30V N-CHANNEL ENHANCEMENT MODE MOSFET 2.5V GATE DRIVE

SUMMARY

$V_{\text {(BR)DSS }}=30 \mathrm{~V}: R_{D S(o n)}=0.15 \Omega ; I_{D}=2 A$

DESCRIPTION

This new generation of Trench MOSFETs from Zetex utilizes a unique structure that combines the benefits of low on-resistance with fast switching speed. This makes them ideal for high efficiency, low voltage, power management applications.

FEATURES

- Low on-resistance
- Fast switching speed
- Low threshold
- Low gate drive
- SOT23 package

APPLICATIONS

- DC-DC Converters
- Power Management functions
- Disconnect switches

- Motor control

ORDERING INFORMATION

DEVICE	REEL SIZE	TAPE WIDTH	QUANTITY PER REEL
ZXMN3B01FTA	$7^{\prime \prime}$	8 mm	3000 units
ZXMN3B01FTC	$13^{\prime \prime}$	8 mm	10000 units

DEVICE MARKING

- 3B1

TOP VIEW

ZXMN3B01F

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	LIMIT	UNIT
Drain-Source Voltage	$\mathrm{V}_{\text {DSS }}$	30	V
Gate-Source Voltage	V_{GS}	± 12	V
Continuous Drain Current @ $\mathrm{V}_{\mathrm{GS}}=4.5 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (b) @ $\mathrm{V}_{\mathrm{GS}}=4.5 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$ @ $\mathrm{V}_{\mathrm{GS}}=4.5 \mathrm{~V}$; $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (a)	${ }^{\text {D }}$	$\begin{align*} & 2.0 \\ & 1.6 \tag{b}\\ & 1.7 \end{align*}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$
Pulsed Drain Current ${ }^{(c)}$	$\mathrm{I}_{\text {DM }}$	9.4	A
Continuous Source Current (Body Diode) ${ }^{\text {(b) }}$	I_{S}	1.3	A
Pulsed Source Current (Body Diode) ${ }^{\text {(c) }}$	ISM	9.4	A
Power Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}^{(\mathrm{a})}$ Linear Derating Factor	P_{D}	$\begin{gathered} 625 \\ 5 \end{gathered}$	$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Power Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}{ }^{(\mathrm{b})}$ Linear Derating Factor	P_{D}	$\begin{gathered} \hline 806 \\ 6.4 \\ \hline \end{gathered}$	mW $\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Operating and Storage Temperature Range	$\mathrm{T}_{\mathrm{j}}, \mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

THERMAL RESISTANCE

PARAMETER	SYMBOL	VALUE	UNIT
Junction to Ambient ${ }^{\text {(a) }}$	R $_{\text {ӨJA }}$	200	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction to Ambient ${ }^{\text {(b) }}$	$\mathrm{R}_{\text {ӨJA }}$	155	${ }^{\circ} \mathrm{C} / \mathrm{W}$

NOTES
(a) For a device surface mounted on $25 \mathrm{~mm} \times 25 \mathrm{~mm}$ FR4 PCB with high coverage of single sided $10 z$ copper, in still air conditions.
(b) For a device surface mounted on FR4 PCB measured at $\mathrm{t} \leq 5 \mathrm{sec}$.
(c) Repetitive rating $-25 \mathrm{~mm} \times 25 \mathrm{~mm}$ FR4 $\mathrm{PCB}, \mathrm{D}=0.02$, pulse width $300 \mu \mathrm{~s}$ - pulse width limited by maximum junction temperature.

ISSUE 1 - DECEMBER 2005

ZXMN3B01F

TYPICAL CHARACTERISTICS

ISSUE 1 - DECEMBER 2005

ZXMN3B01F

ELECTRICAL CHARACTERISTICS (at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise stated)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS
STATIC						
Drain-Source Breakdown Voltage	$\mathrm{V}_{\text {(BR) }{ }^{\text {dSS }}}$	30			V	$\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$
Zero Gate Voltage Drain Current	$\mathrm{I}_{\text {DSS }}$			1	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{DS}}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$
Gate-Body Leakage	$\mathrm{I}_{\mathrm{GSS}}$			100	nA	$\mathrm{V}_{\mathrm{GS}}= \pm 12 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$
Gate-Source Threshold Voltage	$\mathrm{V}_{\mathrm{GS} \text { (th) }}$	0.7			V	$\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}$
Static Drain-Source On-State Resistance ${ }^{(1)}$	$\mathrm{R}_{\mathrm{DS} \text { (on) }}$			$\begin{aligned} & 0.150 \\ & 0.240 \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1.7 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1.2 \mathrm{~A} \end{aligned}$
Forward Transconductance ${ }^{(1)(3)}$	g_{fs}		4		S	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1.7 \mathrm{~A}$
DYNAMIC ${ }^{(3)}$						
Input Capacitance	$\mathrm{C}_{\text {iss }}$		258		pF	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$
Output Capacitance	Coss		50		pF	
Reverse Transfer Capacitance	$\mathrm{C}_{\text {rss }}$		30		pF	
SWITCHING ${ }^{(2)(3)}$						
Turn-On Delay Time	$\mathrm{t}_{\mathrm{d} \text { (on) }}$		2.69		ns	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=4.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{D}}=1 \mathrm{~A} \\ & \mathrm{R}_{\mathrm{G}} \cong 6.0 \Omega \end{aligned}$
Rise Time	t_{r}		3.98		ns	
Turn-Off Delay Time	$\mathrm{t}_{\mathrm{d} \text { (off) }}$		8		ns	
Fall Time	t_{f}		5.27		ns	
Total Gate Charge	Q_{g}		2.93		nC	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=4.5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{D}}=1.7 \mathrm{~A} \end{aligned}$
Gate-Source Charge	$\mathrm{Q}_{\text {gs }}$		0.57		nC	
Gate-Drain Charge	Q_{gd}		0.92		nC	
SOURCE-DRAIN DIODE						
Diode Forward Voltage ${ }^{(1)}$	$\mathrm{V}_{\text {SD }}$		0.85	0.95	V	$\begin{aligned} & \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{S}}=1.7 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V} \end{aligned}$
Reverse Recovery Time ${ }^{(3)}$	t_{rr}		10.85		ns	$\begin{aligned} & \mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=1.3 \mathrm{~A}, \\ & \mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s} \end{aligned}$
Reverse Recovery Charge ${ }^{(3)}$	$\mathrm{Q}_{\text {rr }}$		5		NC	

NOTES

(1) Measured under pulsed conditions. Pulse width $\leq 300 \mu$ s; duty cycle $\leq 2 \%$.
(2) Switching characteristics are independent of operating junction temperature.
(3) For design aid only, not subject to production testing.

ISSUE 1 - DECEMBER 2005

ZXMN3B01F

ISSUE 1 - DECEMBER 2005

ZXMN3B01F

TYPICAL CHARACTERISTICS

ISSUE 1 - DECEMBER 2005

ZXMN3B01F

PACKAGE OUTLINE

PAD LAYOUT

Controlling dimensions are in millimetres. Approximate conversions are given in inches

PACKAGE DIMENSIONS

DIM	MILLIMETERS		INCHES		DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX		MIN	MAX	MIN	MAX
A	2.67	3.05	0.105	0.120	H	0.33	0.51	0.013	0.020
B	1.20	1.40	0.047	0.055	K	0.01	0.10	0.0004	0.004
C	-	1.10	-	0.043	L	2.10	2.50	0.083	0.0985
D	0.37	0.53	0.015	0.021	M	0.45	0.64	0.018	0.025
F	0.085	0.15	0.0034	0.0059	N	0.95 NOM		0.0375 NOM	
G	1.90 NOM		0.075 NOM		θ				YP

© Zetex Semiconductors plc 2005

Europe	Americas	Asia Pacific	Corporate Headquarters
Zetex GmbH	Zetex Inc	Zetex (Asia) Ltd	Zetex Semiconductors plc
Streitfeldstraße 19	700 Veterans Memorial Hwy	3701-04 Metroplaza Tower 1	Zetex Technology Park
D-81673 München	Hauppauge, NY 11788	Hing Fong Road, Kwai Fong	Chadderton, Oldham, OL9 9LL
Germany	Hong Kong	United King	
Telefon: (49) 89 45 49 49 0	Telephone: (1) 631 360 2222	Telephone: (852) 26100611	Telephone (44) 161622 4444
Fax: (49) 89 45 49 49 49	Fax: (1) 631 360 8222	Fax: (852) 24250 494	Fax: (44) 161622 4446
europe.sales@zetex.com	usa.sales@zetex.com	asia.sales@zetex.com	hq@zetex.com

These offices are supported by agents and distributors in major countries world-wide.
This publication is issued to provide outline information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contract or be regarded as a representation relating to the products or services concerned. The Company for any purpose or form part of any order or contract or be regarded as a representation relating to the products or services
reserves the right to alter without notice the specification, design, price or conditions of supply of any product or service.

For the latest product information, log on to www.zetex.com
ISSUE 1 - DECEMBER 2005

