Low-Voltage CMOS Hex Inverter

With 5 V-Tolerant Inputs

The MC74LCX04 is a high performance hex inverter operating from a 2.0 to 5.5 V supply. High impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance. A $V_{\rm I}$ specification of 5.5 V allows MC74LCX04 inputs to be safely driven from 5 V devices if $V_{\rm CC}$ is less than 5.0 V.

Current drive capability is 24 mA at the outputs.

Features

- Designed for 2.0 V to 5.5 V V_{CC} Operation
- 5 V Tolerant Inputs Interface Capability With 5 V TTL Logic
- LVTTL Compatible
- LVCMOS Compatible
- 24 mA Balanced Output Sink and Source Capability
- Near Zero Static Supply Current (10 μA) Substantially Reduces System Power Requirements
- Latchup Performance Exceeds 500 mA
- ESD Performance: Human Body Model >2000 V; Machine Model >200 V
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

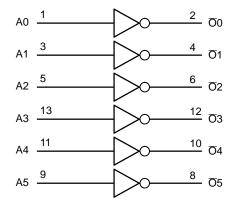
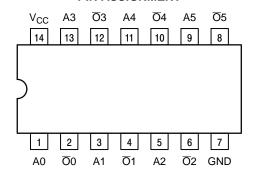
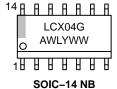
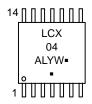


Figure 1. Logic Diagram

ON Semiconductor®


http://onsemi.com


SOIC-14 NB D SUFFIX CASE 751A TSSOP-14 DT SUFFIX CASE 948G


PIN ASSIGNMENT

14-Lead (Top View)

MARKING DIAGRAMS

TSSOP-14

A = Assembly Location

WL, L = Wafer Lot YY, Y = Year

WW, W = Work Week
G or ■ = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

PIN NAMES

Pins	Function
An	Data Inputs
O n	Outputs

TRUTH TABLE

An	Ōn
L	H
H	L

MAXIMUM RATINGS

Symbol	Parameter	Value	Condition	Unit
V _{CC}	DC Supply Voltage	-0.5 to +7.0		V
VI	DC Input Voltage	$-0.5 \le V_1 \le +7.0$		V
Vo	DC Output Voltage	$-0.5 \le V_{O} \le V_{CC} + 0.5$	Output in HIGH or LOW State (Note 1)	V
I _{IK}	DC Input Diode Current	-50	V _I < GND	mA
I _{OK}	DC Output Diode Current	-50	V _O < GND	mA
		+50	V _O > V _{CC}	mA
I _O	DC Output Source/Sink Current	±50		mA
I _{CC}	DC Supply Current Per Supply Pin	±100		mA
I _{GND}	DC Ground Current Per Ground Pin	±100		mA
T _{STG}	Storage Temperature Range	-65 to +150		°C
MSL	Moisture Sensitivity		Level 1	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Тур	Max	Unit
V _{CC}	Supply Voltage	Operating Data Retention Only	2.0 1.5	2.5, 3.3 2.5, 3.3	5.5 5.5	V
VI	Input Voltage		0		5.5	V
Vo	Output Voltage	(HIGH or LOW State) (3-State)	0		V _{CC}	V
Гон	HIGH Level Output Current	$V_{CC} = 3.0 \text{ V} - 3.6 \text{ V}$ $V_{CC} = 2.7 \text{ V} - 3.0 \text{ V}$ $V_{CC} = 2.3 \text{ V} - 2.7 \text{ V}$			-24 -12 -8	mA
I _{OL}	LOW Level Output Current	$V_{CC} = 3.0 \text{ V} - 3.6 \text{ V}$ $V_{CC} = 2.7 \text{ V} - 3.0 \text{ V}$ $V_{CC} = 2.3 \text{ V} - 2.7 \text{ V}$			+24 +12 +8	mA
T _A	Operating Free-Air Temperature		-55		+125	°C
Δt/ΔV	Input Transition Rise or Fall Rate	, V_{IN} from 0.8 V to 2.0 V, V_{CC} = 3.0 V	0		10	ns/V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

^{1.} I_O absolute maximum rating must be observed.

DC ELECTRICAL CHARACTERISTICS

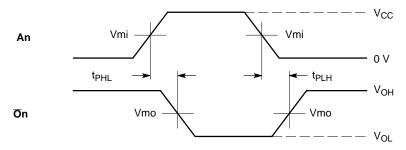
			T _A = −55°C	to +125°C	
Symbol	Characteristic	Condition	Min	Max	Unit
V_{IH}	HIGH Level Input Voltage (Note 2)	2.3 V ≤ V _{CC} ≤ 2.7 V	1.7		V
		2.7 V ≤ V _{CC} ≤ 3.6 V	2.0		
V _{IL}	LOW Level Input Voltage (Note 2)	2.3 V ≤ V _{CC} ≤ 2.7 V		0.7	V
		2.7 V ≤ V _{CC} ≤ 3.6 V		0.8	
V _{OH}	HIGH Level Output Voltage	$2.3 \text{ V} \le \text{V}_{CC} \le 3.6 \text{ V}; \text{I}_{OH} = -100 \mu\text{A}$	V _{CC} - 0.2		V
		$V_{CC} = 2.3 \text{ V; } I_{OH} = -8 \text{ mA}$	1.8		
		V _{CC} = 2.7 V; I _{OH} = -12 mA	2.2		
		$V_{CC} = 3.0 \text{ V; } I_{OH} = -18 \text{ mA}$	2.4		
		$V_{CC} = 3.0 \text{ V; } I_{OH} = -24 \text{ mA}$	2.2		
V _{OL}	LOW Level Output Voltage	$2.3 \text{ V} \le \text{V}_{CC} \le 3.6 \text{ V}; \text{I}_{OL} = 100 \mu\text{A}$		0.2	V
		V _{CC} = 2.3 V; I _{OL} = 8 mA		0.6	
		V _{CC} = 2.7 V; I _{OL} = 12 mA		0.4	
		V _{CC} = 3.0 V; I _{OL} = 16 mA		0.4	
		V _{CC} = 3.0 V; I _{OL} = 24 mA		0.55	
I _{OFF}	Power Off Leakage Current	V _{CC} = 0, V _{IN} = 5.5 V or V _{OUT} = 5.5 V		10	μΑ
I _{IN}	Input Leakage Current	V _{CC} = 3.6 V, V _{IN} = 5.5 V or GND		±5	μΑ
I _{CC}	Quiescent Supply Current	V _{CC} = 3.6 V, V _{IN} = 5.5 V or GND		10	μΑ
ΔI_{CC}	Increase in I _{CC} per Input	$2.3 \le V_{CC} \le 3.6 \text{ V}; V_{IH} = V_{CC} - 0.6 \text{ V}$		500	μΑ

^{2.} These values of V_{I} are used to test DC electrical characteristics only.

AC CHARACTERISTICS ($t_R = t_F = 2.5 \text{ ns}; R_L = 500 \Omega$)

				Limits					
				T _A = -55°C to +125°C					
			V _{CC} = 3.3	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$ $V_{CC} = 2.7 \text{ V}$ $V_{CC} = 2.5 \text{ V} \pm 0.0 \text{ V}$		$V \pm 0.2 V$			
			C _L =	50 pF	C _L =	50 pF	C _L = 3	30 pF	
Symbol	Parameter	Waveform	Min	Max	Min	Max	Min	Max	Unit
t _{PLH}	Propagation Delay Time	1	1.5	5.2	1.5	6.0	1.5	6.2	ns
t _{PHL}	Input to Output		1.5	5.2	1.5	6.0	1.5	6.2	
toshl	Output-to-Output Skew			1.0					ns
t _{OSLH}	(Note 3)			1.0					

Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device.
 The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}); parameter guaranteed by design.

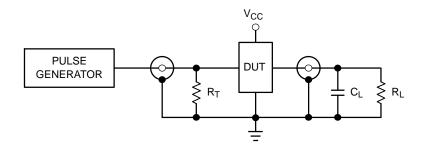

DYNAMIC SWITCHING CHARACTERISTICS

			T _A = +25°C			
Symbol	Characteristic	Condition	Min	Тур	Max	Unit
V _{OLP}	Dynamic LOW Peak Voltage	$V_{CC} = 3.3 \text{ V}, C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$		0.8		V
	(Note 4)	$V_{CC} = 2.5 \text{ V}, C_L = 30 \text{ pF}, V_{IH} = 2.5 \text{ V}, V_{IL} = 0 \text{ V}$		0.6		V
V _{OLV}	Dynamic LOW Valley Voltage	$V_{CC} = 3.3 \text{ V}, C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$		-0.8		V
	(Note 4)	$V_{CC} = 2.5 \text{ V}, C_L = 30 \text{ pF}, V_{IH} = 2.5 \text{ V}, V_{IL} = 0 \text{ V}$		-0.6		V

^{4.} Number of outputs defined as "n". Measured with "n-1" outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the LOW state.

CAPACITIVE CHARACTERISTICS

Symbol	Parameter Condition		Typical	Unit
C _{IN}	Input Capacitance	$V_{CC} = 3.3 \text{ V}, V_I = 0 \text{ V or } V_{CC}$	7	pF
C _{OUT}	Output Capacitance	$V_{CC} = 3.3 \text{ V}, V_I = 0 \text{ V or } V_{CC}$	8	pF
C _{PD}	Power Dissipation Capacitance	10 MHz, V_{CC} = 3.3 V, V_{I} = 0 V or V_{CC}	25	pF



WAVEFORM 1 – PROPAGATION DELAYS

 $t_R = t_F = 2.5 \text{ ns}, 10\% \text{ to } 90\%; f = 1 \text{ MHz}; t_W = 500 \text{ ns}$

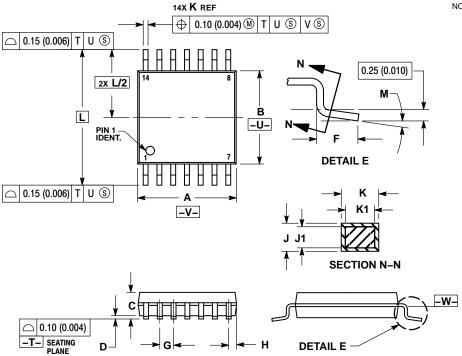
	V _{CC}				
Symbol	3.3 V ± 0.3 V	2.7 V	2.5 V ± 0.2 V		
Vmi	1.5 V	1.5 V	V _{CC} /2		
Vmo	1.5 V	1.5 V	V _{CC} /2		

Figure 2. AC Waveforms

 $C_L=50$ pF at $V_{CC}=3.3\pm0.3$ V or equivalent (includes jig and probe capacitance) $C_L=30$ pF at $V_{CC}=2.5\pm0.2$ V or equivalent (includes jig and probe capacitance) $R_L=R_1=500~\Omega$ or equivalent

 $R_T = Z_{OUT}$ of pulse generator (typically 50 Ω)

Figure 3. Test Circuit

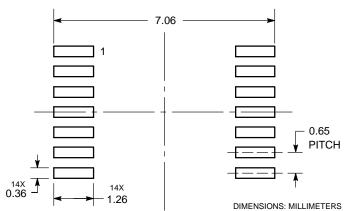

ORDERING INFORMATION

Device	Package	Shipping [†]
MC74LCX04DG	SOIC-14 NB (Pb-Free)	55 Units / Rail
MC74LCX04DR2G	SOIC-14 NB 2500 Tape & R (Pb-Free)	
MC74LCX04DTG	TSSOP-14 (Pb-Free)	96 Units / Rail
MC74LCX04DTR2G	TSSOP-14 (Pb-Free)	2500 Tape & Reel
NLV74LCX04DTR2G*	TSSOP-14 (Pb-Free)	2500 Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable

PACKAGE DIMENSIONS

TSSOP-14 CASE 948G **ISSUE B**

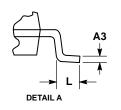

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER

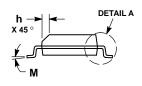
 - 1. DIMENSIONING AND TOLERANCING PER
 ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
 3. DIMENSION A DOES NOT INCLUDE MOLD
 FLASH, PROTRUSIONS OR GATE BURRS.
 MOLD FLASH OR GATE BURRS SHALL NOT
 EXCEED 0.15 (0.006) PER SIDE.
 4. DIMENSION B DOES NOT INCLUDE
 INTERLEAD FLASH OR PROTRUSION.
 INTERLEAD FLASH OR PROTRUSION SHALL
 NOT EXCEED 0.25 (0.010) PER SIDE.
 5. DIMENSION K DOES NOT INCLUDE DAMBAR
 PROTRUSION. ALLOWABLE DAMBAR
 PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN
 EXCESS OF THE K DIMENSION AT MAXIMUM
 MATERIAL CONDITION.
 6. TERMINAL NUMBERS ARE SHOWN FOR
 REFERENCE ONLY.
 7. DIMENSION A AND B ARE TO BE
 DETERMINED AT DATUM PLANE -W-.

 MILLIMETERS INCHES

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	4.90	5.10	0.193	0.200
В	4.30	4.50	0.169	0.177
С		1.20		0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65	BSC	0.026 BSC	
Н	0.50	0.60	0.020	0.024
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40 BSC		0.252	BSC
М	0 °	8 °	0 °	8 °

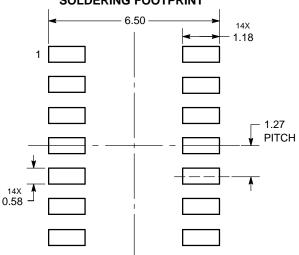
SOLDERING FOOTPRINT*




*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

В Н 13X **b** ⊕ 0.25 M B M 0.25 M C A S B S \oplus


NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS.
- 3. DIMENSION 6 DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF AT MAXIMUM MATERIAL CONDITION.
- DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSIONS.
- 5. MAXIMUM MOLD PROTRUSION 0.15 PER

	MILLIN	IETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	1.35	1.75	0.054	0.068	
A1	0.10	0.25	0.004	0.010	
А3	0.19	0.25	0.008	0.010	
b	0.35	0.49	0.014	0.019	
D	8.55	8.75	0.337	0.344	
Е	3.80	4.00	0.150	0.157	
е	1.27	BSC	0.050	BSC	
Н	5.80	6.20	0.228	0.244	
h	0.25	0.50	0.010	0.019	
L	0.40	1.25	0.016	0.049	
M	0 °	7°	0 °	7°	

SOLDERING FOOTPRINT*

C SEATING PLANE

DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the 👊 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor:

MC74LCX04DG MC74LCX04DR2G MC74LCX04DTG MC74LCX04DTR2G