitance	No defects or abnormalities within ±12.5%	Apply the 24h heat (25 to 65°C) and humidity (80 to 98%) treatment shown below, 10 consecutive times. Let sit for 24±2 h at *room condition, then measure.						
		Change D.F.	0.05 max.	- Humidity Humidity						
		D.F. I.R.	0.05 max. 500MΩ or 25MΩ·μF min.	Humidity 80~98% Humidity 80~98% Hum						
			(Whichever is smaller)	70 90~98% V 90~98% V 90~9						
			(vinenever is emailer)	65						
				60						
				55						
				950 845						
				\(\begin{align*} \begin{align*} \beg						
				E33						
				25 5 1 1 1 1 1 1 1 1						
				20 +10						
				- 2 °C						
				Initial measurement 5						
				-5						
				-10 -10 -10 -10 -10 -10 -10 -10 -10 -10						
				One cycle 24 hours 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22						
				Hours •Pretreatment						
				Perform the heat treatment at 150+0/-10°C for 60±5 min and then let sit for 24±2 h at *room condition.						
	Biased	Appearance	No defects or abnormalities	Apply the rated voltage and DC1.3+0.2/-0 V (add 100kΩ resiste						
	Humidity	Capacitance Change	within ±12.5%	at 85±3°C and 80 to 85% humidity for 1,000±12h. Remove and let sit for 24±2 h at *room condition, then measur						
		D.F.	0.05 max.	The charge/discharge current is less than 50mA.						
		I.R.	0.05 max. 500MΩ or 25MΩ·μF min.	Pretreatment						
			(Whichever is smaller)	Perform a heat treatment at 150+0/-10°C for 1hr. and then set at room temperature for 24±2 hrs.						
6	Operational Life	Appearance	No defects or abnormalities except color change of outer coating.	Apply 150% of the rated voltage for 1,000±12h at 150±3°C.						
		Capacitance	within ±12.5%	Let sit for 24±2 h at *room condition, then measure. The charge/discharge current is less than 50mA.						
		Change D.F.	0.04 max.	Pretreatment						
		I.R.	1,000MΩ or 50MΩ·μF min.	Apply test voltage for 60±5 min at test temperature.						
			(Whichever is smaller)	Remove and let sit for 24±2 h at *room condition.						
7	External Visu	al	No defects or abnormalities	Visual inspection						
	Physical Dime		Within the specified dimensions	Using calipers and micrometers.						
9	Marking	· 	To be easily legible.	Visual inspection						
	Resistance	Appearance	No defects or abnormalities	Per MIL-STD-202 Method 215						
	to Solvents	Capacitance	Within the specified tolerance	Solvent 1 : 1 part (by volume) of isopropyl alcohol						
		D.F.	0.025 max.	3 parts (by volume) of mineral spirits Solvent 2 : Terpene defluxer						
		I.R.	More than 10,000M Ω or 500 M Ω · μ F (Whichever is smaller)	Solvent 2 : Terpere defluxer Solvent 3 : 42 parts (by volume) of water 1 part (by volume) of propylene glycol monomethyl ether 1 part (by volume) of monoethanolamine						

No.		Q200 Item	Specification	AEC-Q200 Test Method						
11	Mechanical	Appearance	No defects or abnormalities	Three shocks in each direction should be applied along 3						
	Shock	Capacitance	Within the specified tolerance	mutually perpendicular axes of the test specimen (18 shocks The specified test pulse should be Half-sine and should have						
		D.F.	0.025 max.	duration :0.5ms, peak value:1,500G and velocity change: 4.7						
12	Vibration	Appearance	No defects or abnormalities	The capacitor should be subjected to a simple harmonic mot						
		Capacitance	Within the specified tolerance	having a total amplitude of 1.5mm, the frequency being varie uniformly between the approximate limits of 10 and 2,000Hz						
		D.F.	0.025 max.	The frequency range, from 10 to 2,000Hz and return to 10Hz should be traversed in approximately 20 min. This motion should be applied for 12 items in each 3 mutually perpendicular directions (total of 36 times).						
13-1	Resistance	Appearance	No defects or abnormalities	The lead wires should be immersed in the melted solder 1.5						
	to Soldering Heat	Capacitance Change	Within ±7.5%	2.0mm from the root of terminal at 260±5°C for 10±1 secon						
	(Non- Preheat)	Dielectric Strength (Between terminals)	No defects	Pre-treatment Capacitor should be stored at 150+0/-10°C for one hour, then place at *room condition for 24±2 hours before initial measurement. Post-treatment Capacitor should be stored for 24±2 hours at *room condition for 24±2 hours at *room						
13-2	Resistance	Appearance	No defects or abnormalities	First the capacitor should be stored at 120+0/-5°C for 60+0						
	to Soldering Heat	Capacitance Change	Within ±7.5%	seconds. Then, the lead wires should be immersed in the melted solo						
	(On- Preheat)	Dielectric	No defects	1.5 to 2.0mm from the root of terminal at 260±5°C for 7.5+0 seconds.						
	Freneat)	Strength (Between		Seconds.						
		terminals)		Pre-treatment Capacitor should be stored at 150+0/-10°C for one hour, then place at *room condition for 24±2 hours before initial measurement. Post-treatment						
13-3	Resistance	Annogranco	No defects or abnormalities	Capacitor should be stored for 24±2 hours at *room condit Test condition						
13-3	to Soldering Heat	Appearance Capacitance	Within ±7.5%	Termperature of iron-tip: 350±10°C						
	(soldering	Change Dielectric	No defects	Soldering time: 3.5±0.5 seconds Soldering position						
	iron method)	Strength (Between terminals)	NO delects	Straight Lead:1.5 to 2.0mm from the root of terminal. Crimp Lead:1.5 to 2.0mm from the end of lead bend. • Pre-treatment Capacitor should be stored at 150+0/-10°C for one hour, then place at *room condition for 24±2 hours before initial measurement.						
				Post-treatment						
11	Thermal Charle	Annaaranaa	No defects or abnormalities	Capacitor should be stored for 24±2 hours at *room condit						
14	Thermal Shock	Capacitance	within ±12.5%	Perform the 300 cycles according to the two heat treatments in the following table (Maximum transfer time is 20s.). Let sit						
		Change		24±2 h at *room condition, then measure.						
		D.F.	0.05 max.	Step 1 2						
		I.R.	1,000M Ω or 50M Ω ·μF min. (Whichever is smaller)	Temp. (°C) -55+0/-3 150+3/-0						
				Time (min.) 15±3 15±3						
				 Pretreatment Perform the heat treatment at 150+0/-10°C for 60±5 min and then let sit for 24±2 h at *room condition. 						
15	ESD	Appearance	No defects or abnormalities	Per AEC-Q200-002						
		Capacitance	Within the specified tolerance							
		D.F.	0.025 max.							
		I.R.	More than 10,000MΩ or 500 MΩ·μF (Whichever is smaller)							
16	16 Solderability		Lead wire should be soldered with uniform coating on the axial direction over 95% of the circumferential direction.	The terminal of a capacitor is dipped into a solution of ethano (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight propotion) and then into molten solder (JIS-Z-3282) for 2±0.5 In both cases the depth of dipping is up to about 1.5 to 2mm the terminal body.						
				Temp. of solder : 245±5°C Lead Free Solder(Sn-3.0Ag-0.5Cu) 235±5°C H60A or H63A Eutectic Solder						

No.	-	-Q200 t Item		Specifications	AEC-Q200 Test Method					
17	Electrical	ical Apperance No defects or abnormalities		abnormalities	Visual inspection.					
	Characte- rization	Capacitance	Within the sp	ecified tolerance	The capacitance/D.F. should be measured at 25°C at the freque and voltage shown in the table.					
		D.F.	0.025 max.		Frequency Voltage					
					1±0.1kHz 1±0.2V(ms)					
		Insulation Resistance (I.R.)	·	10,000M Ω or 500M Ω ·μF min. (Whichever is smaller)	The insulation resistance should be measured at 25±3 °C with DC voltage not exceeding the rated voltage at normal tempera and humidity and within 2 min. of charging. (Charge/Discharge current ≤ 50mA)					
			High Temperature	100M Ω or 5M Ω -μF min. (Whichever is smaller)	The insulation resistance should be measured at 150±3 °C will DC voltage not exceeding the rated voltage at normal temperal and humidity and within 2 min. of charging. (Charge/Discharge current ≤ 50mA)					
		Dielectric Strength	Between Terminals	No defects or abnormalities	The capacitor should not be damaged when DC voltage of 250 of the rated voltage is applied between the terminations for 1 to seconds. (Charge/Discharge current ≤ 50mA.)					
		Body Insulation No defects or abnormalities		No defects or abnormalities	The capacitor is placed in a container with metal balls of 1mm diameter so that each terminal, short-circuit is kept approximately 2mm from the balls, and 250% of the rated DC voltage is impressed for 1 to 5 seconds between capacitor terminals and metal balls. (Charge/Discharge current ≤ 50mA.)					
18	Terminal Strength	Tensile Strength	Termination r	ot to be broken or loosened	As in the figure, fix the capacitor body, apply the force gradual to each lead in the radial direction of the capacitor until reaching 10N and then keep the force applied for 10±1 seconds.					
		Bending Strength	Termination r	ot to be broken or loosened	Each lead wire should be subjected to a force of 2.5N and the be bent 90° at the point of egress in one direction. Each wire then returned to the original position and bent 90° in the opposition at the rate of one bend per 2 to 3 seconds.					
19	19 Capacitance Temperature Characteristics		-55 to 125°	specified Tolerance. C: within ±15% C:within +15/-40%	The capacitance change should be measured after 5min. at each specified temperature step. Step Temperature(°C) 1 25±2 2 -55±3 3 25±2 4 150±3 5 25±2 The ranges of capacitance change compared with the above 25°C value over the temperature ranges shown in the table should be within the specified ranges. •Pretreatment					
					Perform the heat treatment at 150+0/-10°C for 60±5 min and then let sit for 24±2 h at *room condition. Perform the initial measurement.					

6. Packing specification

•Bulk type (Packing style code : B)


Polyethylene bag

The size of packing case and packing way

The number of packing = *1 Packing quantity *2 n

*1 : Please refer to [Part number list].

*2 : Standard n = 20 (bag)

Note)

The outer package and the number of outer packing be changed by the order getting amount.

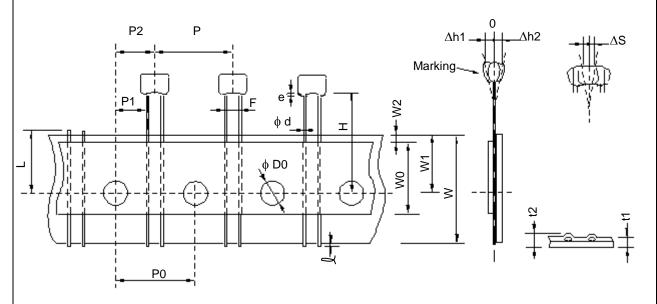
- •Ammo pack taping type (Packing style code : A)
 - · A crease is made every 25 pitches, and the tape with capacitors is packed zigzag into a case.
 - · When body of the capacitor is piled on other body under it.

Position of label

Position of label

Capacitor

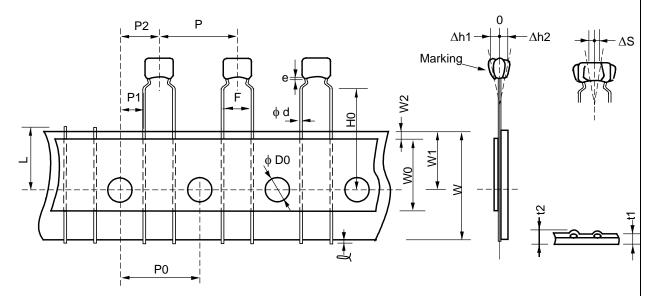
Base tape


Hold down tape upper

7. Taping specification

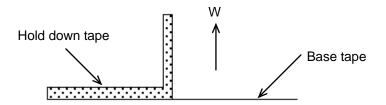
7-1. Dimension of capacitors on tape

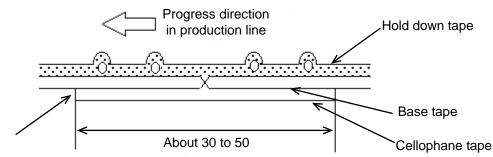
Straight taping type < Lead code : DB >


Pitch of component 12.7mm / Lead spacing 2.5mm

Unit: mm

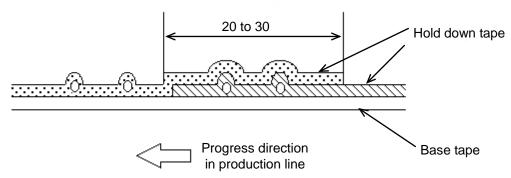
Item	Code	Dimensions	Remarks
Pitch of component	Р	12.7+/-1.0	
Pitch of sprocket hole	P0	12.7+/-0.2	
Lead spacing	F	2.5+0.4/-0.2	
Length from hole center to component center	P2	6.35+/-1.3	
Length from hole center to lead	P1	5.1+/-0.7	Deviation of progress direction
Deviation along tape, left or right defect	ΔS	0+/-2.0	They include deviation by lead bend .
Carrier tape width	W	18.0+/-0.5	
Position of sprocket hole	W1	9.0+0/-0.5	Deviation of tape width direction
Lead distance between reference and bottom plane	Н	16.0+/-0.5	
Protrusion length	l	0.5 max.	
Diameter of sprocket hole	D0	4.0+/-0.1	
Lead diameter	d	0.50+/-0.05	
Total tape thickness	t1	0.6+/-0.3	
Total thickness of tape and lead wire	t2	1.5 max.	They include hold down tape thickness.
Deviation across tape	∆h1	1.0 max.	
Deviation delege tape	∆h2		
Portion to cut in case of defect	L	11.0+0/-1.0	
Hold down tape width	W0	9.5 min.	
Hold down tape position	W2	1.5+/-1.5	
Coating extension on lead	е	1.5 max.	




Item	Code	Dimensions	Remarks
Pitch of component	Р	12.7+/-1.0	
Pitch of sprocket hole	P0	12.7+/-0.2	
Lead spacing	F	5.0+0.6/-0.2	
Length from hole center to component center	P2	6.35+/-1.3	Deviation of annual discosting
Length from hole center to lead	P1	3.85+/-0.7	Deviation of progress direction
Deviation along tape, left or right defect	ΔS	0+/-2.0	They include deviation by lead bend .
Carrier tape width	W	18.0+/-0.5	
Position of sprocket hole	W1	9.0+0/-0.5	Deviation of tape width direction
Lead distance between reference and bottom plane	НО	16.0+/-0.5	
Protrusion length	l	0.5 max.	
Diameter of sprocket hole	D0	4.0+/-0.1	
Lead diameter	φd	0.50+/-0.05	
Total tape thickness	t1	0.6+/-0.3	The control of the left decomplete the left de
Total thickness of tape and lead wire	t2	1.5 max.	They include hold down tape thickness.
Deviation agreed to a	∆h1	2.0 max. (Dime	ension code: W)
Deviation across tape	∆h2	1.0 max. (exce	pt as above)
Portion to cut in case of defect	L	11.0+0/-1.0	
Hold down tape width	W0	9.5 min.	
Hold down tape position	W2	1.5+/-1.5	
Coating extension on lead	е	Up to the end of o	rimp

7-2. Splicing way of tape

1) Adhesive force of tape is over 3N at test condition as below.


- 2) Splicing of tape
 - a) When base tape is spliced
 - •Base tape shall be spliced by cellophane tape. (Total tape thickness shall be less than 1.05mm.)

No lifting for the direction of progressing

Unit: mm

- b) When hold down tape is spliced
 - •Hold down tape shall be spliced with overlapping. (Total tape thickness shall be less than 1.05mm.)

- c) When both tape are spliced
 - •Base tape and hold down tape shall be spliced with splicing tape.

EU RoHS and Halogen Free

This products of the following crresponds to EU RoHS and Halogen Free

(1) RoHS

EU RoHs 2011/65/EC compliance

maximum concentration values tolerated by weight in homogeneous materials

- •1000 ppm maximum Lead
- •1000 ppm maximum Mercury
- •100 ppm maximum Cadmium
- •1000 ppm maximum Hexavalent chromium
- •1000 ppm maximum Polybrominated biphenyls (PBB)
- •1000 ppm maximum Polybrominated diphenyl ethers (PBDE)

(2) Halogen-Free

The International Electrochemical Commission's (IEC) Definition of Halogen-Free (IEC 61249-2-21) compliance

- •900 ppm maximum chlorine
- •900 ppm maximum bromine
- •1500 ppm maximum total chlorine and bromine

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Murata:

RHEL81H102K1K1A03E	RHEL81H152K1K1A03E	RHEL81H222K1K1A03E	RHEL81H332K1K1A03B
RHEL81H472K1K1A03B	RHEL81H682K1K1A03B	RHEL81H103K1K1A03B	RHEL81H153K1K1A03B
RHEL81H223K1K1A03B	RHEL81H333K1K1A03B	RHEL81H473K1K1A03B	RHEL81H683K1K1A03B
RHEL81H104K1K1A03B	RHEL82A102K1K1A03B	RHEL82A152K1K1A03B	RHEL82A222K1K1A03B
RHEL82A332K1K1A03B	RHEL82A472K1K1A03B	RHEL82A682K1K1A03B	RHEL82A103K1K1A03B
RHEL82A153K1K1A03B	RHEL82A223K1K1A03B	RHEL81H102K1M1A03A	RHEL81H103K1M1A03A
RHEL81H104K1M1A03A	RHEL81H152K1M1A03A	RHEL81H153K1M1A03A	RHEL81H222K1M1A03A
RHEL81H223K1M1A03A	RHEL81H332K1M1A03A	RHEL81H333K1M1A03A	RHEL81H472K1M1A03A
RHEL81H473K1M1A03A	RHEL81H682K1M1A03A	RHEL81H683K1M1A03A	RHEL82A102K1M1A03A
RHEL82A103K1M1A03A	RHEL82A152K1M1A03A	RHEL82A153K1M1A03A	RHEL82A222K1M1A03A
RHEL82A223K1M1A03A	RHEL82A332K1M1A03A	RHEL82A472K1M1A03A	RHEL82A682K1M1A03A
RHEL81H102K1DBA03A	RHEL81H223K1DBA03A	RHEL81H333K1DBA03A	RHEL81H473K1DBA03A
RHEL82A472K1DBA03A	RHEL81H332K1DBA03A	RHEL81H682K1DBA03A	RHEL82A103K1DBA03A
RHEL82A222K1DBA03A	RHEL82A223K1DBA03A	RHEL81H222K1DBA03A	RHEL82A332K1DBA03A
RHEL81H103K1DBA03A	RHEL81H152K1DBA03A	RHEL81H472K1DBA03A	RHEL81H683K1DBA03A
RHEL82A152K1DBA03A	RHEL82A682K1DBA03A	RHEL81H104K1DBA03A	RHEL81H153K1DBA03A
RHEL82A102K1DBA03A	RHEL82A153K1DBA03A	RHEL82A223K1A2A03B	RHEL82A332K1A2A03B
RHEL81H683K1A2A03B	RHEL81H152K1A2A03B	RHEL81H682K1A2A03B	RHEL81H102K1A2A03B
RHEL81H103K1A2A03B	RHEL82A472K1A2A03B	RHEL81H153K1A2A03B	RHEL81H104K1A2A03B
RHEL82A682K1A2A03B	RHEL82A152K1A2A03B	RHEL82A102K1A2A03B	RHEL81H473K1A2A03B
RHEL82A103K1A2A03B	RHEL81H332K1A2A03B	RHEL81H333K1A2A03B	RHEL81H223K1A2A03B
RHEL81H472K1A2A03B	RHEL81H222K1A2A03B	RHEL82A153K1A2A03B	RHEL82A222K1A2A03B
RHEL81E335K2K1H03B	RHEL81E154K0A2H03B	RHEL81E106K3K1H03B	RHEL81E334K1M1H03A
RHEL81E684K1A2H03B	RHEL81E155K2A2H03B	RHEL81E335K2M1H03A	RHEL81E155K2K1H03B
RHEL81E334K1A2H03B	RHEL81E225K2DBH03A	RHEL81E226MWK1H03E	RHEL81E155K2M1H03A