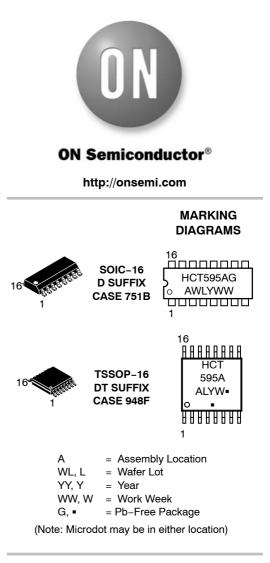
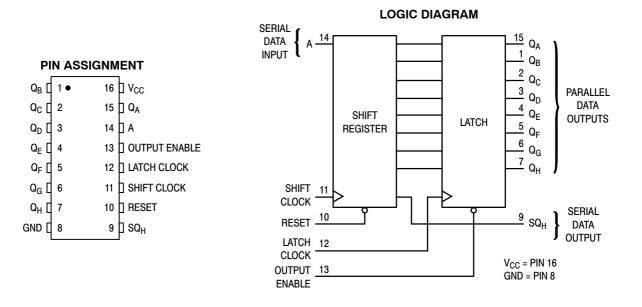
8-Bit Serial-Input/Serial or Parallel-Output Shift Register with Latched 3-State Outputs and LSTTL Compatible Inputs


High-Performance Silicon-Gate CMOS

The MC74HCT595A consists of an 8-bit shift register and an 8-bit D-type latch with three-state parallel outputs. The shift register accepts serial data and provides a serial output. The shift register also provides parallel data to the 8-bit latch. The shift register and latch have independent clock inputs. This device also has an asynchronous reset for the shift register.

The HCT595A directly interfaces with the SPI serial data port on CMOS MPUs and MCUs. The device inputs are compatible with standard CMOS or LSTTL outputs.

Features


- Output Drive Capability: 15 LSTTL Loads
- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 4.5 to 5.5 V
- Low Input Current: 1.0 µA
- High Noise Immunity Characteristic of CMOS Devices
- In Compliance with the Requirements Defined by JEDEC Standard No. 7A
- Chip Complexity: 328 FETs or 82 Equivalent Gates
- Improvements over HC595 / HCT595
 - Improved Propagation Delays
 - 50% Lower Quiescent Power
 - Improved Input Noise and Latchup Immunity
- Pb-Free Packages are Available*

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ORDERING INFORMATION

Device	Package	Shipping [†]
MC74HCT595ADG	SOIC-16 (Pb-Free)	48 Units / Rail
MC74HCT595ADR2G	SOIC-16 (Pb-Free)	2500 Tape & Reel
MC74HCT595ADTG	TSSOP-16*	96 Units / Rail
MC74HCT595ADTR2G	TSSOP-16* (Pb-Free)	2500 Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*This package is inherently Pb-Free.

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)	– 0.5 to + 7.0	V
V _{in}	DC Input Voltage (Referenced to GND)	$-$ 0.5 to V_{CC} + 0.5	V
V _{out}	DC Output Voltage (Referenced to GND)	$-$ 0.5 to V_{CC} + 0.5	V
l _{in}	DC Input Current, per Pin	± 20	mA
I _{out}	DC Output Current, per Pin	± 35	mA
I _{CC}	DC Supply Current, V _{CC} and GND Pins	± 75	mA
P _D	Power Dissipation in Still Air, SOIC Package† TSSOP Package†	500 450	mW
T _{stg}	Storage Temperature	– 65 to + 150	°C
TL	Lead Temperature, 1 mm from Case for 10 Seconds (Plastic DIP, SOIC or TSSOP Package)	260	°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range GND $\leq (V_{in} \text{ or } V_{out}) \leq V_{CC}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

†Derating — SOIC Package: – 7 mW/°C from 65° to 125°C TSSOP Package: – 6.1 mW/°C from 65° to 125°C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)	4.5	5.5	V
$V_{\text{in}}, V_{\text{out}}$	DC Input Voltage, Output Voltage (Referenced to GND)	0	V _{CC}	V
T _A	Operating Temperature Range, All Package Types	- 55	+ 125	°C
t _r , t _f	Input Rise/Fall Time (Figure 1)	0	500	ns

DC ELECTRICAL CHARACTERISTICS	(Voltages Referenced to GND)
-------------------------------	------------------------------

			V _{CC} V	Guaranteed Limit			
Symbol	Parameter	Test Conditions		– 55 to 25°C	≤ 85°C	≤ 125°C	Uni
V _{IH}	Minimum High–Level Input Voltage	$\begin{array}{l} V_{out} = 0.1 \; V \; or \; V_{CC} - 0.1 \; V \\ \left I_{out} \right \; \leq \; 20 \; \mu A \end{array} \end{array} \label{eq:Vout}$	4.5 to 5.5	2.0	2.0	2.0	V
V _{IL}	Maximum Low–Level Input Voltage	$\begin{array}{l} V_{out} = 0.1 \; V \; or \; V_{CC} - 0.1 \; V \\ \left I_{out} \right \; \leq \; 20 \; \mu A \end{array} \label{eq:Vout}$	4.5 to 5.5	0.8	0.8	0.8	V
V _{OH}	Minimum High–Level Output Voltage, Q _A – Q _H	$ \begin{aligned} V_{in} &= V_{IH} \text{ or } V_{IL} \\ & \left I_{out} \right \leq 20 \mu A \end{aligned} $	4.5	4.4	4.4	4.4	V
		$V_{in} = V_{IH} \text{ or } V_{IL} \qquad \left I_{out} \right \leq 6.0 \text{ mA}$	4.5	3.98	3.84	3.7	
V _{OL}	Maximum Low-Level Output Voltage, Q _A - Q _H	$ \begin{aligned} V_{in} &= V_{IH} \text{ or } V_{IL} \\ I_{out} &\leq 20 \ \mu A \end{aligned} $	4.5	0.1	0.1	0.1	V
		$V_{in} = V_{IH} \text{ or } V_{IL} \qquad \left I_{out} \right \leq 6.0 \text{ mA}$	4.5	0.26	0.33	0.4	
V _{OH} Minimum High-Le Voltage, SQ _H	Minimum High–Level Output Voltage, SQ _H	$ \begin{array}{l} V_{in} = V_{IH} \text{ or } V_{IL} \\ II_{out}I \ \leq \ 20 \ \mu A \end{array} $	4.5	4.4	4.4	4.4	V
		$V_{in} = V_{IH} \text{ or } V_{IL} \qquad II_{out}I \le 4.0 \text{ mA}$	4.5	3.98	3.84	3.7	
V _{OL}	Maximum Low-Level Output Voltage, SQ _H	$ \begin{array}{l} V_{in} = V_{IH} \text{ or } V_{IL} \\ II_{out}I \ \leq \ 20 \ \mu A \end{array} $	4.5	0.1	0.1	0.1	V
		$V_{in} = V_{IH} \text{ or } V_{IL} \qquad II_{out}I \le 4.0 \text{ mA}$	4.5	0.26	0.33	0.4	
l _{in}	Maximum Input Leakage Current	V _{in} = V _{CC} or GND	5.5	± 0.1	± 1.0	± 1.0	μA
I _{OZ}	Maximum Three–State Leakage Current, Q _A – Q _H	$\begin{array}{l} Output \text{ in High-Impedance State} \\ V_{in} = V_{IL} \text{ or } V_{IH} \\ V_{out} = V_{CC} \text{ or GND} \end{array}$	5.5	± 0.5	±5.0	± 10	μΑ
I _{CC}	Maximum Quiescent Supply Current (per Package)		5.5	4.0	40	160	μA
ΔI_{CC}	Additional Quiescent Supply Current	V_{in} = 2.4V, Any One Input V_{in} = V _{CC} or GND, Other Inputs		≥ -55°C	25 to	125°C	
		$I_{\text{out}} = 0\mu A$	5.5	2.9	2	.4	mA

		Vcc	Guaranteed Limit			
Symbol	Parameter	v	– 55 to 25°C	≤ 85°C	≤ 125°C	Unit
f _{max}	Maximum Clock Frequency (50% Duty Cycle)4.5 to(Figures 1 and 7)5.5	30	24	20	MHz	
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Shift Clock to SQ _H (Figures 1 and 7)	4.5 to 5.5	28	35	42	ns
t _{PHL}	Maximum Propagation Delay, Reset to SQ _H (Figures 2 and 7)	4.5 to 5.5	29	36	44	ns
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Latch Clock to Q _A – Q _H (Figures 3 and 7)	4.5 to 5.5	28	35	42	ns
t _{PLZ} , t _{PHZ}	Maximum Propagation Delay, Output Enable to Q _A – Q _H (Figures 4 and 8)	4.5 to 5.5	30	38	45	ns
t _{PZL} , t _{PZH}	Maximum Propagation Delay, Output Enable to Q _A – Q _H (Figures 4 and 8)	4.5 to 5.5	27	34	41	ns
t _{TLH} , t _{THL}	Maximum Output Transition Time, Q _A – Q _H (Figures 3 and 7)	4.5 to 5.5	12	15	18	ns
t _{TLH} , t _{THL}	Maximum Output Transition Time, SQ _H (Figures 1 and 7)	4.5 to 5.5	15	19	22	ns
C _{in}	Maximum Input Capacitance	_	10	10	10	pF
C _{out}	Maximum Three-State Output Capacitance (Output in High-Impedance State), Q _A - Q _H	—	15	15	15	pF
			Typical @	25°C, V _{CC}	= 5.0 V	

pF

AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6.0 \text{ ns}$)

 CPD
 Power Dissipation Capacitance (Per Package)*

 * Used to determine the no-load dynamic power consumption: PD = CPD VCC²f + ICC VCC.
 300

TIMING REQUIREMENTS (Input $t_r = t_f = 6.0 \text{ ns}$)

		V _{cc}	Guara			
Symbol	Parameter	v	25°C to -55°C	≤ 85°C	≤ 125°C	Unit
t _{su}	Minimum Setup Time, Serial Data Input A to Shift Clock (Figure 5)	4.5 to 5.5	10	13	15	ns
t _{su}	Minimum Setup Time, Shift Clock to Latch Clock (Figure 6)	4.5 to 5.5	15	19	22	ns
t _h	Minimum Hold Time, Shift Clock to Serial Data Input A (Figure 5)	4.5 to 5.5	5.0	5.0	5.0	ns
t _{rec}	Minimum Recovery Time, Reset Inactive to Shift Clock (Figure 2)	4.5 to 5.5	10	13	15	ns
t _w	Minimum Pulse Width, Reset (Figure 2)		12	15	18	ns
t _w	Minimum Pulse Width, Shift Clock (Figure 1)		10	13	15	ns
tw	Minimum Pulse Width, Latch Clock (Figure 6)		10	13	15	ns
t _r , t _f	Maximum Input Rise and Fall Times (Figure 1)	4.5 to 5.5	500	500	500	ns

FUNCTION 1	TABLE
------------	-------

	Inputs					Resulting Function			
Operation	Reset	Serial Input A	Shift Clock	Latch Clock	Output Enable	Shift Register Contents	Latch Register Contents	Serial Output SQ _H	Parallel Outputs Q _A – Q _H
Reset shift register	L	Х	Х	L, H, ↓	L	L	U	L	U
Shift data into shift register	Н	D	↑	L, H, ↓	L	$\begin{array}{c} D \rightarrow SR_{A};\\ SR_{N} \rightarrow SR_{N+1} \end{array}$	U	$\text{SR}_G \mathop{\rightarrow} \text{SR}_H$	U
Shift register remains unchanged	Н	Х	L, H, ↓	L, H, ↓	L	U	U	U	U
Transfer shift register contents to latch register	Н	Х	L, H, ↓	Ŷ	L	U	$SR_N \rightarrow LR_N$	U	SR _N
Latch register remains unchanged	Х	Х	X	L, H, ↓	L	*	U	*	U
Enable parallel outputs	Х	Х	Х	Х	L	*	**	*	Enabled
Force outputs into high impedance state	Х	Х	Х	Х	Н	*	**	*	Z

LR = latch register contents

U = remains unchanged

⊺ = Low–to–High ↓ = High–to–Low * = depends on Reset and Shift Clock inputs ** = depends on Latch Clock input

PIN DESCRIPTIONS

INPUTS

A (Pin 14)

Serial Data Input. The data on this pin is shifted into the 8-bit serial shift register.

CONTROL INPUTS

Shift Clock (Pin 11)

Shift Register Clock Input. A low- to-high transition on this input causes the data at the Serial Input pin to be shifted into the 8-bit shift register.

Reset (Pin 10)

Active–low, Asynchronous, Shift Register Reset Input. A low on this pin resets the shift register portion of this device only. The 8–bit latch is not affected.

Latch Clock (Pin 12)

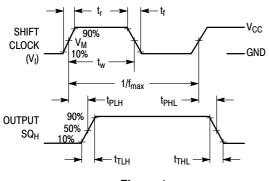
Storage Latch Clock Input. A low-to-high transition on this input latches the shift register data.

Output Enable (Pin 13)

Active–low Output Enable. A low on this input allows the data from the latches to be presented at the outputs. A high on this input forces the outputs (Q_A-Q_H) into the high–impedance state. The serial output is not affected by this control unit.

OUTPUTS

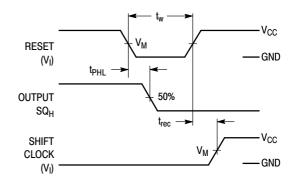
$Q_A - Q_H$ (Pins 15, 1, 2, 3, 4, 5, 6, 7)

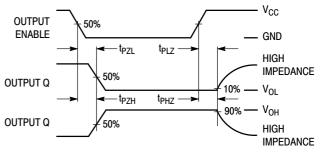

Noninverted, 3-state, latch outputs.

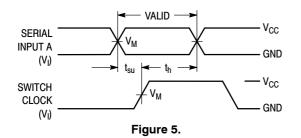
SQ_H (Pin 9)

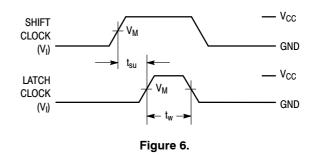

Noninverted, Serial Data Output. This is the output of the eighth stage of the 8-bit shift register. This output does not have three-state capability.

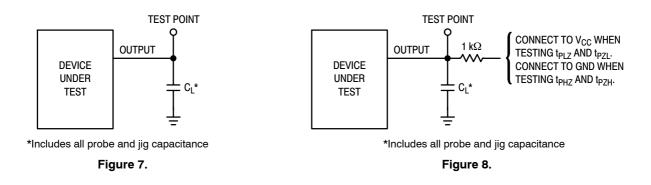
SWITCHING WAVEFORMS

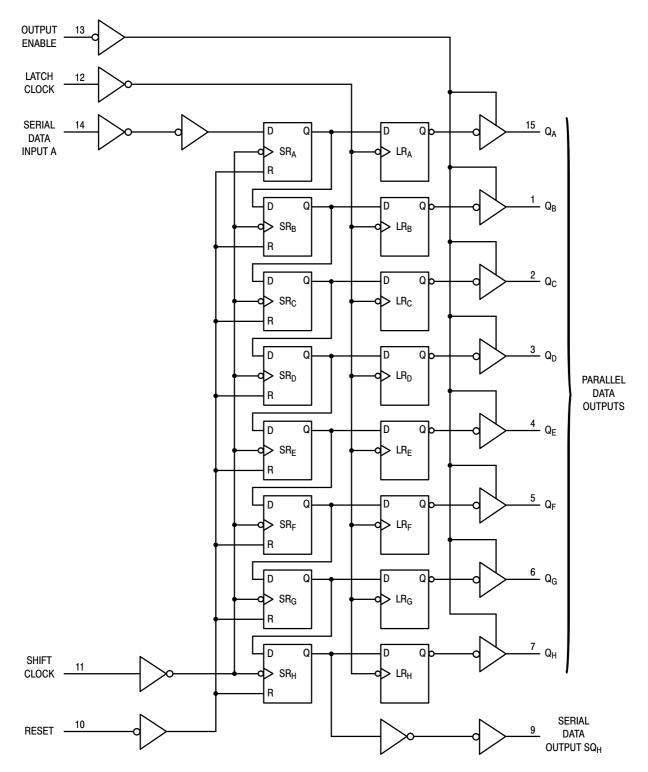

(V_I = 0 to 3 V, V_M = 1.3 V)





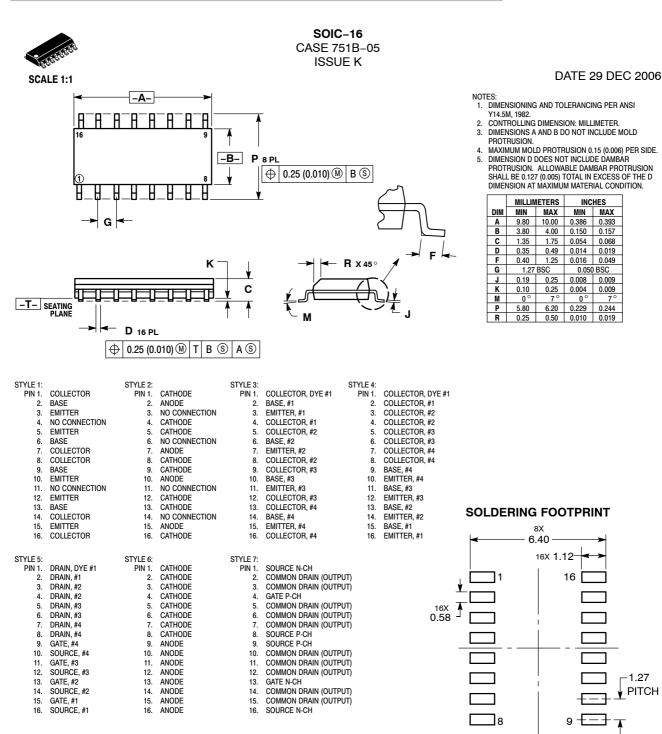






TEST CIRCUITS

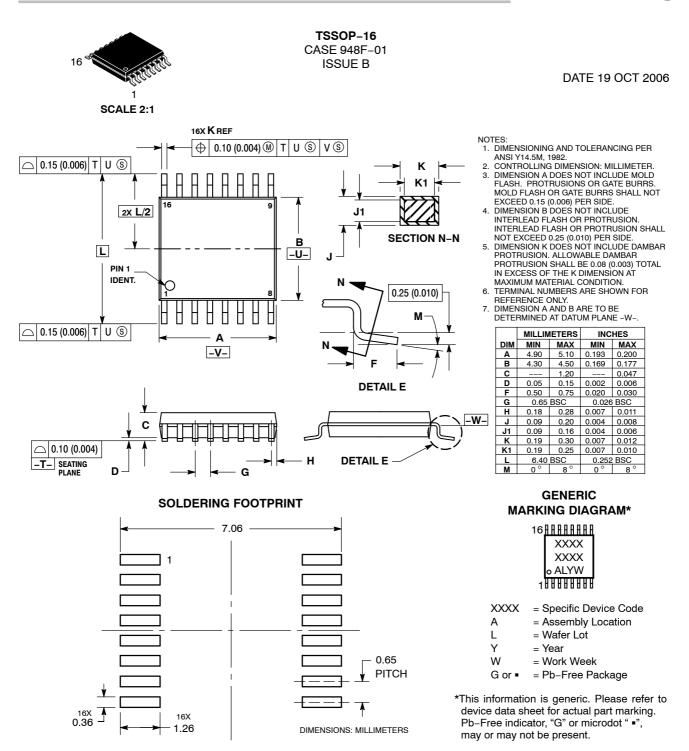
EXPANDED LOGIC DIAGRAM



TIMING DIAGRAM

SHIFT CLOCK	
SERIAL DATA INPUT A	
RESET	
LATCH CLOCK	
OUTPUT ENABLE	
Q _A	
Q _B	
Q _C	
QD	
Q _E	
Q _F	
Q_{G}	
Q _H	
SERIAL DATA OUTPUT SQ _H	
	NOTE: XXX implies that the output is in a high-impedance state.

Downloaded from Arrow.com.



DIMENSIONS: MILLIMETERS

DOCUMENT NUMBER:	98ASB42566B Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION: SOIC-16 PAGE 1 OF						
ON Semiconductor reserves the right the suitability of its products for any pa	to make changes without further notice to an articular purpose, nor does ON Semiconductor	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation r assume any liability arising out of the application or use of any product or cidental damages. ON Semiconductor does not convey any license under	or guarantee regarding r circuit, and specifically			

 DOCUMENT NUMBER:
 98ASH70247A
 Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

 DESCRIPTION:
 TSSOP-16
 PAGE 1 OF 1

 ON Semiconductor and (1) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the right to other counters.

© Semiconductor Components Industries, LLC, 2019

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. **onsemi** owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of **onsemi**'s product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. **onsemi** reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and **onsemi** makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclorating, or solication of use products for any particular purpose, not occes of series assume any maturing ansing on series of the application of use of any product or circuit, and specifically disclorations any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others, onsemi products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death Associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

٥