Triple-Channel Digital Isolators

Data Sheet

FEATURES

Low power operation

5 V operation
1.7 mA per channel maximum at 0 Mbps to 2 Mbps
4.0 mA per channel maximum at $\mathbf{2} \mathrm{Mbps}$ to 10 Mbps

3 V operation
1.0 mA per channel maximum at $\mathbf{0}$ Mbps to $\mathbf{2} \mathbf{~ M b p s}$
2.1 mA per channel maximum at $\mathbf{2} \mathbf{~ M b p s}$ to $\mathbf{1 0} \mathbf{~ M b p s}$

Bidirectional communication
3 V/5 V level translation
Schmitt trigger inputs
High temperature operation: $105^{\circ} \mathrm{C}$
Up to 10 Mbps data rate (NRZ)
Programmable default output state
High common-mode transient immunity: > $\mathbf{2 5} \mathbf{k V} / \mu \mathrm{s}$
16-lead, RoHS-compliant, SOIC wide body package
8.1 mm external creepage

Safety and regulatory approvals
UL recognition: 3750 V rms for 1 minute per UL 1577
CSA Component Acceptance Notice 5A
VDE certificate of conformity
DIN V VDE V 0884-10 (VDE V 0884-10): 2006-12
$V_{\text {IORM }}=560 \mathrm{~V}$ peak working voltage

APPLICATIONS

General-purpose multichannel isolation
SPI interface/data converter isolation
RS-232/RS-422/RS-485 transceiver
Industrial field bus isolation
GENERAL DESCRIPTION
The ADuM1310/ADuM1311 ${ }^{1}$ are 3-channel digital isolators based on Analog Devices, Inc., iCoupler technology. Combining high speed CMOS and monolithic air core transformer technology, these isolation components provide outstanding performance characteristics superior to alternatives such as optocoupler devices.
By avoiding the use of LEDs and photodiodes, i Coupler devices remove the design difficulties commonly associated with optocouplers. The typical optocoupler concerns regarding uncertain current transfer ratios, maximum operating temperature, and lifetime effects are eliminated with the simple i Coupler digital interfaces and stable performance characteristics. The need for external drivers and other discrete components is eliminated with these i Coupler products. Furthermore, i Coupler devices consume one-tenth to one-sixth the power of optocouplers at

Figure 2. ADuM1311
comparable signal data rates. The i Coupler also offers higher channel densities and more options for channel directionality.

The ADuM1310/ADuM1311 isolators provide three independent isolation channels in a variety of channel configurations and data rates up to 10 Mbps (see the Ordering Guide). All models operate with the supply voltage on either side ranging from 2.7 V to 5.5 V , providing compatibility with lower voltage systems as well as enabling voltage translation functionality across the isolation barrier. All products allow the user to predetermine the default output state in the absence of input $\mathrm{V}_{\text {DD } 1}$ power with a simple control pin. Unlike other optocoupler alternatives, the ADuM1310/ADuM1311 isolators have a patented refresh feature that ensures dc correctness in the absence of input logic transitions and during power-up/ power-down conditions.
${ }^{1}$ Protected by U.S. Patents $5,952,849 ; 6,873,065 ; 6,903,578$; and $7,075,329$. Other patents pending.

TABLE OF CONTENTS

Features 1
Applications. 1
Functional Block Diagrams. 1
General Description 1
Revision History 2
Specifications 3
Electrical Characteristics-5 V Operation 3
Electrical Characteristics-3 V Operation. 5
Electrical Characteristics—Mixed $5 \mathrm{~V} / 3 \mathrm{~V}$ or $3 \mathrm{~V} / 5 \mathrm{~V}$ Operation 7
Package Characteristics 10
Regulatory Information 10
Insulation and Safety-Related Specifications 10
DIN V VDE V 0884-10 (VDE V 0884-10): 2006-12 Insulation Characteristics 11
REVISION HISTORY
6/15—Rev. J to Rev. K
Changes to Table 5 and Table 6. 10
9/14—Rev. I to Rev. J
Changes to Features Section 1
Changes to Table 5 and Table 6 10
4/14—Rev. H to Rev. I
Change to Table 5 10
3/12—Rev. G to Rev. H
Created Hyperlink for Safety and Regulatory Approvals Entry in Features Section 1
Change to PC Board Layout Section 18
Updated Outline Dimensions 21
6/07—Rev. F to Rev. G
Updated VDE Certification Throughout 1
Changes to Features and Applications 1
Changes to DC Specifications in Table 1 3
Changes to DC Specifications in Table 2 5
Changes to DC Specifications in Table 3 7
Changes to Regulatory Information Section 10
Added Table 10 12
Added Insulation Lifetime Section 19
Recommended Operating Conditions 11
Absolute Maximum Ratings 12
ESD Caution 12
Pin Configurations and Function Descriptions 13
Typical Performance Characteristics. 16
Applications Information 18
PC Board Layout 18
Propagation Delay-Related Parameters. 18
DC Correctness and Magnetic Field Immunity 18
Power Consumption 19
Insulation Lifetime 20
Outline Dimensions 21
Ordering Guide 21
1/07—Rev. E to Rev. F
Added ADuM1311 Universal
Changes to Typical Performance Characteristics Section 16
Changes to Ordering Guide 20
10/06-Rev. D to Rev. E
Removed ADuM1410 Universal
Updated Format. Universal
Change to Figure 3 10
Changes to Table 10 10
Changes to Application Information Section 12
Updated Outline Dimensions 18
Changes to Ordering Guide 18
3/06-Rev. C to Rev. D
Added Note 1; Changes to Figure 2 1
Changes to Absolute Maximum Ratings 11
11/05—Revision C: Initial Version

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS—5 V OPERATION

$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 5.5 \mathrm{~V}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 5.5 \mathrm{~V}$; all minimum/maximum specifications apply over the entire recommended operation range, unless otherwise noted; all typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD} 2}=5 \mathrm{~V}$. All voltages are relative to their respective grounds.

Table 1.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions/Comments
DC SPECIFICATIONS						
ADuM1310, Total Supply Current, Three Channels ${ }^{1}$						
DC to 2 Mbps						
$V_{\text {DD } 1}$ Supply Current	IDD1 (0)		2.4	3.2	mA	DC to 1 MHz logic signal frequency
$\mathrm{V}_{\text {DD2 }}$ Supply Current	$\mathrm{IDD2}_{\text {(Q) }}$		1.2	1.6	mA	DC to 1 MHz logic signal frequency
10 Mbps (BRWZ Grade Only)						
$V_{\text {DD } 1}$ Supply Current	IDD1 (10)		6.6	9.0	mA	5 MHz logic signal frequency
$V_{\text {DD2 } 2 ~ S u p p l y ~ C u r r e n t ~}^{\text {a }}$	ldD2 (10)		2.1	3.0	mA	5 MHz logic signal frequency
ADuM1311, Total Supply Current, Three Channels ${ }^{1}$						
DC to 2 Mbps						
$V_{\text {DD } 1}$ Supply Current	IDD1 (0)		2.2	2.8	mA	DC to 1 MHz logic signal frequency
$V_{\text {DD2 } 2}$ Supply Current	IDD2 (Q)		1.8	2.4	mA	DC to 1 MHz logic signal frequency
10 Mbps (BRWZ Grade Only)						
$\mathrm{V}_{\text {DD } 1}$ Supply Current	$\mathrm{IDD1}_{(10)}$		4.5	5.7	mA	5 MHz logic signal frequency
$V_{\text {DD2 } 2}$ Supply Current	$\operatorname{ldD2}$ (10)		3.5	4.3	mA	5 MHz logic signal frequency
For All Models						
Input Currents	$I_{A A}, I_{B,}, I_{c}, I_{\text {ctrli }}$, Ittrl2, Idisable	-10	+0.01	+10	$\mu \mathrm{A}$	$\begin{aligned} & 0 V \leq V_{I A,}, V_{I B}, V_{1 C} \leq V_{D D 1} \text { or } V_{D D 2}, \\ & 0 V \leq V_{C T R L 1,}, V_{C T R L 2} \leq V_{D D 1} \text { or } V_{D D 2}, \\ & 0 V \leq V_{D I S A B L E} \leq V_{D D 1} \end{aligned}$
Logic High Input Threshold	$\mathrm{V}_{\text {IH }}$	2.0			V	
Logic Low Input Threshold	VIL			0.8	V	
Logic High Output Voltages	$\mathrm{V}_{\text {оан }} \mathrm{V}_{\text {овн, }}, \mathrm{V}_{\text {осн }}$	$\left(\mathrm{V}_{\mathrm{DD} 1}\right.$ or $\left.\mathrm{V}_{\mathrm{DD} 2}\right)-0.1$	5.0		V	$\mathrm{l}_{\mathrm{ox}}=-20 \mu \mathrm{~A}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{1 \times \mathrm{H}}$
Logic Low Output Voltages		$\left(\mathrm{V}_{\mathrm{DD} 1}\right.$ or $\left.\mathrm{V}_{\mathrm{DD} 2}\right)-0.4$	4.8		V	$\mathrm{l}_{\mathrm{ox}}=-4 \mathrm{~mA}, \mathrm{~V}_{1 \times}=\mathrm{V}_{1 \times \mathrm{H}}$
	Voal, $\mathrm{V}_{\text {obl, }}$ Vocl		0.0	0.1	V	$\mathrm{logx}=20 \mu \mathrm{~A}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{\text {Ix }}$
			0.2	0.4	V	$\mathrm{l}_{\mathrm{Ox}}=4 \mathrm{~mA}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{\text {IxL }}$
SWITCHING SPECIFICATIONS						
ADuM131xARWZ						
Minimum Pulse Width ${ }^{2}$	PW			1000	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels
Maximum Data Rate ${ }^{3}$		1			Mbps	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels
Propagation Delay ${ }^{4}$	$\mathrm{tPHL}^{\text {P }}$ PLH	20		100	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Pulse Width Distortion, \mid tpLH $-\left.\mathrm{t}_{\text {PHL }}\right\|^{4}$	PWD			40	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Propagation Delay Skew ${ }^{5}$	$\mathrm{t}_{\text {PSK }}$			50	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Channel-to-Channel Matching ${ }^{6}$	$\mathrm{t}_{\text {PSKCD/OD }}$			50	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
ADuM131xBRWZ						
Minimum Pulse Width ${ }^{2}$	PW			100	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Maximum Data Rate ${ }^{3}$		10			Mbps	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Propagation Delay ${ }^{4}$	$\mathrm{t}_{\text {PHL, }}$ tpLH	20	30	50	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Pulse Width Distortion, $\left\|\mathrm{t}_{\text {PLH }}-\mathrm{t}_{\text {PHL }}\right\|^{4}$	PWD			5	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels
Change vs. Temperature			5		ps/ ${ }^{\circ} \mathrm{C}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels
Propagation Delay Skew ${ }^{5}$	tPsk			30	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions/Comments	
Channel-to-Channel Matching, Codirectional Channels ${ }^{6}$	tPSKCD			5	ns	$\mathrm{CL}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Channel-to-Channel Matching, Opposing-Directional Channels ${ }^{6}$	$\mathrm{t}_{\text {PSKOD }}$			6	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
For All Models							
Output Rise/Fall Time (10\% to 90\%)	$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$		2.5		ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Common-Mode Transient Immunity at Logic High Output ${ }^{7}$	\|CMH		25	35		kV/ $\mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{DD} 1} \text { or } \mathrm{V}_{\mathrm{DD} 2}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$
Common-Mode Transient Immunity at Logic Low Output ${ }^{7}$	\|CM ${ }_{\text {L }}$	25	35		$\mathrm{kV} / \mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IX}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$	
Refresh Rate	fr_{r}		1.2		Mbps		
Input Enable Time ${ }^{8}$	$\mathrm{t}_{\text {enable }}$			2.0	$\mu \mathrm{s}$	$\mathrm{V}_{\mathrm{IA}}, \mathrm{V}_{\text {IB }}, \mathrm{V}_{\text {IC }}=0 \mathrm{~V}$ or $\mathrm{V}_{\text {DD } 1}$	
Input Disable Time ${ }^{8}$	tilsable			5.0	$\mu \mathrm{s}$	$\mathrm{V}_{\text {IA }}, \mathrm{V}_{\text {IB }}, \mathrm{V}_{\text {IC }}=0 \mathrm{~V}$ or $\mathrm{V}_{\text {DD } 1}$	
Input Supply Current per Channel, Quiescent ${ }^{9}$	IDDI (Q)		0.50	0.73	mA		
Output Supply Current per Channel, Quiescent ${ }^{9}$	IDDO (Q)		0.38	0.53	mA		
Input Dynamic Supply Current per Channel ${ }^{10}$	IDDI (D)		0.12		mA/ Mbps		
Output Dynamic Supply Current per Channel ${ }^{10}$	IDDO (D)		0.04		mA/ Mbps		

${ }^{1}$ The supply current values for all four channels are combined when running at identical data rates. Output supply current values are specified with no output load present. The supply current associated with an individual channel operating at a given data rate can be calculated as described in the Power Consumption section. See Figure 6 through Figure 8 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 9 through Figure 12 for total $V_{D D 1}$ and $V_{D D 2}$ supply currents as a function of data rate for ADuM1310/ADuM1311 channel configurations.
${ }^{2}$ The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.
${ }^{3}$ The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.
${ }^{4}$ tpHL propagation delay is measured from the 50% level of the falling edge of the V_{Ix} signal to the 50% level of the falling edge of the V_{Ox} signal. tplH propagation delay is measured from the 50% level of the rising edge of the $\mathrm{V}_{1 \times}$ signal to the 50% level of the rising edge of the $\mathrm{V}_{0 \times}$ signal.
${ }^{5} t_{\text {PSK }}$ is the magnitude of the worst-case difference in $t_{\text {PHL }}$ or $t_{\text {PLH }}$ that is measured between units at the same operating temperature, supply voltages, and output load within the recommended operating conditions.
${ }^{6}$ Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of the isolation barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on opposing sides of the isolation barrier.
${ }^{7} \mathrm{CM}_{H}$ is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{\mathrm{O}}>0.8 \mathrm{~V}_{\mathrm{DD} 2}$. CM_{L} is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{0}<0.8 \mathrm{~V}$. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient magnitude is the range over which the common mode is slewed.
${ }^{8}$ Input enable time is the duration from when $V_{\text {DISABLE }}$ is set low until the output states are guaranteed to match the input states in the absence of any input data logic transitions. If an input data logic transition within a given channel does occur within this time interval, the output of that channel reaches the correct state within the much shorter duration, as determined by the propagation delay specifications within this data sheet. Input disable time is the duration from when $\mathrm{V}_{\text {DISABLE }}$ is set high until the output states are guaranteed to reach their programmed output levels, as determined by the CTRL2 logic state (see Table 13).
${ }^{9} \mathrm{I}_{\mathrm{DDx}(0)}$ is the quiescent current drawn from the corresponding supply by a single channel. To calculate the total quiescent current, an additional inaccessible channel in the same orientation as Channel A must be included to account for the total current consumed.
${ }^{10}$ Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 6 through Figure 8 for information on per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating the per-channel supply current for a given data rate.

ADuM1310/ADuM1311

ELECTRICAL CHARACTERISTICS-3 V OPERATION

$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 3.6 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 3.6 \mathrm{~V}$; all minimum/maximum specifications apply over the entire recommended operation range, unless otherwise noted; all typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD} 2}=3.0 \mathrm{~V}$. All voltages are relative to their respective ground.

Table 2.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions/Comments
DC SPECIFICATIONS						
ADuM1310, Total Supply Current, Three Channels ${ }^{1}$						
DC to 2 Mbps						
$\mathrm{V}_{\text {DD } 1}$ Supply Current	$\mathrm{ldD1}$ (0)		1.2	1.6	mA	DC to 1 MHz logic signal frequency
$V_{\text {DD2 }}$ Supply Current	IDD2 (0)		0.8	1.0	mA	DC to 1 MHz logic signal frequency
10 Mbps (BRWZ Grade Only)						
$\mathrm{V}_{\text {DD } 1}$ Supply Current	$\mathrm{IDD1}^{(10)}$		3.4	4.9	mA	5 MHz logic signal frequency
$V_{\text {DD2 } 2}$ Supply Current	ldD2 (10)		1.1	1.3	mA	5 MHz logic signal frequency
ADuM1311, Total Supply Current, Three Channels ${ }^{1}$						
DC to 2 Mbps						
$V_{\text {DD } 1}$ Supply Current	IDD1 (0)		1.0	1.6	mA	DC to 1 MHz logic signal frequency
$V_{\text {DD2 } 2}$ Supply Current	IDD2 (0)		0.9	1.4		DC to 1 MHz logic signal frequency
10 Mbps (BRWZ Grade Only)						
$V_{\text {DD } 1}$ Supply Current	IDD1 (10)		2.5	3.5	mA	5 MHz logic signal frequency
$V_{\text {DD2 } 2}$ Supply Current	$\mathrm{ldD2}$ (10)		1.9	2.6		5 MHz logic signal frequency
For All Models						
Input Currents	$\mathrm{I}_{\text {CtRL2, }}$ IDISABLE	-10	+0.01	+10	$\mu \mathrm{A}$	$\begin{aligned} & 0 V \leq V_{I A,} V_{\text {IB, }}, V_{I C} \leq V_{D D 1} \text { or } V_{D D 2,} \\ & 0 V \leq V_{C T R L 1,} V_{C T R L 2} \leq V_{D D 1} \text { or } V_{D D 2,} \\ & 0 V \leq V_{\text {DISABLE }} \leq V_{D D 1} \end{aligned}$
Logic High Input Threshold	$\mathrm{V}_{\text {IH }}$	1.6			V	
Logic Low Input Threshold	$\mathrm{V}_{\text {IL }}$			0.4	V	
Logic High Output Voltages	$\mathrm{V}_{\text {оан, }} \mathrm{V}_{\text {овн, }} \mathrm{V}_{\text {осн }}$	$\left(\mathrm{V}_{\mathrm{DD} 1}\right.$ or $\left.\mathrm{V}_{\mathrm{DD} 2}\right)-0.1$	3.0		V	$\mathrm{l}_{\mathrm{ox}}=-20 \mu \mathrm{~A}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{1 \times \mathrm{H}}$
		$\left(V_{D D 1}\right.$ or $\left.V_{\text {DD2 } 2}\right)-0.4$	2.8		V	$\mathrm{l}_{\mathrm{ox}}=-4 \mathrm{~mA}, \mathrm{~V}_{1 \times}=\mathrm{V}_{1 \times \mathrm{H}}$
Logic Low Output Voltages	Voal, $\mathrm{V}_{\text {obl, }} \mathrm{V}$ ocl		0.0	0.1	V	$\mathrm{l}_{\mathrm{l}}=20 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{lx}}=\mathrm{V}_{\text {lxL }}$
			0.2	0.4	V	$\mathrm{loxx}^{\text {a }}=4 \mathrm{~mA}, \mathrm{~V}_{\text {Ix }}=\mathrm{V}_{\text {IxL }}$
SWITCHING SPECIFICATIONS						
ADuM131xARWZ						
Minimum Pulse Width ${ }^{2}$	PW			1000	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Maximum Data Rate ${ }^{3}$		1			Mbps	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Propagation Delay ${ }^{4}$	$\mathrm{t}_{\text {PHL, }} \mathrm{t}_{\text {PLH }}$	20		100	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Pulse Width Distortion, $\left\|\mathrm{t}_{\text {PLH }}-\mathrm{t}_{\text {PHL }}\right\|^{4}$	PWD			40	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Propagation Delay Skew ${ }^{5}$	tpsk			50	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Channel-to-Channel Matching ${ }^{6}$	tPskcD/OD			50	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
ADuM131xBRWZ						
Minimum Pulse Width ${ }^{2}$	PW			100	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels
Maximum Data Rate ${ }^{3}$		10			Mbps	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Propagation Delay ${ }^{4}$	$\mathrm{t}_{\text {PHL, }} \mathrm{t}_{\text {PLH }}$	20	30	50	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Pulse Width Distortion, trih $^{\text {- }}$ tPHL $\left.\right\|^{4}$	PWD			5	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Change vs. Temperature			5		ps/ ${ }^{\circ} \mathrm{C}$	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Propagation Delay Skew ${ }^{5}$	$\mathrm{t}_{\text {S }} \mathrm{K}$			30	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Channel-to-Channel Matching, Codirectional Channels ${ }^{6}$	tPSkco			5	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Channel-to-Channel Matching, Opposing-Directional Channels ${ }^{6}$	tpskod			6	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels

ADuM1310/ADuM1311

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions/Comments
For All Models						
Output Rise/Fall Time (10\% to 90\%)	$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$		2.5		ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Common-Mode Transient Immunity at Logic High Output ${ }^{7}$	\|CM ${ }_{\text {H }}$	25	35		kV/ $\mu \mathrm{s}$	$\mathrm{V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{DD} 1}$ or $\mathrm{V}_{\mathrm{DD} 2}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}$, transient magnitude $=800 \mathrm{~V}$
Common-Mode Transient Immunity at Logic Low Output ${ }^{7}$	\|CM ${ }^{\text {L }}$	25	35		kV/ $\mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Ix}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$
Refresh Rate	fr_{r}		1.1		Mbps	
Input Enable Time ${ }^{8}$	$\mathrm{t}_{\text {ENABLE }}$		2.0		$\mu \mathrm{S}$	$\mathrm{V}_{\text {IA }}, \mathrm{V}_{\text {IB }}, \mathrm{V}_{\text {IC }}=0 \mathrm{~V}$ or $\mathrm{V}_{\text {DD } 1}$
Input Disable Time ${ }^{8}$	$\mathrm{t}_{\text {DISABLE }}$		5.0		$\mu \mathrm{S}$	$\mathrm{V}_{\mathrm{IA}}, \mathrm{V}_{\text {IB }}, \mathrm{V}_{\text {IC }}=0 \mathrm{~V}$ or $\mathrm{V}_{\text {DD } 1}$
Input Supply Current per Channel, Quiescent ${ }^{9}$	IDDI (Q)		0.25	0.38	mA	
Output Supply Current per Channel, Quiescent ${ }^{9}$	IDDO (Q)		0.19	0.33	mA	
Input Dynamic Supply Current per Channel ${ }^{10}$	IDDI (D)		0.07		mA/ Mbps	
Output Dynamic Supply Current per Channel ${ }^{10}$	IDDO (D)		0.02		mA/ Mbps	

${ }^{1}$ The supply current values for all four channels are combined when running at identical data rates. Output supply current values are specified with no output load present. The supply current associated with an individual channel operating at a given data rate can be calculated as described in the Power Consumption section. See Figure 6 through Figure 8 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 9 through Figure 12 for total $V_{D D 1}$ and $V_{D D 2}$ supply currents as a function of data rate for ADuM1310/ADuM1311 channel configurations.
${ }^{2}$ The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.
${ }^{3}$ The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.
${ }^{4} t_{\text {PHL }}$ propagation delay is measured from the 50% level of the falling edge of the V_{IX} signal to the 50% level of the falling edge of the V_{Ox} signal. $\mathrm{t}_{\mathrm{PLH}}$ propagation delay is measured from the 50% level of the rising edge of the $V_{1 x}$ signal to the 50% level of the rising edge of the $V_{0 x}$ signal.
${ }^{5} t_{\text {PSK }}$ is the magnitude of the worst-case difference in $t_{\text {PHL }}$ or $t_{\text {PLH }}$ that is measured between units at the same operating temperature, supply voltages, and output load within the recommended operating conditions.
${ }^{6}$ Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of the isolation barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on opposing sides of the isolation barrier.
${ }^{7} \mathrm{CM}_{H}$ is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{\mathrm{O}}>0.8 \mathrm{~V}_{\mathrm{DD} 2}$. CML CM_{L} is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{0}<0.8 \mathrm{~V}$. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient magnitude is the range over which the common mode is slewed.
${ }^{8}$ Input enable time is the duration from when $V_{\text {DISABLE }}$ is set low until the output states are guaranteed to match the input states in the absence of any input data logic transitions. If an input data logic transition within a given channel does occur within this time interval, the output of that channel reaches the correct state within the much shorter duration, as determined by the propagation delay specifications within this data sheet. Input disable time is the duration from when VIISABLE is set high until the output states are guaranteed to reach their programmed output levels, as determined by the CTRL 2 logic state (see Table 13).
${ }^{9} \operatorname{lodx}_{\text {(Q) }}$ is the quiescent current drawn from the corresponding supply by a single channel. To calculate the total quiescent current, an additional inaccessible channel in the same orientation as Channel A must be included to account for the total current consumed.
${ }^{10}$ Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 6 through Figure 8 for information on per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating the per-channel supply current for a given data rate.

ELECTRICAL CHARACTERISTICS—MIXED 5 V/3 V OR 3 V/5 V OPERATION

$5 \mathrm{~V} / 3 \mathrm{~V}$ operation: $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 3.6 \mathrm{~V} ; 3 \mathrm{~V} / 5 \mathrm{~V}$ operation: $2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 3.6 \mathrm{~V}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 5.5 \mathrm{~V}$; all minimum/maximum specifications apply over the entire recommended operation range, unless otherwise noted; all typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD} 1}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{DD} 1}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=3.0 \mathrm{~V}$. All voltages are relative to their respective ground.

Table 3.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions/Comments	
DC SPECIFICATIONS							
ADuM1310, Total Supply Current, Three Channels ${ }^{1}$							
DC to 2 Mbps							
VDD1 Supply Current	IDD1 (0)						
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			2.4	3.2	mA	DC to 1 MHz logic signal frequency	
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			1.2	1.6	mA	DC to 1 MHz logic signal frequency	
$V_{\text {DD2 }}$ Supply Current	ldD2 (Q)						
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			0.8	1.0	mA	DC to 1 MHz logic signal frequency	
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			1.2	1.6	mA	DC to 1 MHz logic signal frequency	
10 Mbps (BRWZ Grade Only)							
$\mathrm{V}_{\text {DD } 1}$ Supply Current	$\operatorname{ldD1}(10)$						
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			6.5	8.2	mA	5 MHz logic signal frequency	
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			3.4	4.9	mA	5 MHz logic signal frequency	
$V_{\text {DD2 }}$ Supply Current	$\operatorname{ldD2}$ (10)						
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			1.1	1.3	mA	5 MHz logic signal frequency	
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			1.9	2.2	mA	5 MHz logic signal frequency	
ADuM1311, Total Supply Current, Three Channels ${ }^{1}$ DC to 2 Mbps							
$V_{\text {DD } 1}$ Supply Current		lodi (e)					
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			2.2	2.8	mA	DC to 1 MHz logic signal frequency	
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			1.0	1.6	mA	DC to 1 MHz logic signal frequency	
$V_{\text {DD2 }}$ Supply Current	$\mathrm{lDD2}$ (Q)						
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			0.9	1.4	mA	DC to 1 MHz logic signal frequency	
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			1.8	2.4	mA	DC to 1 MHz logic signal frequency	
10 Mbps (BRWZ Grade Only)							
$V_{\text {DD } 1}$ Supply Current	$\operatorname{ldD1~(10)~}$						
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			4.5	5.7	mA	5 MHz logic signal frequency	
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			2.5	3.5	mA	5 MHz logic signal frequency	
$\mathrm{V}_{\mathrm{DD} 2}$ Supply Current	$\operatorname{ldD2}$ (10)						
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			1.9	2.6	mA	5 MHz logic signal frequency	
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			3.5	4.3	mA	5 MHz logic signal frequency	
For All Models							
Input Currents		$I_{A A}, I_{\text {IB }}, I_{I C}, I_{\text {ctrlin }}$ latRL2, IDISABLE	-10	+0.01	+10	$\mu \mathrm{A}$	$\begin{aligned} & 0 V \leq V_{I A,} V_{\text {IB, }} \quad V_{I C} \leq V_{D D 1} \text { or } V_{D D 2,} \\ & 0 V \leq V_{C T R L 1,} V_{C T R L 2} \leq V_{D D 1} \text { or } V_{D D 2}, \\ & 0 V \leq V_{D I S A B L E} \leq V_{D D 1} \end{aligned}$
Logic High Input Threshold	V_{H}						
$\mathrm{V}_{\text {DDX }}=5 \mathrm{~V}$ Operation		2.0			V		
$V_{\text {DDX }}=3 \mathrm{~V}$ Operation		1.6			V		

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Parameter \& Symbol \& Min \& Typ \& Max \& Unit \& Test Conditions/Comments \\
\hline \begin{tabular}{l}
Logic Low Input Threshold \\
\(V_{D D X}=5 \mathrm{~V}\) Operation \\
\(V_{D D X}=3 \mathrm{~V}\) Operation \\
Logic High Output Voltages \\
Logic Low Output Voltages
\end{tabular} \& \& \[
\begin{aligned}
\& \left(V_{D D 1} \text { or } V_{D D 2}\right)-0.1 \\
\& \left(V_{D D 1} \text { or } V_{D D 2}\right)-0.4
\end{aligned}
\] \& \[
\begin{aligned}
\& \left(V_{D D 1} \text { or } V_{D D 2}\right) \\
\& \left(V_{D D 1} \text { or } V_{D D 2}\right)-0.2 \\
\& 0.0 \\
\& 0.2
\end{aligned}
\] \& 0.8
0.4

0.1

0.4 \& $$
\begin{aligned}
& \mathrm{V} \\
& \mathrm{~V} \\
& \mathrm{~V} \\
& \mathrm{~V} \\
& \mathrm{~V} \\
& \mathrm{~V}
\end{aligned}
$$ \&

\hline \multicolumn{7}{|l|}{SWITCHING SPECIFICATIONS}

\hline ADuM131xARWZ \& \& \& \& \& \&

\hline Minimum Pulse Width ${ }^{2}$ \& PW \& \& \& 1000 \& ns \& $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels

\hline Maximum Data Rate ${ }^{3}$ \& \& 1 \& \& \& Mbps \& $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels

\hline Propagation Delay ${ }^{4}$ \& $\mathrm{t}_{\text {PHL, }} \mathrm{t}_{\text {PLH }}$ \& 25 \& \& 100 \& ns \& $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels

\hline Pulse Width Distortion $\mid t_{\text {pLH }}-$ tpHL ${ }^{4}$ \& PWD \& \& \& 40 \& ns \& $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels

\hline Propagation Delay Skew ${ }^{5}$ \& tpsk \& \& \& 50 \& ns \& $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels

\hline Channel-to-Channel Matching ${ }^{6}$ \& tPSKCD/OD \& \& \& 50 \& ns \& $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels

\hline \multicolumn{7}{|l|}{ADuM131xBRWZ}

\hline Minimum Pulse Width ${ }^{2}$ \& PW \& \& \& 100 \& ns \& $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels

\hline Maximum Data Rate ${ }^{3}$ \& \& 10 \& \& \& Mbps \& $\mathrm{C}_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels

\hline Propagation Delay ${ }^{4}$ \& $\mathrm{t}_{\text {PHL, }} \mathrm{t}_{\text {PLH }}$ \& 20 \& \& 60 \& ns \& $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels

\hline Pulse Width Distortion, $\left|\mathrm{t}_{\text {PLH }}-\mathrm{t}_{\text {PHL }}\right|^{4}$ \& PWD \& \& \& 5 \& ns \& $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels

\hline Change vs. Temperature \& \& \& 5 \& \& ps/ ${ }^{\circ} \mathrm{C}$ \& $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels

\hline Propagation Delay Skew ${ }^{5}$ \& tpsk \& \& \& 30 \& ns \& $\mathrm{C}_{L}=15 \mathrm{pF}$, CMOS signal levels

\hline Channel-to-Channel Matching, Codirectional Channels ${ }^{6}$ \& t PSkco \& \& \& 5 \& ns \& $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels

\hline Channel-to-Channel Matching, Opposing-Directional Channels ${ }^{6}$ \& tpskod \& \& \& 6 \& ns \& $C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels

\hline \multicolumn{7}{|l|}{For All Models}

\hline Output Rise/Fall Time (10\% to 90\%) \& t_{R} / t_{F} \& \& \& \& \& $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels

\hline $5 \mathrm{~V} / 3 \mathrm{~V}$ Operation \& \& \& 2.5 \& \& ns \&

\hline $3 \mathrm{~V} / 5 \mathrm{~V}$ Operation \& \& \& 2.5 \& \& ns \&

\hline Common-Mode Transient Immunity at Logic High Output ${ }^{7}$ \& |CMH| \& 25 \& 35 \& \& kV/ $\mu \mathrm{s}$ \& $$
\begin{aligned}
& \mathrm{V}_{\mathrm{IX}}=\mathrm{V}_{\mathrm{DD} 1} \text { or } \mathrm{V}_{\mathrm{DD} 2}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\
& \text { transient magnitude }=800 \mathrm{~V}
\end{aligned}
$$

\hline Common-Mode Transient Immunity at Logic Low Output ${ }^{7}$ \& |CML| \& 25 \& 35 \& \& kV/ $/ \mathrm{s}$ \& $$
\begin{aligned}
& \mathrm{V}_{\mathrm{Ix}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\
& \text { transient magnitude }=800 \mathrm{~V}
\end{aligned}
$$

\hline Refresh Rate \& fr_{r} \& \& \& \& \&

\hline $5 \mathrm{~V} / 3 \mathrm{~V}$ Operation \& \& \& 1.2 \& \& Mbps \&

\hline $3 \mathrm{~V} / 5 \mathrm{~V}$ Operation \& \& \& 1.1 \& \& Mbps \&

\hline Input Enable Time ${ }^{8}$ \& tenable \& \& \& 2.0 \& $\mu \mathrm{s}$ \& $\mathrm{V}_{14}, \mathrm{~V}_{13}, \mathrm{~V}_{1 C}, \mathrm{~V}_{\text {ID }}=0 \mathrm{~V}$ or $\mathrm{V}_{\text {DD } 1}$

\hline Input Disable Time ${ }^{8}$ \& $\mathrm{t}_{\text {IISABLE }}$ \& \& \& 5.0 \& $\mu \mathrm{s}$ \& $V_{I A}, V_{I B}, V_{I C}, V_{I D}=0 \mathrm{~V}$ or $V_{\text {DD } 1}$

\hline Input Supply Current per Channel, Quiescent ${ }^{9}$ \& \& \& \& \& \&

\hline $\mathrm{V}_{\mathrm{DDX}}=5 \mathrm{~V}$ Operation \& IDDI (0) \& \& 0.50 \& 0.73 \& mA \&

\hline $\mathrm{V}_{\mathrm{DDX}}=3 \mathrm{~V}$ Operation \& IDDI(0) \& \& 0.25 \& 0.38 \& mA \&

\hline Output Supply Current per Channel, Quiescent ${ }^{9}$ \& \& \& \& \& \&

\hline $\mathrm{V}_{\mathrm{DDX}}=5 \mathrm{~V}$ Operation \& IDDO (Q) \& \& 0.38 \& 0.53 \& mA \&

\hline $\mathrm{V}_{\mathrm{DDx}}=3 \mathrm{~V}$ Operation \& IDDo (0) \& \& 0.19 \& 0.33 \& mA \&

\hline Input Dynamic Supply Current per Channel ${ }^{10}$ \& $\operatorname{ldDI}(\mathrm{D})$ \& \& \& \& \&

\hline $\mathrm{V}_{\mathrm{DDX}}=5 \mathrm{~V}$ Operation \& \& \& 0.12 \& \& | mA/ |
| :--- |
| Mbps | \&

\hline $\mathrm{V}_{\mathrm{DDX}}=3 \mathrm{~V}$ Operation \& \& \& 0.07 \& \& | mA/ |
| :--- |
| Mbps | \&

\hline
\end{tabular}

${ }^{1}$ The supply current values for all four channels are combined when running at identical data rates. Output supply current values are specified with no output load present. The supply current associated with an individual channel operating at a given data rate can be calculated as described in the Power Consumption section. See Figure 6 through Figure 8 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 9 through Figure 12 for total V_{DD} and $\mathrm{V}_{\mathrm{DD} 2}$ supply currents as a function of data rate for ADuM1310/ADuM1311 channel configurations.
${ }^{2}$ The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.
${ }^{3}$ The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.
${ }^{4} t_{\text {PHL }}$ propagation delay is measured from the 50% level of the falling edge of the $V_{1 \times}$ signal to the 50% level of the falling edge of the $V_{O x}$ signal. tpLн measured from the 50% level of the rising edge of the $V_{1 x}$ signal to the 50% level of the rising edge of the $V_{\text {ox }}$ signal.
${ }^{5} \mathrm{t}_{\text {PSK }}$ is the magnitude of the worst-case difference in $\mathrm{t}_{\text {PHL }}$ or $\mathrm{t}_{\mathrm{PLH}}$ that is measured between units at the same operating temperature, supply voltages, and output load within the recommended operating conditions.
${ }^{6}$ Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of the isolation barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on opposing sides of the isolation barrier.
${ }^{7} \mathrm{CM}_{H}$ is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{\mathrm{O}}>0.8 \mathrm{~V}_{\mathrm{DD} 2}$. CML is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{0}<0.8 \mathrm{~V}$. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient magnitude is the range over which the common mode is slewed.
${ }^{8}$ Input enable time is the duration from when $V_{\text {DISABLE }}$ is set low until the output states are guaranteed to match the input states in the absence of any input data logic transitions. If an input data logic transition within a given channel does occur within this time interval, the output of that channel reaches the correct state within the much shorter duration, as determined by the propagation delay specifications within this data sheet. Input disable time is the duration from when $V_{\text {DISABLE }}$ is set high until the output states are guaranteed to reach their programmed output levels, as determined by the CTRL2 logic state (see Table 13).
${ }^{9} \mathrm{I}_{\mathrm{DDx}(0)}$ is the quiescent current drawn from the corresponding supply by a single channel. To calculate the total quiescent current, an additional inaccessible channel in the same orientation as Channel A must be included to account for the total current consumed.
${ }^{10}$ Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 6 through Figure 8 for information on per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating the per-channel supply current for a given data rate.

ADuM1310/ADuM1311

PACKAGE CHARACTERISTICS

Table 4.

${ }^{1}$ The device is considered a 2-terminal device; Pin 1 through Pin 8 are shorted together, and Pin 9 through Pin 16 are shorted together.
${ }^{2}$ Input capacitance is from any input data pin to ground.

REGULATORY INFORMATION

The ADuM1310/ADuM1311 have been approved by the organizations listed in Table 5. See Table 10 and the Insulation Lifetime section for recommended maximum working voltages for specific cross-isolation waveforms and insulation levels.

Table 5.

UL	CSA	CQC	VDE
Recognized Under 1577 Component Recognition Program ${ }^{1}$	Approved under CSA Component Acceptance Notice 5A	Approved under CQC11-471543- 2012	Certified according to DIN V VDE V 0884-10 (VDE V 0884-10): 2006-12²
Single Protection, 3750 V rms Isolation Voltage	Basic insulation per CSA 60950-1-03 and IEC 60950-1, 800 V rms (1131 V peak) maximum working voltage Reinforced insulation per CSA 60950-1-03 and IEC 60950-1, 400 V rms (566 V peak) maximum working voltage	Basic insulation per GB4943.1-2011 Basic insulation, 415 V rms (588 V peak) maximum working voltage, tropical climate, altitude \leq 5000 m	Reinforced insulation, 560 V peak
File E214100	File 205078	File: CQC14001114897	File 2471900-4880-0001

${ }^{1}$ In accordance with UL 1577, each ADuM1310/ADuM1311 is proof-tested by applying an insulation test voltage $\geq 4500 \mathrm{Vrms}$ for 1 sec (current leakage detection limit $=8.1 \mu \mathrm{~A}$).
${ }^{2}$ In accordance with DIN V VDE V 0884-10, each ADuM1310/ADuM1311 is proof-tested by applying an insulation test voltage ≥ 1050 V peak for 1 second (partial discharge detection limit = 5 pC). The asterisk (${ }^{*}$) marked on the component designates DIN V VDE V 0884-10 approval.

INSULATION AND SAFETY-RELATED SPECIFICATIONS

Table 6.

Parameter	Symbol	Value	Unit	Test Conditions/Comments
Rated Dielectric Insulation Voltage	L(I01)	3750 7.7 min	V rms mm	1-minute duration Measured from input terminals to output terminals, shortest distance through air
Minimum External Air Gap (Clearance)	L(IO2)	8.1 min	mm	Measured from input terminals to output terminals, shortest distance path along body
Minimum External Tracking (Creepage)		0.017 min	mm	Insulation distance through insulation
Minimum Internal Gap (Internal Clearance)	CTI	>400	V	DIN IEC 112/VDE 0303 Part 1 Material Group (DIN VDE 0110, 1/89, Table 1)
Tracking Resistance (Comparative Tracking Index) Isolation Group		II		

DIN V VDE V 0884-10 (VDE V 0884-10): 2006-12 INSULATION CHARACTERISTICS

The ADuM1310/ADuM1311 isolators are suitable for reinforced electrical isolation within the safety limit data only. Maintenance of the safety data is ensured by protective circuits. The asterisk $\left(^{*}\right)$ marked on packages denotes DIN V VDE V 0884-10 approval for 560 V peak working voltage.

Table 7.

Description	Test Conditions/Comments	Symbol	Characteristic	Unit
Installation Classification per DIN VDE 0110				
For Rated Mains Voltage $\leq 150 \mathrm{~V}$ rms			I to IV	
For Rated Mains Voltage $\leq 300 \mathrm{~V}$ rms			I to III	
For Rated Mains Voltage $\leq 400 \mathrm{~V}$ rms			I to II	
Climatic Classification			40/105/21	
Pollution Degree per DIN VDE 0110, Table 1			2	
Maximum Working Insulation Voltage		VIorm	560	\checkmark peak
Input-to-Output Test Voltage, Method B1	$V_{\text {IORM }} \times 1.875=V_{\text {PR, }}, 100 \%$ production test, $\mathrm{t}_{\mathrm{m}}=1 \mathrm{sec}$, partial discharge $<5 \mathrm{pC}$	$V_{\text {PR }}$	1050	\checkmark peak
Input-to-Output Test Voltage, Method A After Environmental Tests Subgroup 1	$\mathrm{V}_{\text {IORM }} \times 1.6=\mathrm{V}_{\text {PR, }}, \mathrm{t}_{\mathrm{m}}=60 \mathrm{sec}$, partial discharge $<5 \mathrm{pC}$	$V_{\text {PR }}$	896	peak
After Input and/or Safety Test Subgroup 2 and Subgroup 3	$\mathrm{V}_{\text {IORM }} \times 1.2=\mathrm{V}_{\text {PR, }} \mathrm{t}_{\mathrm{m}}=60 \mathrm{sec}$, partial discharge $<5 \mathrm{pC}$		672	\checkmark peak
Highest Allowable Overvoltage	Transient overvoltage, $\mathrm{t}_{\text {TR }}=10 \mathrm{sec}$	$V_{\text {TR }}$	4000	\checkmark peak
Safety-Limiting Values	Maximum value allowed in the event of a failure; see Figure 3			
Case Temperature		Ts	150	${ }^{\circ} \mathrm{C}$
Side 1 Current		Is 1	265	mA
Side 2 Current		$\mathrm{I}_{\text {S }}$	335	mA
Insulation Resistance at T_{5}	$\mathrm{V}_{10}=500 \mathrm{~V}$	Rs	$>10^{9}$	Ω

Figure 3. Thermal Derating Curve, Dependence of Safety-Limiting Values with Case Temperature per DIN V VDE V 0884-10

RECOMMENDED OPERATING CONDITIONS

Table 8.

Parameter	Symbol	Min	Max	Unit
Operating Temperature	T_{A}	-40	+105	${ }^{\circ} \mathrm{C}$
Supply Voltages				
Input Signal Rise and Fall Times	$\mathrm{V}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{DD} 2}$	2.7	5.5	V

${ }^{1}$ All voltages are relative to their respective ground. See the DC Correctness and Magnetic Field Immunity section for information on immunity to external magnetic fields.

ADuM1310/ADuM1311

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 9.

Parameter	Rating
Storage Temperature ($\mathrm{T}_{\text {st }}$) Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Operating Temperature (T_{A}) Range	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
Supply Voltages ($\left.\mathrm{V}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{DD} 2}\right)^{1}$	-0.5 V to +7.0 V
Input Voltage $\left(V_{I A}, V_{1 B}, V_{1 /}, V_{\text {DISABLLE }}, V_{\text {CTRLL } 1}, V_{C T R L 2}\right)^{1,2}$	-0.5 V to V DII +0.5 V
Output Voltage ($\left.\mathrm{V}_{\text {OA }}, \mathrm{V}_{\text {OB }}, \mathrm{V}_{\text {OC }}\right)^{1,2}$	-0.5 V to $\mathrm{V}_{\text {DDO }}+0.5 \mathrm{~V}$
Average Output Current per Pin ${ }^{3}$	
Side 1 (l_{1})	-18 mA to +18 mA
Side 2 (l_{0})	-22 mA to +22 mA
Common-Mode Transients ${ }^{4}$	$-100 \mathrm{kV} / \mu \mathrm{s}$ to $+100 \mathrm{kV} / \mu \mathrm{s}$

${ }^{1}$ All voltages are relative to their respective ground.
${ }^{2} V_{D D I}$ and $V_{D D O}$ refer to the supply voltages on the input and output sides of a given channel, respectively. See the PC Board Layout section.
${ }^{3}$ See Figure 3 for maximum rated current values for various temperatures.
${ }^{4}$ Refers to common-mode transients across the insulation barrier. Common-mode transients exceeding the absolute maximum ratings may cause latch-up or permanent damage.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Table 10. Maximum Continuous Working Voltage ${ }^{1}$

Parameter	Max	Unit	Constraint
AC Voltage, Bipolar Waveform	565	V peak	50-year minimum lifetime
AC Voltage, Unipolar Waveform			
Basic Insulation	1131	V peak	Maximum approved working voltage per IEC 60950-1
Reinforced Insulation	560	V peak	Maximum approved working voltage per IEC 60950-1 and VDE V 0884-10
DC Voltage			
Basic Insulation	1131	V peak	Maximum approved working voltage per IEC 60950-1
Reinforced Insulation	560	V peak	Maximum approved working voltage per IEC 60950-1 and VDE V 0884-10

[^0]
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

*PIN 2 AND PIN 8 ARE INTERNALLY CONNECTED. CONNECTING BOTH TO GND 1 IS RECOMMENDED. PIN 9 AND PIN 15 ARE INTERNALLY CONNECTED. CONNECTING BOTH TO GND 2 IS RECOMMENDED.

Figure 4. ADuM1310 Pin Configuration

Table 11. ADuM1310 Pin Function Descriptions

Pin No.	Mnemonic	Description
1	$\mathrm{V}_{\mathrm{DD} 1}$	Supply Voltage for Isolator Side 1, 2.7 V to 5.5 V.
2	GND_{1}	Ground 1. Ground reference for Isolator Side 1.
3	VIA	Logic Input A.
4	$V_{\text {IB }}$	Logic Input B.
5	VIC	Logic Input C.
6	NC	No Connection.
7	DISABLE	Input Disable. Disables the isolator inputs and halts the dc refresh circuits. Outputs take on the logic state determined by CTRL $_{2}$.
8	GND_{1}	Ground 1. Ground reference for Isolator Side 1.
9	GND_{2}	Ground 2. Ground reference for Isolator Side 2.
10	CTRL2	Default Output Control. Controls the logic state the outputs take on when the input power is off. $\mathrm{V}_{\mathrm{OA}}, \mathrm{V}_{\mathrm{OB}}$, and $V_{\text {Oc }}$ outputs are high when CTRL L_{2} is high or disconnected and $V_{D D 1}$ is off. $V_{O A}, V_{O B}$, and $V_{\text {oc }}$ outputs are low when CTRL2 is low and $V_{D D 1}$ is off. When $V_{D D 1}$ power is on, this pin has no effect.
11	NC	No Connection.
12	Voc	Logic Output C.
13	$\mathrm{V}_{\text {ов }}$	Logic Output B.
14	VoA	Logic Output A.
15	GND_{2}	Ground 2. Ground reference for Isolator Side 2.
16	$\mathrm{V}_{\mathrm{DD} 2}$	Supply Voltage for Isolator Side 2, 2.7 V to 5.5 V.

ADuM1310/ADuM1311

*PIN 2 AND PIN 8 ARE INTERNALLY CONNECTED. CONNECTING BOTH
TO GND 1 IS RECOMMENDED. PIN 9 AND PIN 15 ARE INTERNALLY
CONNECTED. CONNECTING BOTH TO GND 2 IS RECOMMENDED.
Figure 5. ADuM1311 Pin Configuration

Table 12. ADuM1311 Pin Function Descriptions

Pin No.	Mnemonic	Description
1	VDD1	Supply Voltage for Isolator Side 1, 2.7 V to 5.5 V.
2	GND_{1}	Ground 1. Ground reference for Isolator Side 1.
3	$V_{\text {IA }}$	Logic Input A.
4	$V_{\text {IB }}$	Logic Input B.
5	Voc	Logic Output C.
6	NC	No Connection.
7	CTRL ${ }_{1}$	Default Output Control. Controls the logic state the outputs take on when the input power is off. Voc output is high when CTRL_{1} is high or disconnected and $V_{D D 2}$ is off. $V_{\text {oc }}$ output is low when CTRL_{1} is low and $V_{D D 2}$ is off. When $V_{D D 2}$ power is on, this pin has no effect.
8	GND_{1}	Ground 1. Ground reference for Isolator Side 1.
9	GND_{2}	Ground 2. Ground reference for Isolator Side 2.
10	CTRL_{2}	Default Output Control. Controls the logic state the outputs take on when the input power is off. $V_{\text {OA }}$ and $V_{O B}$ outputs are high when CTRL 2 is high or disconnected and $V_{D D 1}$ is off. $V_{\text {OA }}$ and $V_{\text {OB }}$ outputs are low when CTRL2 is low and $V_{D D 1}$ is off. When $V_{D D 1}$ power is on, this pin has no effect.
11	NC	No Connection.
12	VIC	Logic Input C.
13	$V_{\text {ов }}$	Logic Output B.
14	VoA	Logic Output A.
15	GND_{2}	Ground 2. Ground reference for Isolator Side 2.
16	$\mathrm{V}_{\mathrm{DD} 2}$	Supply Voltage for Isolator Side 2, 2.7 V to 5.5 V.

Table 13. Truth Table (Positive Logic)

VIx Input ${ }^{1}$	CTRL Input ${ }^{2}$	Visable State ${ }^{3}$	VDI State ${ }^{4}$	VDDo State ${ }^{5}$	Vox Output	Description
H	X	L or NC	Powered	Powered	H	Normal operation, data is high.
L	X	L or NC	Powered	Powered	L	Normal operation, data is low.
X	$\begin{aligned} & \text { H or } \\ & \text { NC } \end{aligned}$	H	X	Powered	H	Inputs disabled. Outputs are in the default state determined by CTRL.
X	L	H	X	Powered	L	Inputs disabled. Outputs are in the default state determined by CTRL.
X	$\begin{aligned} & \text { H or } \\ & \text { NC } \end{aligned}$	X	Unpowered	Powered	H	Input unpowered. Outputs are in the default state determined by CTRLx. Outputs return to input state within $1 \mu \mathrm{~s}$ of $\mathrm{V}_{\text {DII }}$ power restoration. See the pin function descriptions (Table 11 and Table 12) for more details.
X	L	X	Unpowered	Powered	L	Input unpowered. Outputs are in the default state determined by CTRL_. Outputs return to input state within $1 \mu s$ of $V_{\text {DDI }}$ power restoration. See the pin function descriptions (Table 11 and Table 12) for more details.
X	X	X	Powered	Unpowered	Z	Output unpowered. Output pins are in high impedance state. Outputs return to input state within $1 \mu \mathrm{~s}$ of $\mathrm{V}_{\mathrm{DDO}}$ power restoration. See the pin function descriptions (Table 11 and Table 12) for more details.

${ }^{1} V_{1 \times}$ and $V_{o x}$ refer to the input and output signals of a given channel (A, B, or C).
${ }^{2}$ CTRL L_{x} refers to the default output control signal on the input side of a given channel ($A, B, \operatorname{or} C$).
${ }^{3}$ Available only on the ADuM1310.
${ }^{4} V_{\text {DDI }}$ refers to the power supply on the input side of a given channel (A, B, or C).
${ }^{5} V_{D D O}$ refers to the power supply on the output side of a given channel (A, B, or C).

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 6. Typical Supply Current per Input Channel vs. Data Rate for 5 V and 3 V Operation

Figure 7. Typical Supply Current per Output Channel vs. Data Rate for 5 V and 3 V Operation (No Output Load)

Figure 8. Typical Supply Current per Output Channel vs. Data Rate for 5 V and 3 V Operation (15 pF Output Load)

Figure 9. Typical ADuM1310 VDD1 Supply Current vs. Data Rate for 5 V and 3 V Operation

Figure 10. Typical ADuM1310 VDD2 Supply Current vs. Data Rate for 5 V and 3 V Operation (No Output Load)

Figure 11. Typical ADuM1311 VDD1 Supply Current vs. Data Rate for 5 V and 3 V Operation (No Output Load)

Figure 12. Typical ADuM1311 VDD2 Supply Current vs. Data Rate for 5 V and 3 V Operation (No Output Load)

APPLICATIONS INFORMATION

PC BOARD LAYOUT

The ADuM1310/ADuM1311 digital isolator requires no external interface circuitry for the logic interfaces. Power supply bypassing is strongly recommended at the input and output supply pins (see Figure 13). Bypass capacitors are most conveniently connected between Pin 1 and Pin 2 for $V_{\text {DD1 }}$ and between Pin 15 and Pin 16 for $V_{\text {DD2 }}$. The capacitor value should be between $0.01 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$. The total lead length between both ends of the capacitor and the input power supply pin should not exceed 20 mm . Bypassing between Pin 1 and Pin 8 and between Pin 9 and Pin 16 should be considered, unless both ground pins on each package are connected together close to the package.

Figure 13. Recommended Printed Circuit Board Layout
In applications involving high common-mode transients, care should be taken to ensure that board coupling across the isolation barrier is minimized. Furthermore, the board layout should be designed so that any coupling that does occur equally affects all pins on a given component side. Failure to ensure this can cause voltage differentials between pins exceeding the device's absolute maximum ratings, thereby leading to latch-up or permanent damage.
See the AN-1109 Application Note for board layout guidelines.

PROPAGATION DELAY-RELATED PARAMETERS

Propagation delay is a parameter that describes the time it takes a logic signal to propagate through a component. The input-tooutput propagation delay time for a high-to-low transition may differ from the propagation delay time of a low-to-high transition.

Figure 14. Propagation Delay Parameters
Pulse width distortion is the maximum difference between these two propagation delay values and is an indication of how accurately the input signal's timing is preserved.

Channel-to-channel matching refers to the maximum amount the propagation delay differs between channels within a single ADuM1310/ADuM1311 component.
Propagation delay skew refers to the maximum amount the propagation delay differs between multiple ADuM1310/ ADuM1311 components operating under the same conditions.

DC CORRECTNESS AND MAGNETIC FIELD IMMUNITY

Positive and negative logic transitions at the isolator input cause narrow ($\sim 1 \mathrm{~ns}$) pulses to be sent to the decoder via the transformer. The decoder is bistable and is therefore either set or reset by the pulses, indicating input logic transitions. In the absence of logic transitions at the input for more than $\sim 1 \mu \mathrm{~s}$, a periodic set of refresh pulses indicative of the correct input state is sent to ensure dc correctness at the output. If the decoder receives no internal pulses of more than about $5 \mu \mathrm{~s}$, the input side is assumed to be unpowered or nonfunctional, in which case the isolator output is forced to a default state (see Table 13) by the watchdog timer circuit.
The magnetic field immunity of the ADuM1310/ADuM1311 is determined by the changing magnetic field, which induces a voltage in the transformer's receiving coil large enough to either falsely set or reset the decoder. The following analysis defines the conditions under which this can occur. The 3 V operating condition of the ADuM1310/ADuM1311 is examined because it represents the most susceptible mode of operation.
The pulses at the transformer output have an amplitude greater than 1.0 V . The decoder has a sensing threshold at about 0.5 V , thus establishing a 0.5 V margin in which induced voltages can be tolerated. The voltage induced across the receiving coil is given by

$$
V=(-d \beta / d t) \sum \pi r_{n}^{2} ; n=1,2, \ldots, N
$$

where:
β is magnetic flux density (gauss).
r_{n} is the radius of the nth turn in the receiving coil (cm).
N is the number of turns in the receiving coil.
Given the geometry of the receiving coil in the ADuM1310/ ADuM1311 and an imposed requirement that the induced voltage be, at most, 50% of the 0.5 V margin at the decoder, a maximum allowable magnetic field at a given frequency can be calculated. The result is shown in Figure 15.

Figure 15. Maximum Allowable External Magnetic Flux Density
For example, at a magnetic field frequency of 1 MHz , the maximum allowable magnetic field of 0.2 kgauss induces a voltage of 0.25 V at the receiving coil. This is about 50% of the sensing threshold and does not cause a faulty output transition. Similarly, if such an event occurred during a transmitted pulse (and had the worst-case polarity), it would reduce the received pulse from $>1.0 \mathrm{~V}$ to 0.75 V , still well above the 0.5 V sensing threshold of the decoder.
The preceding magnetic flux density values correspond to specific current magnitudes at given distances from the ADuM1310/ADuM1311 transformers. Figure 16 expresses these allowable current magnitudes as a function of frequency for selected distances. As shown, the ADuM1310/ADuM1311 is extremely immune and can be affected only by extremely large currents operated at high frequency very close to the component. For the 1 MHz example noted, a 0.5 kA current would have to be placed 5 mm away from the ADuM1310/ ADuM1311 to affect the component's operation.

Figure 16. Maximum Allowable Current for Various Current-to-ADuM1310/ADuM1311 Spacings

Note that, at combinations of strong magnetic field and high frequency, any loops formed by printed circuit board traces can induce error voltages sufficient to trigger succeeding circuitry. Care should be taken in the layout of such traces to avoid this possibility.

POWER CONSUMPTION

The supply current at a given channel of the ADuM1310/ ADuM1311 isolator is a function of the supply voltage, the channel data rate, and the channel output load.
For each input channel, the supply current is given by

$$
\begin{array}{ll}
I_{D D I}=I_{D D I(Q)} & f \leq 0.5 f_{r} \\
I_{D D I}=I_{D D I(D)} \times\left(2 f-f_{r}\right)+I_{D D I(Q)} & f>0.5 f_{r}
\end{array}
$$

For each output channel, the supply current is given by

$$
\begin{aligned}
& I_{D D O}=I_{D D O}(Q) f \leq 0.5 f_{r} \\
& I_{D D O}=\left(I_{D D O(D)}+\left(0.5 \times 10^{-3}\right) \times C_{L} \times V_{D D O}\right) \times\left(2 f-f_{r}\right)+I_{D D O(Q)} \\
& f>0.5 f_{r}
\end{aligned}
$$

where:
$I_{D D I(D)}, I_{D D O(D)}$ are the input and output dynamic supply currents per channel (mA/Mbps).
C_{L} is the output load capacitance (pF).
$V_{D D O}$ is the output supply voltage (V).
f is the input logic signal frequency (MHz); it is half the input data rate, expressed in units of Mbps.
f_{r} is the input stage refresh rate (Mbps).
$I_{D D I(Q)}, I_{D D O(Q)}$ are the specified input and output quiescent supply currents (mA).
To calculate the total $V_{D D 1}$ and $V_{D D 2}$ supply current, the supply currents for each input and output channel corresponding to $\mathrm{V}_{\mathrm{DD} 1}$ and $\mathrm{V}_{\mathrm{DD} 2}$ are calculated and totaled. The ADuM1310/ ADuM1311 contains an internal data channel that is not available to the user. This channel is in the same orientation as Channel A and consumes quiescent current. The contribution of this channel must be included in the total quiescent current calculation for each supply. Figure 6 and Figure 7 show perchannel supply currents as a function of data rate for an unloaded output condition. Figure 8 shows per-channel supply current as a function of data rate for a 15 pF output condition. Figure 9 through Figure 12 show total $V_{\text {DD1 }}$ and $V_{\text {DD } 2}$ supply current as a function of data rate for ADuM1310/ADuM1311 channel configurations.

ADuM1310/ADuM1311

INSULATION LIFETIME

All insulation structures eventually break down when subjected to voltage stress over a sufficiently long period. The rate of insulation degradation is dependent on the characteristics of the voltage waveform applied across the insulation. In addition to the testing performed by the regulatory agencies, Analog Devices carries out an extensive set of evaluations to determine the lifetime of the insulation structure within the ADuM1310/ ADuM1311.

Analog Devices performs accelerated life testing using voltage levels higher than the rated continuous working voltage. Acceleration factors for several operating conditions are determined. These factors allow calculation of the time to failure at the actual working voltage. The values shown in Table 10 summarize the peak voltage for 50 years of service life for a bipolar ac operating condition and the maximum CSA/VDE approved working voltages. In many cases, the approved working voltage is higher than 50 -year service life voltage. Operation at these high working voltages can lead to shortened insulation life in some cases.

The insulation lifetime of the ADuM1310/ADuM1311 depends on the voltage waveform type imposed across the isolation barrier. The iCoupler insulation structure degrades at different rates depending on whether the waveform is bipolar ac, unipolar ac, or dc. Figure 17, Figure 18, and Figure 19 illustrate these different isolation voltage waveforms.

Bipolar ac voltage is the most stringent environment. The goal of a 50 -year operating lifetime under the ac bipolar condition determines the Analog Devices recommended maximum working voltage.

In the case of unipolar ac or dc voltage, the stress on the insulation is significantly lower. This allows operation at higher working voltages while still achieving a 50 -year service life. The working voltages listed in Table 10 can be applied while maintaining the 50 -year minimum lifetime provided the voltage conforms to either the unipolar ac or dc voltage case. Any crossinsulation voltage waveform that does not conform to Figure 18 or Figure 19 should be treated as a bipolar ac waveform, and its peak voltage should be limited to the 50 -year lifetime voltage value listed in Table 10.

Note that the voltage presented in Figure 18 is shown as sinusoidal for illustration purposes only. It is meant to represent any voltage waveform varying between 0 V and some limiting value. The limiting value can be positive or negative, but the voltage cannot cross 0 V .

RATED PEAK VOLTAGE

Figure 17. Bipolar AC Waveform

Figure 18. Unipolar AC Waveform

Figure 19. DC Waveform

OUTLINE DIMENSIONS

Figure 20. 16-Lead Standard Small Outline Package [SOIC_W] Wide Body (RW-16)
Dimensions shown in millimeters and (inches)

ORDERING GUIDE
$\left.\begin{array}{l|l|l|l|l|l|l|l|l}\hline & \begin{array}{l}\text { Number } \\ \text { of Inputs, } \\ \text { V }_{\text {DD } 1} \text { Side }\end{array} & \begin{array}{l}\text { Number } \\ \text { of Inputs, } \\ \mathbf{V}_{\text {DD2 }} \text { Side }\end{array} & \begin{array}{l}\text { Maximum } \\ \text { Data Rate } \\ \text { (Mbps) }\end{array} & \begin{array}{l}\text { Maximum } \\ \text { Propagation } \\ \text { Delay, 5 V (ns) }\end{array} & \begin{array}{l}\text { Maximum } \\ \text { Pulse Width } \\ \text { Distortion (ns) }\end{array} & \begin{array}{l}\text { Temperature } \\ \text { Range }\end{array} & \text { Package Description }\end{array} \begin{array}{l}\text { Package } \\ \text { Option }\end{array}\right]$
${ }^{1} Z=$ RoHS Compliant Part.

ADuM1310/ADuM1311

NOTES
Data Sheet ADuM1310/ADuM1311

NOTES

[^0]: ${ }^{1}$ Refers to continuous voltage magnitude imposed across the isolation barrier. See the Insulation Lifetime section for more details.

