3 V/5 V, 4/8 Channel High Performance Analog Multiplexers

FEATURES

+3 V, +5 V, ± 5 V Power Supplies
\mathbf{V}_{SS} to V_{DD} Analog Signal Range
Low On Resistance ($\mathbf{3 0} \Omega$ max)
Fast Switching Times
$t_{\text {ON }} 75$ ns max
$t_{\text {off }} 45$ ns max
Low Power Dissipation ($1.5 \mu \mathrm{~W}$ max)
Break-Before-Make Construction
ESD > 5000 V as per Military Standard 3015.7
TTL and CMOS Compatible Inputs

APPLICATIONS

Automatic Test Equipment
Data Acquisition Systems
Communication Systems
Avionics and Military Systems
Microprocessor Controlled Analog Systems
Medical Instrumentation
Battery Powered Instruments
Remote Powered Equipment
Compatible with ± 5 V DACs and ADCs such as
AD7840/8, AD7870/1/2/4/5/6/8

GENERAL DESCRIPTION

The AD G 608 and ADG 609 are monolithic C M OS analog multiplexers comprising eight single channels and four differential channels respectively, fully specified for $\pm 5 \mathrm{~V},+5 \mathrm{~V}$ and +3 V power supplies. The AD G 608 switches one of eight inputs to a common output as determined by the 3-bit binary address lines A0, A1 and A2. The ADG 609 switches one of four differential inputs to a common differential output as determined by the 2 -bit binary address lines A0 and A1. An EN input on both devices is used to enable or disable the device. When disabled, all channels are switched OFF. All the address and enable inputs are T TL compatible over the full specified operating temperature range, making the parts suitable for bus-controlled systems such as data acquisition systems, process controls, avionics and AT Es since the TTL compatible address inputs simplify the digital interface design and reduce the board space requirements.
The AD G608/AD G 609 are designed on an enhanced LC²M OS process that provides low power dissipation yet gives high switching speed and low on resistance. Each channel conducts equally well in both directions when ON and has an input signal range which extends to the supplies. In the OFF condition, signal levels up to the supplies are blocked. All channels exhibit break-before-make switching action preventing momentary shorting when switching channels. Inherent in the design is low charge injection for minimum transients when switching the digital inputs.

REV. A

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

FUNCTIONAL BLOCK DIAGRAMS

A0 A1 EN

The ability to operate from single $+3 \mathrm{~V},+5 \mathrm{~V}$ or $\pm 5 \mathrm{~V}$ bipolar supplies makes the AD G 608 and AD G 609 perfect for use in battery operated instruments and with the new generation of DACs and ADCs from A nalog D evices. The use of 5 V supplies and reduced operating currents gives much lower power dissipation than devices operating from $\pm 15 \mathrm{~V}$ supplies.

PRODUCT HIGHLIGHTS

1. Extended Signal Range

The AD G608/AD G 609 are fabricated on an enhanced L^{2} M OS process giving an increased signal range which extends to the supplies.
2. Low Power Dissipation
3. Low Ron
4. F ast Switching Times
5. Break-Before-M ake Switching

Switches are guaranteed break-before-make so that input signals are protected against momentary shorting.
6. Single/D ual Supply O peration

ORDERING GUIDE

Model	Temperature Range	Package Option*
AD G 608BN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{N}-16$
AD G 608BR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	R-16A
AD G608B R	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	RU -16
AD G 608T RU	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	RU -16
AD G 609BN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{N}-16$
AD G 609BR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	R-16A
AD G09BRU	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	RU -16

*N = Plastic DIP; RU = Thin Shrink Small Outline Package (TSSOP); $R=0.15^{\prime \prime}$ Small Outline IC (SOIC).

Fax: 617/326-8703

ADG608/ADG609- SPECIFICATIONS

DUAL SUPPLY1 $\left(V_{D D}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{S S}=-5 \mathrm{~V} \pm 10 \%, G N D=0 \mathrm{~V}\right.$, unless otherwise noted)

Parameter	B Version		T Version		Units	Test Conditions/ Comments
	+250	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$		
ANALOG SWITCH Analog Signal Range Ron $\Delta \mathrm{R}_{\text {ON }}$ $\mathrm{R}_{\text {ON }} \mathrm{M}$ atch	$\begin{aligned} & 22 \\ & 30 \\ & 5 \\ & 2 \end{aligned}$	$\begin{aligned} & V_{S S} \text { to } V_{D D} \\ & 35 \\ & 6 \\ & 3 \end{aligned}$	$\begin{aligned} & 22 \\ & 30 \\ & 5 \\ & 2 \end{aligned}$	$\begin{aligned} & V_{S S} \text { to } V_{D D} \\ & 40 \\ & 6 \\ & 3 \end{aligned}$	V Ω typ Ω max Ω max Ω max	$\begin{aligned} & -3.5 \mathrm{~V} \leq \mathrm{V}_{S} \leq+3.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-1 \mathrm{~mA} ; \\ & \mathrm{V}_{D D}=+4.5 \mathrm{~V}, \mathrm{~V}_{S S}=-4.5 \mathrm{~V} ; \\ & \text { Test Circuit } 1 \\ & -3 \mathrm{~V} \leq \mathrm{V}_{S} \leq+3 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=-1 \mathrm{~mA} ; \\ & \mathrm{V}_{D D}=+5 \mathrm{~V}, \mathrm{~V}_{S S}=-5 \mathrm{~V} \\ & \mathrm{~V}_{S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=-1 \mathrm{~mA} ; \\ & \mathrm{V}_{D D}=+5 \mathrm{~V}, \mathrm{~V}_{S S}=-5 \mathrm{~V} \end{aligned}$
LEAKAGE CURRENTS Source OFF Leakage IS (OFF) Drain OFF Leakage I_{D} (OFF) AD G 608 ADG609 Channel ON Leakage $I_{D}, I_{S}(O N)$ AD G 608 ADG609	$\begin{aligned} & \pm 0.05 \\ & \pm 0.5 \\ & \pm 0.05 \\ & \pm 0.5 \\ & \pm 0.5 \\ & \pm 0.05 \\ & \pm 0.5 \\ & \pm 0.5 \end{aligned}$	$\begin{aligned} & \pm 2 \\ & \pm 2 \\ & \pm 1 \\ & \pm 3 \\ & \pm 1.5 \end{aligned}$	$\begin{aligned} & \pm 0.05 \\ & \pm 0.5 \\ & \pm 0.05 \\ & \pm 0.5 \\ & \pm 0.5 \\ & \pm 0.05 \\ & \pm 0.5 \\ & \pm 0.5 \end{aligned}$	$\begin{aligned} & \pm 10 \\ & \pm 10 \\ & \pm 5 \\ & \pm 20 \\ & \pm 10 \end{aligned}$	nA typ nA max nA typ nA max nA max nA typ nA max nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{D}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=\mp 4.5 \mathrm{~V} ; \\ & \text { T est Circuit 2 } \\ & \mathrm{V}_{\mathrm{D}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=\mp 4.5 \mathrm{~V} ; \\ & \text { T est Circuit 3 } \end{aligned}$ $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 4.5 \mathrm{~V} \text {; }$ Test Circuit 4
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, $\mathrm{V}_{\mathrm{INL}}$ Input C urrent $\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$ $\mathrm{C}_{I_{N}}$, Digital Input C apacitance	5	$\begin{aligned} & 2.4 \\ & 0.8 \\ & \\ & \pm 1 \end{aligned}$	5	$\begin{aligned} & 2.4 \\ & 0.8 \\ & \\ & \pm 1 \end{aligned}$	V min \checkmark max $\mu \mathrm{A} \max$ pF typ	$V_{I N}=0$ or $V_{D D}$
DYNAMIC CHARACTERISTICS² $\mathrm{t}_{\text {transition }}$ $\mathrm{t}_{\text {OPEN }}$ $t_{0 N}$ (EN) $t_{\text {OFF }}$ (EN) C harge Injection OFF Isolation Channel-to-C hannel C rosstalk C_{S} (OFF) C_{D} (OFF) ADG 608 ADG609 $C_{D}(O N)$ AD G 608 ADG609	$\begin{aligned} & 50 \\ & 75 \\ & 10 \\ & 50 \\ & 75 \\ & 30 \\ & 45 \\ & 6 \\ & \hline 85 \\ & \hline 85 \\ & 9 \\ & 9 \\ & 40 \\ & 20 \\ & 54 \\ & 34 \end{aligned}$	90 90 60	50 75 10 50 75 30 45 6 85 85 9 40 20 54 34	100 100 75	ns typ ns max ns min ns typ ns max ns typ ns max pC typ dB typ dB typ pF typ pF typ pF typ pF typ pF typ	
POWER REQUIREMENTS $I_{D D}$ I_{ss}	$\begin{aligned} & 0.05 \\ & 0.2 \\ & 0.01 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 2 \\ & 0.1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.2 \\ & 0.01 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 2 \\ & 0.1 \\ & 1 \end{aligned}$	$\mu \mathrm{A}$ typ $\mu \mathrm{A} \max$ $\mu \mathrm{A}$ typ $\mu \mathrm{A} \max$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or $\mathrm{V}_{\text {DD }}$

NOTES

${ }^{1} \mathrm{~T}$ emperature ranges are as follows: B Version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; T Version: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design, not subject to production test.
Specifications subject to change without notice.

SINGLE SUPPLY ${ }^{1}{ }_{\left(V_{00}\right.}=+5 \mathrm{~V} \pm 10 \%, V_{S S}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted)

Parameter	B Version		T Version		Units	Test Conditions/ Comments
	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$		
ANALOG SWITCH Analog Signal Range Ron $\Delta R_{\text {ON }}$ Ron M atch	$\begin{aligned} & 40 \\ & 50 \\ & 5 \\ & 2 \end{aligned}$	$\begin{aligned} & 0 \text { to } V_{D D} \\ & 60 \\ & 6 \\ & 3 \end{aligned}$	$\begin{aligned} & 40 \\ & 50 \\ & 5 \\ & 2 \end{aligned}$	$\begin{aligned} & 0 \text { to } V_{D D} \\ & 70 \\ & 6 \\ & 3 \end{aligned}$	V Ω typ Ω max Ω max Ω max	$\begin{aligned} & \mathrm{V}_{S}=+3.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-1 \mathrm{~mA} ; \\ & \mathrm{V}_{D D}=+4.5 \mathrm{~V} ; \\ & \text { Test Circuit } 1 \\ & +1 \mathrm{~V} \leq \mathrm{V}_{S} \leq+3 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=-1 \mathrm{~mA} ; \\ & \mathrm{V}_{D D}=+5 \mathrm{~V} \\ & \mathrm{~V}_{S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=-1 \mathrm{~mA} ; \\ & \mathrm{V}_{D D}=+5 \mathrm{~V} \end{aligned}$
```LEAKAGE CURRENTS Source OFF LeakageIS (OFF) D rain OFF L eakage ID (OFF) ADG608 ADG609 C hannel ON Leakage ID, IS (ON ) ADG608 AD G609```	$\begin{aligned} & \pm 0.05 \\ & \pm 0.5 \\ & \pm 0.05 \\ & \pm 0.5 \\ & \pm 0.5 \\ & \pm 0.05 \\ & \pm 0.5 \\ & \pm 0.5 \end{aligned}$	$\begin{aligned} & \pm 2 \\ & \pm 2 \\ & \pm 1 \\ & \pm 3 \\ & \pm 1.5 \end{aligned}$	$\begin{aligned} & \pm 0.05 \\ & \pm 0.5 \\ & \pm 0.05 \\ & \pm 0.5 \\ & \pm 0.5 \\ & \pm 0.05 \\ & \pm 0.5 \\ & \pm 0.5 \end{aligned}$	$\begin{aligned} & \pm 10 \\ & \pm 10 \\ & \pm 5 \\ & \pm 20 \\ & \pm 10 \end{aligned}$	nA typ nA max nA typ nA max nA max nA typ nA max nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{D}}=4.5 \mathrm{~V} / 0.1 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0.1 \mathrm{~V} / 4.5 \mathrm{~V} ; \end{aligned}$   T est C ircuit 2 $\mathrm{V}_{\mathrm{D}}=4.5 \mathrm{~V} / 0.1 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0.1 \mathrm{~V} / 4.5 \mathrm{~V} \text {; }$   T est Circuit 3 $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=4.5 \mathrm{~V} / 0.1 \mathrm{~V} ;$   Test Circuit 4
DIGITAL IN PUTS   Input High Voltage, $\mathrm{V}_{\text {INH }}$   Input L ow Voltage, $\mathrm{V}_{\mathrm{INL}}$   Input C urrent   $\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$   $\mathrm{C}_{\mathrm{IN}^{\prime}}$, Digital Input C apacitance	5	$\begin{aligned} & 2.4 \\ & 0.8 \\ & \\ & \pm 1 \end{aligned}$	5	$\begin{aligned} & 2.4 \\ & 0.8 \\ & \pm 1 \end{aligned}$	$V$ min   $\checkmark$ max   $\mu \mathrm{A}$ max   pF typ	$\mathrm{V}_{\text {IN }}=0$ or $\mathrm{V}_{\text {DD }}$
DYNAMIC CHARACTERISTICS²   $\mathrm{t}_{\text {transition }}$   topen   $\mathrm{t}_{\mathrm{ON}}$ (EN)   $\mathrm{t}_{\text {OFF }}$ (EN)   C harge Injection   OFF Isolation   Channel-to-Channel Crosstalk   $\mathrm{C}_{\mathrm{s}}$ (OFF)   $C_{D}$ (OFF)   ADG 608   ADG609   $C_{D}(O N)$   AD G 608   AD G609	80   100   10   80   100   40   50   0.5   3   85   85   9   40   20   54   34	130 130 60	80   100   10   80   100   40   50   0.5   3   85   85   9   40   20   54   34	$150$ $150$ $75$	ns typ ns max   $n s \min$   ns typ   ns max ns typ ns max pC typ pC max dB typ   dB typ   pF typ   pF typ pF typ   pF typ pF typ	
POWER REQUIREMENTS $I_{D D}$	$\begin{aligned} & 0.05 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 2 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 2 \end{aligned}$	$\mu \mathrm{A}$ typ $\mu \mathrm{A} \max$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or $\mathrm{V}_{\text {D }}$

[^0]
## ADG608/ADG609- SPECIFICATIONS

SINGLE SUPPLY1 ( $\mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{S S}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted)

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Parameter} \& \multicolumn{2}{|c|}{B Version} \& \multicolumn{2}{|l|}{T Version} \& \multirow[b]{2}{*}{Units} \& \multirow[b]{2}{*}{Test Conditions/ Comments} \\
\hline \& +250 \& \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) \& \(+25^{\circ} \mathrm{C}\) \& \[
\begin{aligned}
\& -55^{\circ} \mathrm{C} \text { to } \\
\& +125^{\circ} \mathrm{C}
\end{aligned}
\] \& \& \\
\hline ANALOG SWITCH Analog Signal Range Ron \(\mathrm{R}_{\text {ON }} \mathrm{M}\) atch \& \[
\begin{aligned}
\& 60 \\
\& 90 \\
\& 3
\end{aligned}
\] \& \[
\begin{aligned}
\& 0 \text { to } V_{D D} \\
\& 100 \\
\& 3
\end{aligned}
\] \& \[
\begin{aligned}
\& 60 \\
\& 90 \\
\& 3
\end{aligned}
\] \& \[
\begin{aligned}
\& 0 \text { to } V_{D D} \\
\& 120 \\
\& 3
\end{aligned}
\] \& \begin{tabular}{l}
V \\
\(\Omega\) typ \\
\(\Omega\) max \\
\(\Omega\) max
\end{tabular} \& \begin{tabular}{l}
\[
\mathrm{V}_{\mathrm{S}}=+1.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-1 \mathrm{~mA} ;
\] \\
\(V_{D D}=+3 \mathrm{~V}\); Test Circuit 1 \\
\(\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=-1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=+3.3 \mathrm{~V}\)
\end{tabular} \\
\hline ```
LEAKAGE CURRENTS
Source OFF Leakage IS (OFF)
Drain OFF Leakage ID (OFF)
ADG 608
ADG609
C hannel ON Leakage ID, IS (ON )
ADG 608
ADG609
``` \& \[
\begin{aligned}
\& \pm 0.05 \\
\& \pm 0.5 \\
\& \pm 0.05 \\
\& \pm 0.5 \\
\& \pm 0.5 \\
\& \pm 0.05 \\
\& \pm 0.5 \\
\& \pm 0.5
\end{aligned}
\] \& \[
\begin{aligned}
\& \pm 2 \\
\& \pm 2 \\
\& \pm 1 \\
\& \pm 3 \\
\& \pm 1.5
\end{aligned}
\] \& \[
\begin{aligned}
\& \pm 0.05 \\
\& \pm 0.5 \\
\& \pm 0.05 \\
\& \pm 0.5 \\
\& \pm 0.5 \\
\& \pm 0.05 \\
\& \pm 0.5 \\
\& \pm 0.5
\end{aligned}
\] \& \[
\begin{aligned}
\& \pm 10 \\
\& \pm 10 \\
\& \pm 5 \\
\& \pm 20 \\
\& \pm 10
\end{aligned}
\] \& nA typ nA max nA typ nA max nA max nA typ nA max nA max \& \begin{tabular}{l}
\[
\begin{aligned}
\& V_{D D}=+3.6 \mathrm{~V} \\
\& \mathrm{~V}_{\mathrm{D}}=2.6 \mathrm{~V} / 0.1 \mathrm{~V}, \mathrm{~V}_{S}=0.1 \mathrm{~V} / 2.6 \mathrm{~V}
\end{aligned}
\] \\
Test Circuit 2
\[
V_{D}=2.6 \mathrm{~V} / 0.1 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0.1 \mathrm{~V} / 2.6 \mathrm{~V} \text {; }
\] \\
Test Circuit 3
\[
V_{S}=V_{D}=2.6 \mathrm{~V} / 0.1 \mathrm{~V} ;
\] \\
Test Circuit 4
\end{tabular} \\
\hline \begin{tabular}{l}
DIGITAL INPUTS \\
Input High Voltage, \(\mathrm{V}_{\text {INH }}\) \\
Input Low Voltage, \(\mathrm{V}_{\mathrm{INL}}\) \\
Input Current \\
\(\mathrm{I}_{\text {INL }}\) or \(\mathrm{I}_{\text {INH }}\) \\
\(\mathrm{C}_{\mathrm{IN}}\), Digital Input Capacitance
\end{tabular} \& 5 \& \[
\begin{aligned}
\& 2.4 \\
\& 0.8 \\
\& \\
\& \pm 1
\end{aligned}
\] \& 5 \& \[
\begin{gathered}
2.4 \\
0.8 \\
\\
\pm 1
\end{gathered}
\] \& \begin{tabular}{l}
\(V\) min \\
\(V\) max \\
\(\mu \mathrm{A}\) max \\
pF typ
\end{tabular} \& \(V_{I N}=0\) or \(V_{\text {DD }}\) \\
\hline \begin{tabular}{l}
DYNAMIC CHARACTERISTICS² \\
\(\mathrm{t}_{\text {transition }}\) \\
\(\mathrm{t}_{\text {OPEN }}\) \\
\(\mathrm{t}_{\mathrm{ON}}\) (EN) \\
\(t_{\text {OFF }}(E N)\) \\
Charge Injection \\
OF F Isolation \\
Channel-to-C hannel C rosstalk \\
\(\mathrm{C}_{\mathrm{s}}\) (OFF) \\
CD (OFF) \\
AD G 608 \\
ADG 609 \\
\(C_{D}(0 N)\) \\
AD G 608 \\
ADG 609
\end{tabular} \& \[
\begin{aligned}
\& 120 \\
\& 170 \\
\& 10 \\
\& 120 \\
\& 170 \\
\& 40 \\
\& 60 \\
\& 0.5 \\
\& 3 \\
\& 85 \\
\& \\
\& 85 \\
\& 9 \\
\& 9 \\
\& 40 \\
\& 20 \\
\& 54 \\
\& 54
\end{aligned}
\] \& 225

225

75 \& $$
\begin{aligned}
& 120 \\
& 170 \\
& 10 \\
& 120 \\
& 170 \\
& 40 \\
& 60 \\
& 0.5 \\
& 3 \\
& 85 \\
& \\
& 85 \\
& 9 \\
& \\
& 40 \\
& 40 \\
& 20 \\
& 54 \\
& 34 \\
& \hline
\end{aligned}
$$ \& \[

250
\]

$$
250
$$

\[
90

\] \& | ns typ |
| :--- |
| ns min |
| ns typ |
| ns max |
| ns typ |
| ns max |
| pC typ |
| pC max |
| dB typ |
| dB typ |
| pF typ | \&

\hline POWER REQUIREMENTS $I_{D D}$ \& \[
$$
\begin{aligned}
& 0.05 \\
& 0.2
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.2 \\
& 2
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.05 \\
& 0.2
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.2 \\
& 2
\end{aligned}
$$
\] \& $\mu \mathrm{A}$ typ $\mu \mathrm{A} \max$ \& $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or $\mathrm{V}_{\text {D }}$

\hline
\end{tabular}

NOTES
${ }^{1} \mathrm{~T}$ emperature ranges are as follows: B Version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; T Version: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
${ }^{2} G$ uaranteed by design, not subject to production test.
Specifications subject to change without notice.

| ABSOLUTE MAXIMUM RATINGS ${ }^{1}$
 ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted) | |
| :---: | :---: |
| $V_{\text {DD }}$ to $\mathrm{V}_{S S}$ | +13V |
| $V_{\text {DD }}$ to GND | 3 V to +6.5V |
| $V_{\text {ss }}$ to GND | +0.3 V to -6.5 V |
| A nalog, Digital Inputs ${ }^{2} \ldots \ldots$. | $-0.3 \mathrm{~V} \text { to } \mathrm{V}_{D D}+2 \mathrm{~V}$
 hichever Occurs First |
| C ontinuous Current, S or D | 20 mA |
| Peak C urrent, S or D
 (Pulsed at $1 \mathrm{~ms}, 10 \%$ Duty Cycle Max) | |
| O perating T emperature Range | |
| Industrial (B Version) | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| Extended (T Version) | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| Storage T emperature Range | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| Junction T emperature | .. $+150^{\circ} \mathrm{C}$ |
| Plastic DIP Package | |
| $\theta_{\text {IA }}$, Thermal Impedance | $117^{\circ} \mathrm{C} / \mathrm{W}$ |
| Lead T emperature, Soldering (10 sec) | $+260^{\circ} \mathrm{C}$ |

Table I. ADG608Truth Table

| A2 | A1 | A0 | EN | ON SWITCH |
| :--- | :--- | :--- | :--- | :--- |
| X | X | X | 0 | N ON E |
| 0 | 0 | 0 | 1 | 1 |
| 0 | 0 | 1 | 1 | 2 |
| 0 | 1 | 0 | 1 | 3 |
| 0 | 1 | 1 | 1 | 4 |
| 1 | 0 | 0 | 1 | 5 |
| 1 | 0 | 1 | 1 | 6 |
| 1 | 1 | 0 | 1 | 7 |
| 1 | 1 | 1 | 1 | 8 |
| | | | | |
| X Don't Care | | | | |

| SOIC Package | |
| :---: | :---: |
| | $77^{\circ} \mathrm{C} / \mathrm{W}$ |
| Lead T emperature, Soldering | |
| Vapor Phase (60 sec) | $+215^{\circ} \mathrm{C}$ |
| Infrared (15 sec) | $+220^{\circ} \mathrm{C}$ |
| TSSOP Package | |
| $\theta_{\text {JA }}$, Thermal Impedance | $158{ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| Lead Temperature, Soldering | |
| V apor Phase (60 sec) | $+215^{\circ} \mathrm{C}$ |
| Infrared (15 sec) | $+220^{\circ} \mathrm{C}$ |
| ESD Rating | >5000 V |
| NOTES | |
| ${ }^{1}$ Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time. | |
| ${ }^{2}$ O vervoltages at A, S, D or EN will be clamped by internal diodes. Current should be limited to the maximum ratings given. | |

Table II. ADG609 Truth Table

| A1 | A0 | EN | ON SWITCH PAIR |
| :--- | :--- | :--- | :--- |
| X | X | 0 | N ONE |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 1 | 2 |
| 1 | 0 | 1 | 3 |
| 1 | 1 | 1 | 4 |
| Don't Care | | | |

PIN CONFIGURATIONS

DIP/SOIC/TSSOP

DIP/SOIC/TSSOP

ADG608/ADG609- Typical Performance Characteristics

Figure 1. $R_{O N}$ as a Function of $V_{D}\left(V_{S}\right)$: Dual Supply Voltage

Figure 2. $R_{O N}$ as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures

Figure 3. $R_{O N}$ as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures

Figure 4. $R_{O N}$ as a Function of $V_{D}\left(V_{S}\right)$: Single Supply Voltage

Figure 5. $R_{O N}$ as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures

Figure 6. Leakage Currents as a Function of $V_{D}\left(V_{S}\right)$

Figure 7. Leakage Currents as a Function of $V_{D}\left(V_{S}\right)$

Figure 8. Positive Supply Current vs. Switching Frequency

Figure 9. Charge Injection vs. Analog Voltage V_{S}

Figure 10. Leakage Currents as a Function of $V_{D}\left(V_{S}\right)$

Figure 11. Negative Supply Current vs. Switching Frequency

Figure 12. Crosstalk and Off Isolation vs. Frequency

Test Circuit 1. On Resistance

Test Circuit 2. Is (OFF)

Test Circuit 5. Switching Time of Multiplexer, $t_{\text {TRANSItion }}$

Test Circuit 6. Break-Before-Make Delay, $t_{\text {OPEN }}$

Test Circuit 7. Enable Delay, $t_{\text {ON }}(E N)$, $t_{\text {OFF }}$ (EN)

Test Circuit 8. Charge Injection

Test Circuit 9. OFF Isolation

Test Circuit 10. Channel-to-Channel Crosstalk

TERMINOLOGY

$V_{D D}$
$V_{S S} \quad$ M ost negative power supply potential in dual supplies. In single supply applications, it may be connected to ground.
GND Ground (0 V) reference.

$\Delta R_{\text {ON }}$

$\mathrm{R}_{\mathrm{ON}} \mathrm{M}$ atch
I_{D} (OFF)
$I_{D}, I_{S}(O N)$
V_{D}, V_{S}
C_{s} (OFF)
$C_{D}(O F F)$
$C_{D}, C_{S}(O N)$
$\mathrm{C}_{\text {IN }}$
$t_{\text {ON }}$ (EN)
$R_{O N} \quad$ Ohmic resistance between D and S.
$I_{S}($ OFF) Source leakage current when the switch is off.
$\mathrm{R}_{\text {ON }}$ variation due to a change in the analog input voltage with a constant load current.
Difference between the R_{ON} of any two channels.

D rain leakage current when the switch is off. C hannel leakage current when the switch is on.

Analog voltage on terminals D, S.
Channel input capacitance for "OFF" condition.
C hannel output capacitance for "OFF" condition.
"ON" switch capacitance. $I_{D D}$
D igital input capacitance.
Delay time between the 50% and 90% points of the digital input and switch "ON" condition.
$t_{0 F F}$ (EN) Delay time between the 50% and 90% points of the digital input and switch "OFF" condition.
$\mathrm{t}_{\text {transition }} \quad$ Delay time between the 50% and 90% points of the digital inputs and the switch "ON" condition when switching from one address state to another.
"OFF" time measured between the 80\% points of both switches when switching from one address state to another.
M aximum input voltage for logic " 0 ."
M inimum input voltage for logic " 1. "
Input current of the digital input.
A measure of unwanted signal which is coupled through from one channel to another as a result of parasitic capacitance.
Off Isolation A measure of unwanted signal coupling through an "OFF" channel.
C harge Injection A measure of the glitch impulse transferred from the digital input to the analog output during switching.
Positive supply current.
N egative supply current.

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

16-Pin Plastic ($\mathrm{N}-16$)

16-Pin SOIC (R-16A)

16-Pin TSSOP (RU-16)

[^0]: NOTES
 ${ }^{1} \mathrm{~T}$ emperature ranges are as follows: B Version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; T Version: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
 ${ }^{2} \mathrm{G}$ uaranteed by design, not subject to production test.
 Specifications subject to change without notice.

