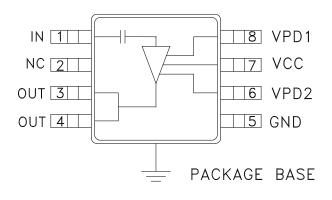


v04.0607

Typical Applications

This amplifier is ideal for use as a power amplifier for 2.2 - 2.7 GHz applications:


- BLUETOOTH
- MMDS

GaAs InGaP HBT MMIC POWER AMPLIFIER, 2.2 - 2.8 GHz

Features

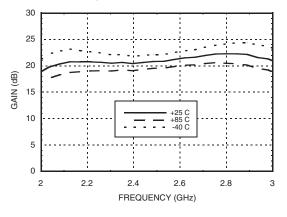
Gain: 20 dB Saturated Power: +30 dBm 32% PAE Supply Voltage: +2.75V to +5V Power Down Capability Low External Part Count

Functional Diagram

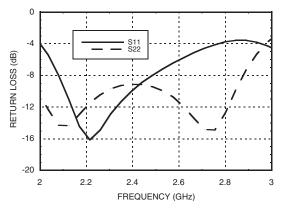
General Description

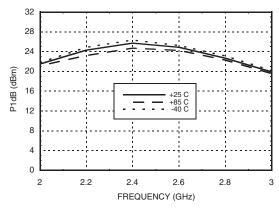
The HMC414MS8G & HMC414MS8GE are high efficiency GaAs InGaP Heterojunction Bipolar Transistor (HBT) MMIC Power amplifiers which operate between 2.2 and 2.8 GHz. The amplifier is packaged in a low cost, surface mount 8 leaded package with an exposed base for improved RF and thermal performance. With a minimum of external components, the amplifier provides 20 dB of gain, +30 dBm of saturated power at 32% PAE from a +5V supply voltage. The amplifier can also operate with a 3.6V supply. Vpd can be used for full power down or RF output power/ current control.

Electrical Specifications, $T_A = +25^{\circ}$ C, As a Function of Vs, Vpd = 3.6V

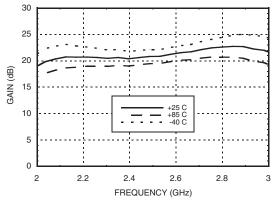

Parameter		Vs = 3.6V			Vs = 5V			
		Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range		2.2 - 2.8		2.2 - 2.8			GHz	
Gain		17	20	25	17	20	25	dB
Gain Variation Over Temperature			0.03	0.04		0.03	0.04	dB/ °C
Input Return Loss			8			8		dB
Output Return Loss			9			9		dB
Output Power for 1 dB Compression (P1dB)		21	25		23	27		dBm
Saturated Output Power (Psat)			27			30		dBm
Output Third Order Intercept (IP3)		30	35		35	39		dBm
Noise Figure			6.5			7.0		dB
Supply Current (Icq)	Vpd = 0V / 3.6V		0.002 / 240			0.002/300		mA
Control Current (Ipd)	Vpd = 3.6V		7			7		mA
Switching Speed	tON, tOFF		45			45		ns

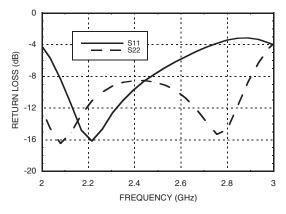
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



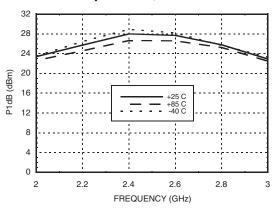

Gain vs. Temperature, Vs= 3.6V

Return Loss, Vs= 3.6V


P1dB vs. Temperature, Vs= 3.6V

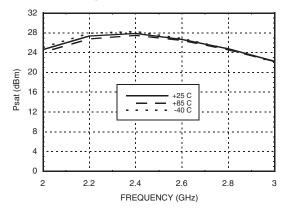

HMC414MS8G / 414MS8GE

GaAs InGaP HBT MMIC POWER AMPLIFIER, 2.2 - 2.8 GHz

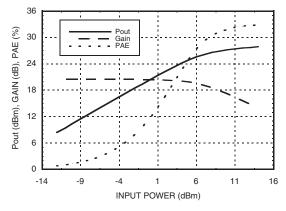

Gain vs. Temperature, Vs= 5V

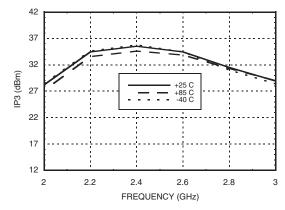
Return Loss, Vs= 5V

P1dB vs. Temperature, Vs= 5V



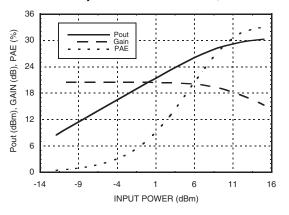
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



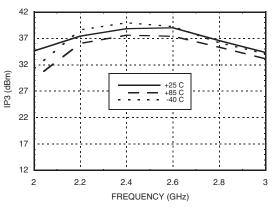

Psat vs. Temperature, Vs= 3.6V

Power Compression@ 2.4 GHz, Vs= 3.6V

Output IP3 vs. Temperature, Vs= 3.6V


HMC414MS8G / 414MS8GE

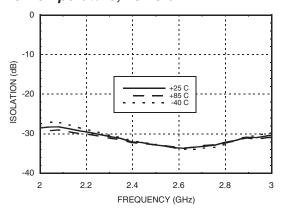
GaAs InGaP HBT MMIC POWER AMPLIFIER, 2.2 - 2.8 GHz


Psat vs. Temperature, Vs= 5V

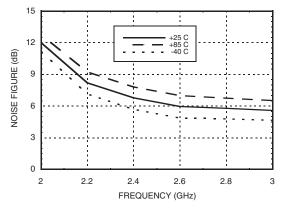
32 28 24 20 Psat (dBm) 16 +25 C +85 C -40 C . E 12 8 2 0 2 2.2 2.4 2.6 2.8 3 FREQUENCY (GHz)

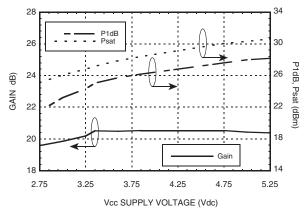
Power Compression@ 2.4 GHz, Vs= 5V

Output IP3 vs. Temperature, Vs= 5V

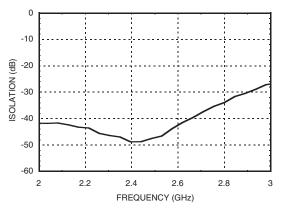


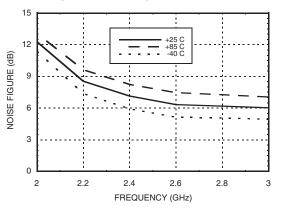
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



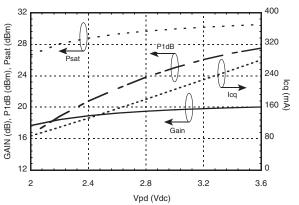

Reverse Isolation vs. Temperature, Vs= 3.6V

Noise Figure vs. Temperature, Vs= 3.6V


Gain & Power vs. Supply Voltage


HMC414MS8G / 414MS8GE

GaAs InGaP HBT MMIC POWER AMPLIFIER, 2.2 - 2.8 GHz

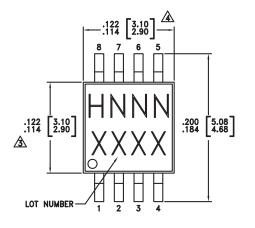

Power Down Isolation, Vs= 3.6V

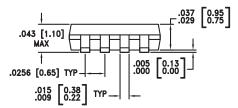
Noise Figure vs. Temperature, Vs= 5V

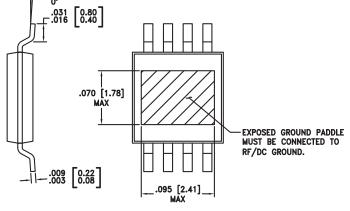
Gain, Power & Quiescent Supply Current vs Vpd@ 2.4 GHz

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

GaAs InGaP HBT MMIC POWER AMPLIFIER, 2.2 - 2.8 GHz


HMC414MS8G / 414MS8GE


Absolute Maximum Ratings


	-
Collector Bias Voltage (Vcc)	+5.5 Vdc
Control Voltage (Vpd1, Vpd2)	+4.0 Vdc
RF Input Power (RFIN)(Vs = +5.0, Vpd = +3.6 Vdc)	+17 dBm
Junction Temperature	150 °C
Continuous Pdiss (T = 85 °C) (derate 27 mW/°C above 85 °C)	1.755 W
Thermal Resistance (junction to ground paddle)	37 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C
Operating Temperature	-40 to +85 °C

Outline Drawing

NOTES:

1. LEADFRAME MATERIAL: COPPER ALLOY

2. DIMENSIONS ARE IN INCHES [MILLIMETERS].

A DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15mm PER SIDE.

A DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25mm PER SIDE.

5. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ^[3]
HMC414MS8G	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 ^[1]	H414 XXXX
HMC414MS8GE	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 ^[2]	H414 XXXX

[1] Max peak reflow temperature of 235 $^\circ\text{C}$

[2] Max peak reflow temperature of 260 °C

[3] 4-Digit lot number XXXX

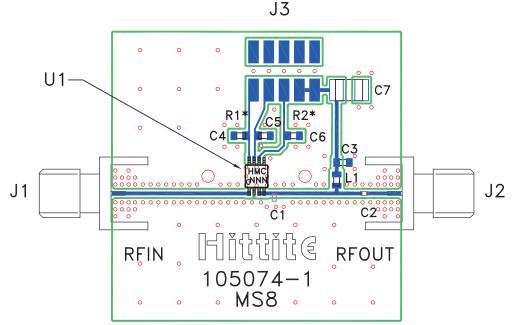
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v04.0607

GaAs InGaP HBT MMIC POWER AMPLIFIER, 2.2 - 2.8 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1	RFIN	This pin is AC coupled and matched to 50 Ohms.	RFIN ○──┤ ├──
2	NC	Not Connected.	
3, 4	RFOUT	RF output and DC bias for the output stage.	ORFOUT
5	GND	Ground: Backside of package has exposed metal ground slug that must be connected to ground thru a short path. Vias under the device are required.	
6, 8	Vpd1, Vpd2	Power control pin. For maximum power, this pin should be connected to 3.6V. For 5V operation, a dropping resistor is required. A higher voltage is not recommended. For lower idle current, this voltage can be reduced.	VPD1 VPD2
7	Vcc	Power supply voltage for the first amplifier stage. An external bypass capacitor of 330 pF is required as shown in the application schematic.	ovcc



v04.0607

GaAs InGaP HBT MMIC POWER AMPLIFIER, 2.2 - 2.8 GHz

Evaluation PCB

* For 5V operation on Vctl line, select R1, R2 such that 3.6V is presented on Pins 6 and 8.

List of Materials for Evaluation PCB 105006 [1]

Item	Description	
J1 - J2	PCB Mount SMA RF Connector	
J3	2 mm DC Header	
C1	2.7 pF Capacitor, 0603 Pkg.	
C2	100 pF Capacitor, 0402 Pkg.	
C3 - C6	330 pF Capacitor, 0603 Pkg.	
C7	2.2 µF Capacitor, Tantalum	
L1	18nH Inductor 0603 Pkg.	
U1	HMC414MS8G / HMC414MS8GE Amplifier	
PCB [2]	105074 Eval Board	

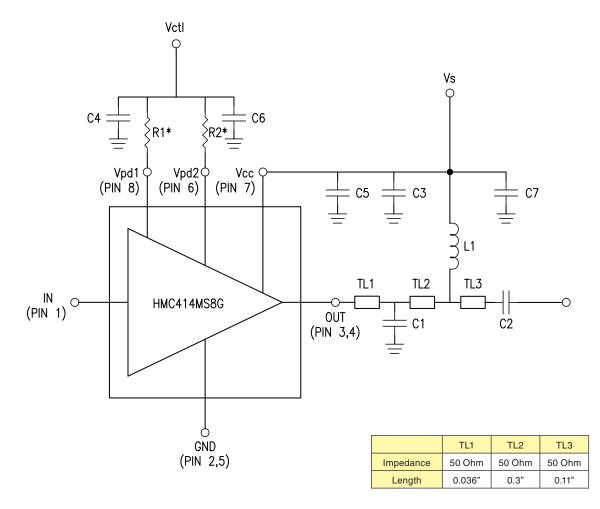
[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.

11

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



v04.0607

GaAs InGaP HBT MMIC POWER AMPLIFIER, 2.2 - 2.8 GHz

Application Circuit

* For 5V operation on Vctl line, select R1, R2 such that 3.6V is presented on Pins 6 and 8.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Analog Devices Inc.: HMC414MS8GE HMC414MS8GETR 105006-HMC414MS8G