# NSS30101LT1G

## Low V<sub>CE(sat)</sub> Transistor, NPN, 30 V, 2.0 A, SOT-23 Package

ON Semiconductor's e<sup>2</sup>PowerEdge family of low  $V_{CE(sat)}$  transistors are miniature surface mount devices featuring ultra low saturation voltage ( $V_{CE(sat)}$ ) and high current gain capability. These are designed for use in low voltage, high speed switching applications where affordable efficient energy control is important.

Typical application are DC–DC converters and power management in portable and battery powered products such as cellular and cordless phones, PDAs, computers, printers, digital cameras and MP3 players. Other applications are low voltage motor controls in mass storage products such as disc drives and tape drives. In the automotive industry they can be used in air bag deployment and in the instrument cluster. The high current gain allows e<sup>2</sup>PowerEdge devices to be driven directly from PMU's control outputs, and the Linear Gain (Beta) makes them ideal components in analog amplifiers.

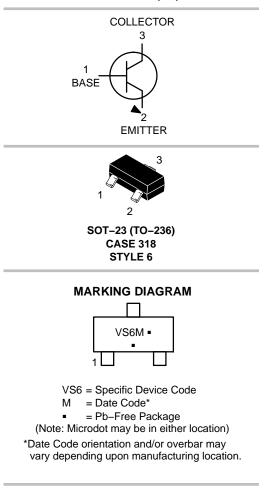
• These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

| MAXIMUM RATINGS ( $T_A = 25^{\circ}C$ ) |                                |                  |     |      |  |  |
|-----------------------------------------|--------------------------------|------------------|-----|------|--|--|
|                                         | Rating                         | Symbol           | Max | Unit |  |  |
|                                         | Collector-Emitter Voltage      | V <sub>CEO</sub> | 30  | Vdc  |  |  |
|                                         | Collector-Base Voltage         | V <sub>CBO</sub> | 50  | Vdc  |  |  |
|                                         | Emitter-Base Voltage           | V <sub>EBO</sub> | 5.0 | Vdc  |  |  |
|                                         | Collector Current – Continuous | Ι <sub>C</sub>   | 1.0 | А    |  |  |
|                                         | Collector Current – Peak       | I <sub>CM</sub>  | 2.0 | А    |  |  |

### THERMAL CHARACTERISTICS

| Characteristic                                                                | Symbol                            | Max            | Unit        |
|-------------------------------------------------------------------------------|-----------------------------------|----------------|-------------|
| Total Device Dissipation<br>$T_A = 25^{\circ}C$<br>Derate above $25^{\circ}C$ | P <sub>D</sub> (Note 1)           | 310<br>2.5     | mW<br>mW/°C |
|                                                                               |                                   | 2.5            |             |
| Thermal Resistance,<br>Junction to Ambient                                    | R <sub>θJA</sub> (Note 1)         | 403            | °C/W        |
| Total Device Dissipation<br>$T_A = 25^{\circ}C$                               | P <sub>D</sub> (Note 2)           | 710            | mW          |
| Derate above 25°C                                                             |                                   | 5.7            | mW/°C       |
| Thermal Resistance,<br>Junction to Ambient                                    | $R_{\theta JA}$ (Note 2)          | 176            | °C/W        |
| Total Device Dissipation<br>(Single Pulse < 10 sec.)                          | P <sub>Dsingle</sub>              | 575            | mW          |
| Junction and Storage<br>Temperature Range                                     | T <sub>J</sub> , T <sub>stg</sub> | –55 to<br>+150 | °C          |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


FR-4 @ Minimum Pad.
FR-4 @ 1.0 X 1.0 inch Pad.



## **ON Semiconductor®**

www.onsemi.com

 $\begin{array}{c} 30 \text{ VOLTS} \\ 2.0 \text{ AMPS} \\ \text{NPN LOW V}_{\text{CE(sat)}} \text{ TRANSISTOR} \\ \text{EQUIVALENT R}_{\text{DS(on)}} 100 \text{ m}\Omega \end{array}$ 



### **ORDERING INFORMATION**

| Device       | Package             | Shipping <sup>†</sup> |
|--------------|---------------------|-----------------------|
| NSS30101LT1G | SOT–23<br>(Pb–Free) | 3000/Tape & Reel      |

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

## NSS30101LT1G

### **ELECTRICAL CHARACTERISTICS** ( $T_A = 25^{\circ}C$ unless otherwise noted)

| Characteristic                                                                                                                                                                                          | Symbol               | Min               | Max                     | Unit |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------|-------------------------|------|
| OFF CHARACTERISTICS                                                                                                                                                                                     | <u> </u>             |                   |                         |      |
| Collector – Emitter Breakdown Voltage<br>( $I_C = 10 \text{ mAdc}, I_B = 0$ )                                                                                                                           | V <sub>(BR)CEO</sub> | 30                | _                       | Vdc  |
| Collector-Base Breakdown Voltage $(I_C = 0.1 \text{ mAdc}, I_E = 0)$                                                                                                                                    | V <sub>(BR)CBO</sub> | 50                | -                       | Vdc  |
| Emitter – Base Breakdown Voltage $(I_E = 0.1 \text{ mAdc}, I_C = 0)$                                                                                                                                    | V <sub>(BR)EBO</sub> | 5.0               | -                       | Vdc  |
| Collector Cutoff Current<br>( $V_{CB} = 30 \text{ Vdc}, I_E = 0$ )                                                                                                                                      | Ісво                 | _                 | 0.1                     | μAdc |
| Collector–Emitter Cutoff Current<br>(V <sub>CES</sub> = 30 Vdc)                                                                                                                                         | I <sub>CES</sub>     | _                 | 0.1                     | μAdc |
| Emitter Cutoff Current<br>(V <sub>EB</sub> = 4.0 Vdc)                                                                                                                                                   | I <sub>EBO</sub>     | _                 | 0.1                     | μAdc |
| ON CHARACTERISTICS                                                                                                                                                                                      |                      |                   |                         |      |
| DC Current Gain (Note 3)<br>$(I_C = 50 \text{ mA}, V_{CE} = 5.0 \text{ V})$<br>$(I_C = 0.5 \text{ A}, V_{CE} = 5.0 \text{ V})$<br>$(I_C = 1.0 \text{ A}, V_{CE} = 5.0 \text{ V})$                       | h <sub>FE</sub>      | 300<br>300<br>200 | _<br>900<br>_           |      |
| Collector – Emitter Saturation Voltage (Note 3)<br>( $I_C = 1.0 \text{ A}, I_B = 100 \text{ mA}$ )<br>( $I_C = 0.5 \text{ A}, I_B = 50 \text{ mA}$ )<br>( $I_C = 0.1 \text{ A}, I_B = 1.0 \text{ mA}$ ) | V <sub>CE(sat)</sub> | -<br>-<br>-       | 0.200<br>0.125<br>0.075 | V    |
| Base – Emitter Saturation Voltage (Note 3) $(I_C = 1.0 \text{ A}, I_B = 0.1 \text{ A})$                                                                                                                 | V <sub>BE(sat)</sub> | _                 | 1.1                     | V    |
| Base – Emitter Turn–on Voltage (Note 3)<br>( $I_C = 1.0 \text{ mA}, V_{CE} = 2.0 \text{ V}$ )                                                                                                           | V <sub>BE(on)</sub>  | _                 | 1.1                     | V    |
| Cutoff Frequency (I <sub>C</sub> = 100 mA, V <sub>CE</sub> = 5.0 V, f = 100 MHz                                                                                                                         | f <sub>T</sub>       | 100               | _                       | MHz  |
| Output Capacitance (f = 1.0 MHz)                                                                                                                                                                        | C <sub>obo</sub>     | _                 | 15                      | pF   |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 3. Pulsed Condition: Pulse Width =  $300 \ \mu$ sec, Duty Cycle  $\leq 2\%$ 

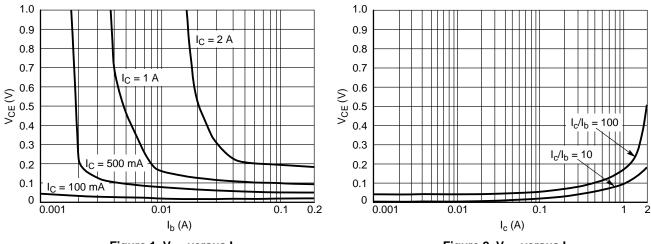



Figure 1.  $V_{CE}$  versus  $I_b$ 

Figure 2.  $V_{CE}$  versus  $I_c$ 

## NSS30101LT1G

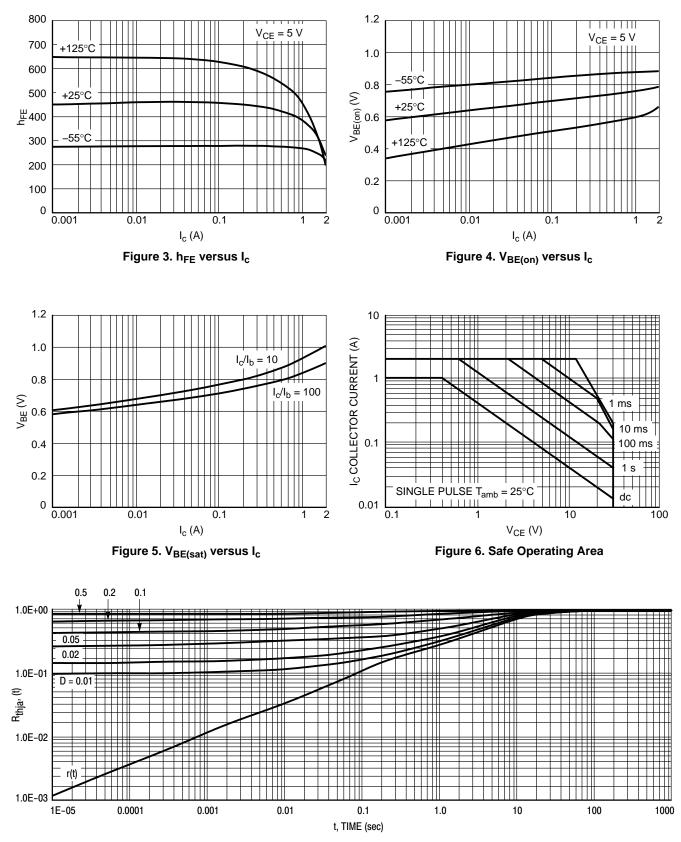
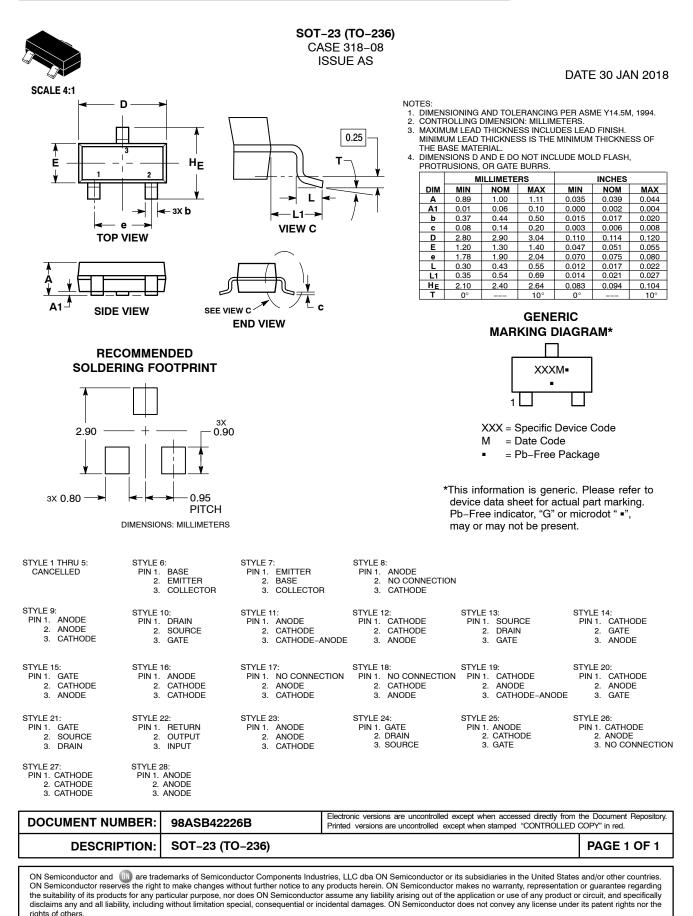




Figure 7. Normalized Thermal Response





© Semiconductor Components Industries, LLC, 2019

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houteds for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries

#### PUBLICATION ORDERING INFORMATION

#### LITERATURE FULFILLMENT:

#### TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

# **Mouser Electronics**

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: NSS30101LT1G