

2 A positive voltage regulator IC

Datasheet - production data

Features

- Output current up to 2 A
- Output voltages of 5; 7.5; 9; 10; 12; 15; 18; 24 V
- Thermal protection
- Short circuit protection
- Output transition SOA protection

Description

The L78S series of three-terminal positive regulators is available in TO-220 package and several fixed output voltages, making it useful in a wide range of applications. These regulators can provide local on-card regulation, eliminating the distribution problems associated with single point regulation. Each type embeds internal current limiting, thermal shut-down and safe area protection, making it essentially indestructible. If adequate heat sinking is provided, they can deliver over 2 A output current. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltages and currents.

Part numbers	TO-220	Output voltage	
Fait numbers	Dual gauge Single gauge		Output voltage
L78S05C	L78S05CV-DG	L78S05CV	5 V
L78S75C	L78S75CV-DG	L78S75CV	7.5 V
L78S09C	L78S09CV-DG	L78S09CV	9 V
L78S10C	L78S10CV-DG	L78S10CV	10 V
L78S12C	L78S12CV-DG	L78S12CV	12 V
L78S15C	L78S15CV-DG	L78S15CV	15 V
L78S18C		L78S18CV	18 V
L78S24C		L78S24CV	24 V

Table 1. Device summary

March 2014

DocID2148 Rev 8

1/35

Contents

1	Diagram	5
2	Pin configuration	5
3	Maximum ratings	7
4	Test circuits	3
5	Electrical characteristics	•
6	Typical performance	7
7	Package mechanical data 28	3
8	Packaging mechanical data 33	3
9	Revision history	4

List of tables

Table 1.	Device summary	. 1
Table 2.	Absolute maximum ratings	
Table 3.	Thermal data	. 7
Table 4.	Electrical characteristics of L78S05C	. 9
Table 5.	Electrical characteristics of L78S75C	10
Table 6.	Electrical characteristics of L78S09C	11
Table 7.	Electrical characteristics of L78S10C	12
Table 8.	Electrical characteristics of L78S12C	13
Table 9.	Electrical characteristics of L78S15C	14
Table 10.	Electrical characteristics of L78S18C	15
Table 11.	Electrical characteristics of L78S24C	16
Table 12.	TO-220 (dual gauge) mechanical data	30
Table 13.	TO-220 SG (single gauge) mechanical data	32
Table 14.	Document revision history	34

List of figures

Figure 1.	Block diagram	. 5
Figure 2.	Pin connections (top view)	. 6
Figure 3.	Schematic diagram	. 6
Figure 4.	Application circuits	. 7
Figure 5.	DC parameter	. 8
Figure 6.	Load regulation	. 8
Figure 7.	Ripple rejection	
Figure 8.	Dropout voltage vs. junction temperature	17
Figure 9.	Peak output current vs. input/output differential voltage	
Figure 10.	Output impedance vs. frequency	
Figure 11.	Output voltage vs. junction temperature	17
Figure 12.	Supply voltage rejection vs. frequency	18
Figure 13.	Quiescent current vs. junction temperature	18
Figure 14.	Load transient response	18
Figure 15.	Line transient response	
Figure 16.	Quiescent current vs. input voltage	18
Figure 17.	Fixed output regulator	19
Figure 18.	Constant current regulator	
Figure 19.	Circuit for increasing output voltage	19
Figure 20.	Adjustable output regulator (7 to 30 V)	20
Figure 21.	0.5 to 10 V regulator	20
Figure 22.	High current voltage regulator	
Figure 23.	High output current with short circuit protection	21
Figure 24.	Tracking voltage regulator	
Figure 25.	Positive and negative regulator	
Figure 26.	Negative output voltage circuit	23
Figure 27.	Switching regulator	
Figure 28.	High input voltage circuit.	
Figure 29.	High input voltage circuit.	
Figure 30.	High output voltage regulator	
Figure 31.	High input and output voltage	
Figure 32.	Reducing power dissipation with dropping resistor	
Figure 33.	Remote shutdown	
Figure 34.	Power AM modulator (unity voltage gain, $I_0 \pm 1 A$)	
Figure 35.	Adjustable output voltage with temperature compensation	26
Figure 36.	Light controllers ($V_{Omin} = V_{XX} + V_{BE}$)	27
Figure 37.	Protection against input short-circuit with high capacitance loads	27
Figure 38.	TO-220 (dual gauge) drawing.	
Figure 39.	TO-220 SG (single gauge) drawing	
Figure 40.	Tube for TO-220 (dual gauge) (mm.)	
Figure 41.	Tube for TO-220 (single gauge) (mm.)	33

1 Diagram

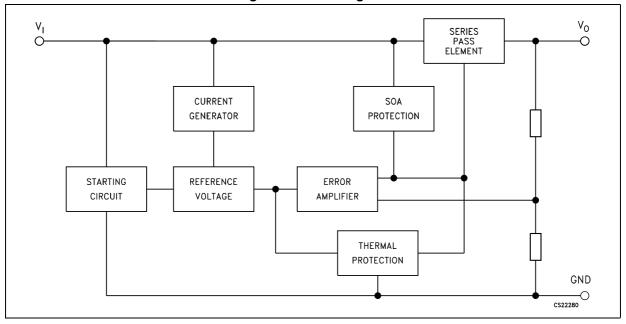
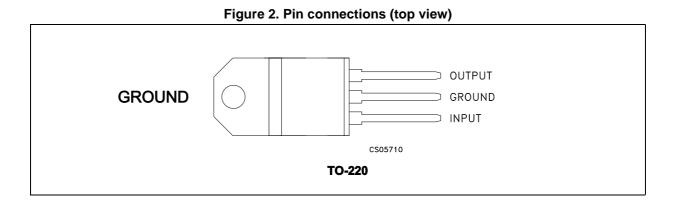



Figure 1. Block diagram

2 Pin configuration

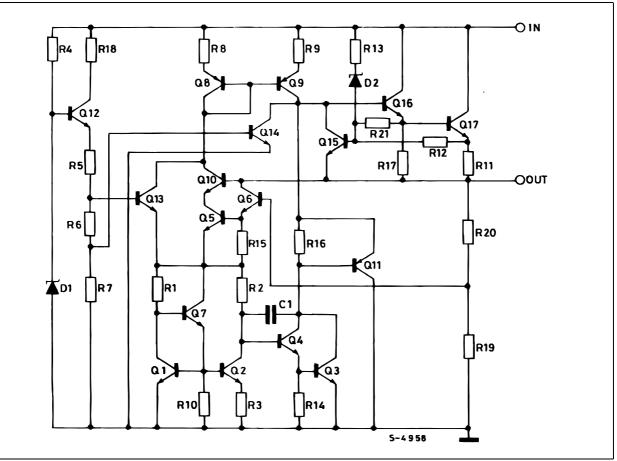
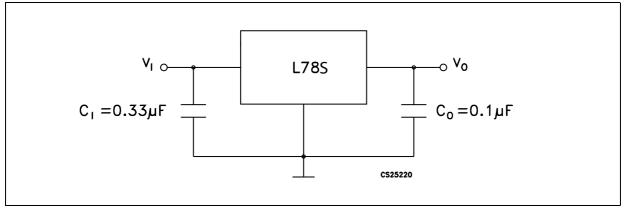


Figure 3. Schematic diagram

3 Maximum ratings

Symbol	Parameter		Value	Unit
V		for V_0 = 5 to 18V	35	V
VI	DC input voltage for V _O = 24V		40	V
Ι _Ο	Output current		Internally limited	
PD	Power dissipation		Internally limited	
T _{STG}	Storage temperature range		-65 to 150	°C
T _{OP}	Operating junction temperature range		0 to 150	°C


Table 2. Absolute maximum rating	s
----------------------------------	---

Note: Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

Table 3. Thermal data

Symbol	Parameter	TO-220	Unit
R _{thJC}	Thermal resistance junction-case	5	°C/W
R _{thJA}	Thermal resistance junction-ambient	50	°C/W

Figure 4. Application circuits

4 Test circuits

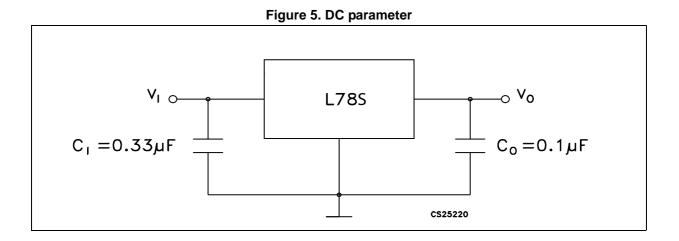
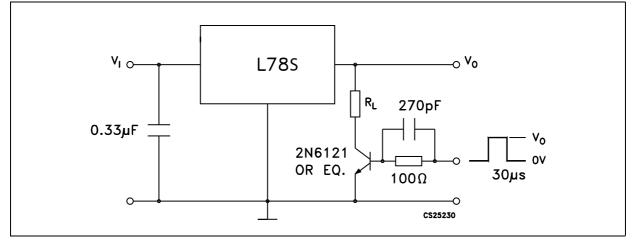
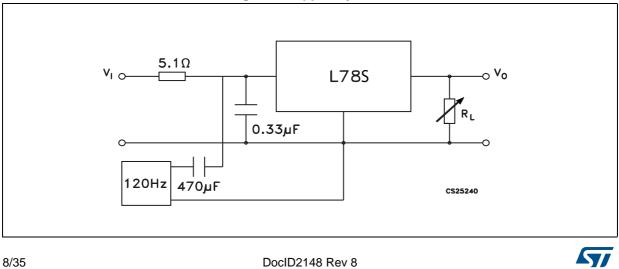




Figure 6. Load regulation

Figure 7. Ripple rejection

5 Electrical characteristics

Refer to the test circuits, T_J = 25 °C, V_I = 10 V, I_O = 500 mA, unless otherwise specified.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage		4.8	5	5.2	V
Vo	Output voltage	I _O = 1 A, V _I = 7 V	4.75	5	5.25	V
A) /	Line regulation	$V_{I} = 7 \text{ to } 25 \text{ V}$			100	mV
ΔV_O	Line regulation	V ₁ = 8 to 25 V			50	
A \ /	Lood regulation	I _O = 20 mA to 1.5 A			100	m)/
ΔV_{O}	Load regulation	I _O = 2 A		80		mV
Ι _Q	Quiescent current				8	mA
ΔI_Q	Quiescent current change	$I_0 = 20 \text{ mA to 1 A}$			0.5	mA
		$V_{I} = 7 \text{ to } 25 \text{ V}, I_{O} = 20 \text{ mA}$			1.3	
$\Delta V_O / \Delta T$	Output voltage drift	$I_{O} = 5 \text{ mA}, T_{J} = 0 \text{ °C to } 70 \text{ °C}$		-1.1		mV/°C
eN	Output noise voltage	B = 10 Hz to 100 kHz		40		μV
SVR	Supply voltage rejection	f = 120 Hz	54 ⁽¹⁾			dB
VI	Operating input voltage	$I_0 \le 1 \text{ A}$	8			V
R _O	Output resistance	f = 1 kHz		17		mΩ
I _{sc}	Short circuit current	V ₁ = 27 V		500		mA
I _{scp}	Short circuit peak current			3		Α

Refer to the test circuits, T_J = 25 °C, V_I = 12.5 V, I_O = 500 mA, unless otherwise specified.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage		7.15	7.5	7.9	V
Vo	Output voltage	I _O = 1 A, V _I = 9.5 V	7.1	7.5	7.95	V
A) (Line regulation	V _I = 9.5 to 25 V			120	mV
ΔV_{O}	Line regulation	V _I = 10.5 to 20 V			60	mv
A) (Lood regulation	I _O = 20 mA to 1.5 A			140	m)/
ΔV_{O}	Load regulation	I _O = 2 A		100		mV
Ι _Q	Quiescent current				8	mA
ΔI_Q	Quiescent current change	$I_0 = 20 \text{ mA to 1 A}$			0.5	- mA
		$V_{I} = 9.5 \text{ to } 25 \text{ V}, I_{O} = 20 \text{ mA}$			1.3	
$\Delta V_O / \Delta T$	Output voltage drift	$I_{O} = 5 \text{ mA}, T_{J} = 0 \text{ °C to } 70 \text{ °C}$		-0.8		mV/°C
eN	Output noise voltage	B = 10 Hz to 100 kHz		52		μV
SVR	Supply voltage rejection	f = 120 Hz	48 ⁽¹⁾			dB
VI	Operating input voltage	I _O ≤ 1 A	10.5			V
R _O	Output resistance	f = 1 kHz		16		mΩ
I _{sc}	Short circuit current	V ₁ = 27 V		500		mA
I _{scp}	Short circuit peak current			3		А

Table 5. Electrical characteristics of L78S75C

Refer to the test circuits, T_J = 25 °C, V_I = 14 V, I_O = 500 mA, unless otherwise specified.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage		8.65	9	9.35	V
Vo	Output voltage	I _O = 1 A, V _I = 11 V	8.6	9	9.4	V
A) /		V _I = 11 to 25 V			130	
ΔV_{O}	Line regulation	V _I = 11 to 20 V			65	mV
A) /	Lood regulation	I _O = 20 mA to 1.5 A			170	m\/
ΔV_{O}	Load regulation	I _O = 2 A		100		mV
Ι _Q	Quiescent current				8	mA
	Quiescent current change	$I_0 = 20 \text{ mA to 1 A}$			0.5	mA
ΔI_Q		$V_{I} = 11 \text{ to } 25 \text{ V}, I_{O} = 20 \text{ mA}$			1.3	
$\Delta V_{O} / \Delta T$	Output voltage drift	$I_{O} = 5 \text{ mA}, T_{J} = 0 \text{ °C to } 70 \text{ °C}$		-1		mV/°C
eN	Output noise voltage	B = 10 Hz to 100 kHz		60		μV
SVR	Supply voltage rejection	f = 120 Hz	47 ⁽¹⁾			dB
VI	Operating input voltage	$I_0 \le 1 \text{ A}$	12			V
R _O	Output resistance	f = 1 kHz		17		mΩ
I _{sc}	Short circuit current	V ₁ = 27 V		500		mA
I _{scp}	Short circuit peak current			3		А

-				
Table 6.	Electrical	characteristics	ot	L/8509C

Refer to the test circuits, T_J = 25 °C, V_I = 15 V, I_O = 500 mA, unless otherwise specified.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
Vo	Output voltage		9.5	10	10.5	V	
Vo	Output voltage	I _O = 1 A, V _I = 12.5 V	9.4	10	10.6	V	
	Line regulation	V _I = 12.5 to 30 V			200	mV	
ΔV_{O}		V _I = 14 to 22 V			100		
۸۷/ -	Load regulation	I _O = 20 mA to 1.5 A			240	mV	
ΔV_{O} Load regulation		I _O = 2 A		150		IIIV	
Ι _Q	Quiescent current				8	mA	
41	Quiescent current change	$I_0 = 20 \text{ mA to 1 A}$			0.5	mA	
ΔI_Q	Quescent current change	$V_{I} = 12.5 \text{ to } 30 \text{ V}, I_{O} = 20 \text{ mA}$			1		
$\Delta V_{O} / \Delta T$	Output voltage drift	$I_{O} = 5 \text{ mA}, T_{J} = 0 \text{ °C to } 70 \text{ °C}$		-1		mV/°C	
eN	Output noise voltage	B = 10 Hz to 100 kHz		65		μV	
SVR	Supply voltage rejection	f = 120 Hz	47 ⁽¹⁾			dB	
VI	Operating input voltage	I _O ≤ 1 A	13			V	
R _O	Output resistance	f = 1 kHz		17		mΩ	
I _{sc}	Short circuit current	V ₁ = 27 V		500		mA	
I _{scp}	Short circuit peak current			3		А	

Table 7. Electrical characteristics of L78S10C

Refer to the test circuits, T_J = 25 °C, V_I = 19 V, I_O = 500 mA, unless otherwise specified.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage		11.5	12	12.5	V
Vo	Output voltage	I _O = 1 A, V _I = 14.5 V	11.4	12	12.6	V
		V _I = 14.5 to 30 V			240	
ΔV_{O}	Line regulation	V _I = 16 to 22 V			120	mV
A) (Lood regulation	I _O = 20 mA to 1.5 A			240	
ΔV _O Load regulatio	Load regulation	I _O = 2 A		150		mV
۱ _Q	Quiescent current				8	mA
41	Quipagent ourrent change	$I_{O} = 20 \text{ mA to 1 A}$			0.5	mA
ΔIQ	ΔI_Q Quiescent current change	$V_{\rm I}$ = 14.5 to 30 V, $I_{\rm O}$ = 20 mA			1	mA
$\Delta V_{O} / \Delta T$	Output voltage drift	$I_{O} = 5 \text{ mA}, T_{J} = 0 \text{ °C to } 70 \text{ °C}$		-1		mV/°C
eN	Output noise voltage	B =10 Hz to 100 kHz		75		μV
SVR	Supply voltage rejection	f = 120 Hz	47 ⁽¹⁾			dB
VI	Operating input voltage	I _O ≤ 1 A	15			V
R _O	Output resistance	f = 1 kHz		18		mΩ
I _{sc}	Short circuit current	V _I = 27 V		500		mA
I _{scp}	Short circuit peak current			3		А

			- 4	1 700400
Table 8.	Electrical	characteristics	σ	L/8512C

Refer to the test circuits, T_J = 25 °C, V_I = 23 V, I_O = 500 mA, unless otherwise specified.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage		14.4	15	15.6	V
Vo	Output voltage	I _O = 1 A, V _I = 17.5 V	14.25	15	15.75	V
A) (V _I = 17.5 to 30 V			300	m\/
ΔV_O	Line regulation	V _I = 20 to 26 V			150	mV
A\/	Lood regulation	I _O = 20 mA to 1.5 A			300	mV
ΔV_{O} Load regulation		I _O = 2 A		150		mv
Ι _Q	Quiescent current				8	mA
	Quiessent ourrent change	$I_{O} = 20 \text{ mA to 1 A}$			0.5	٣A
ΔI_Q	Quiescent current change	$V_{\rm I}$ = 17.5 to 30 V, $I_{\rm O}$ = 20 mA			1	mA
$\Delta V_O / \Delta T$	Output voltage drift	$I_{O} = 5 \text{ mA}, T_{J} = 0 \text{ °C to } 70 \text{ °C}$		-1		mV/°C
eN	Output noise voltage	B =10 Hz to 100 kHz		90		μV
SVR	Supply voltage rejection	f = 120 Hz	46 ⁽¹⁾			dB
VI	Operating input voltage	I _O ≤ 1 A	18			V
R _O	Output resistance	f = 1 kHz		19		mΩ
I _{sc}	Short circuit current	V ₁ = 27 V		500		mA
I _{scp}	Short circuit peak current			3		А

Table 9. Electrical characteristics of L78S15C

Refer to the test circuits, T_J = 25 °C, V_I = 26 V, I_O = 500 mA, unless otherwise specified.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
V _O	Output voltage		17.1	18	18.9	V	
Vo	Output voltage	I _O = 1 A, V _I = 20.5 V	17	18	19	V	
A)/		V _I = 20.5 to 30 V			360	m\/	
ΔV_O	Line regulation	V ₁ = 22 to 28 V			180	- mV	
A)/	Lood regulation	I _O = 20 mA to 1.5 A			360	mV	
ΔV_O	Load regulation	I _O = 2 A		200		IIIV	
ا _Q	Quiescent current				8	mA	
41	Quiescent ourrent change	$I_0 = 20 \text{ mA to 1 A}$			0.5	mA	
ΔI_Q	Quiescent current change	$V_{\rm I}$ = 20.5 to 30 V, $I_{\rm O}$ = 20 mA			1	ШA	
$\Delta V_O / \Delta T$	Output voltage drift	I _O = 5 mA, T _J = 0 °C to 70 °C		-1		mV/°C	
eN	Output noise voltage	B =10 Hz to 100 kHz		110		μV	
SVR	Supply voltage rejection	f = 120 Hz	43 ⁽¹⁾			dB	
VI	Operating input voltage	I _O ≤1A	21			V	
R _O	Output resistance	f = 1 kHz		22		mΩ	
I _{sc}	Short circuit current	V ₁ = 27 V		500		mA	
I _{scp}	Short circuit peak current			3		А	

Table 10.	Electrical	characteristics	of L78S18C

Refer to the test circuits, T_J = 25 °C, V_I = 33 V, I_O = 500 mA, unless otherwise specified.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage		23	24	25	V
Vo	Output voltage	I _O = 1 A, V _I = 27 V	22.8	24	25.2	V
A)/	Line regulation	V ₁ = 27 to 38 V			480	m\/
ΔV_{O}	Line regulation	V ₁ = 30 to 36 V			240	mV
A)/		I _O = 20 mA to 1.5 A			480	mV
ΔV_{O} Load regulation		I _O = 2 A		300		IIIV
Ι _Q	Quiescent current				8	mA
AL.	Quiescent current change	$I_{O} = 20 \text{ mA to 1 A}$			0.5	mA
ΔIQ	ΔI_Q Quiescent current change	$V_{I} = 27 \text{ to } 38 \text{ V}, I_{O} = 20 \text{ mA}$			1	111/4
$\Delta V_{O} / \Delta T$	Output voltage drift	$I_{O} = 5 \text{ mA}, T_{J} = 0 \text{ °C to } 70 \text{ °C}$		-1.5		mV/°C
eN	Output noise voltage	B = 10 Hz to 100 kHz		170		μV
SVR	Supply voltage rejection	f = 120 Hz	42 ⁽¹⁾			dB
VI	Operating input voltage	$I_0 \le 1 \text{ A}$	27			V
R _O	Output resistance	f = 1 kHz		28		mΩ
I _{sc}	Short circuit current	V ₁ = 27 V		500		mA
I _{scp}	Short circuit peak current			3		A

Table 11. Electrical characteristics of L78S24C

6 Typical performance

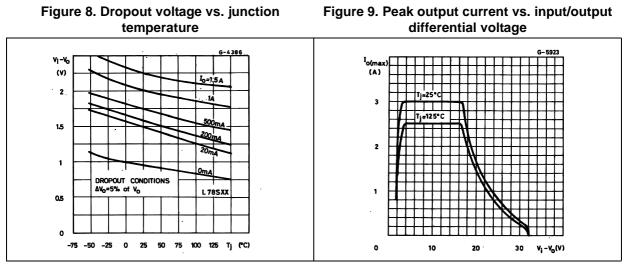
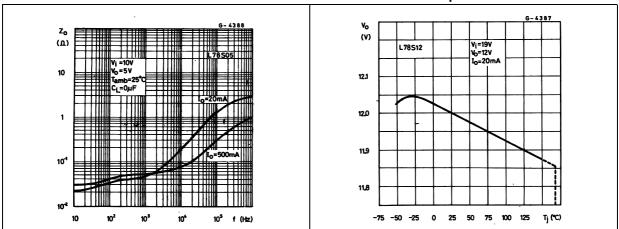
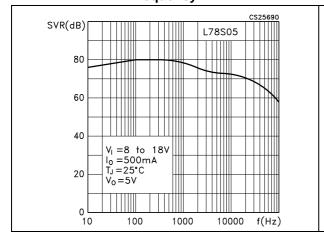
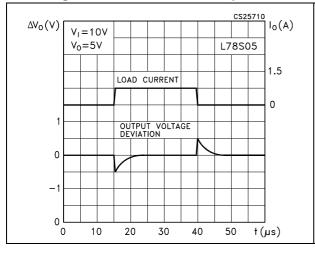


Figure 11. Output voltage vs. junction temperature

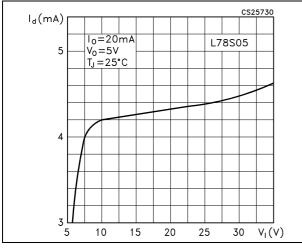

Figure 12. Supply voltage rejection vs. frequency

Figure 14. Load transient response

18/35

Figure 13. Quiescent current vs. junction temperature

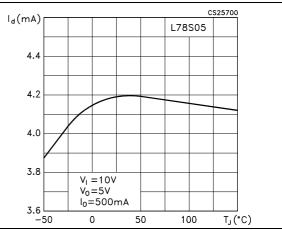
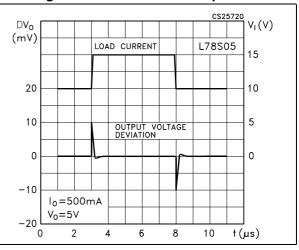



Figure 15. Line transient response

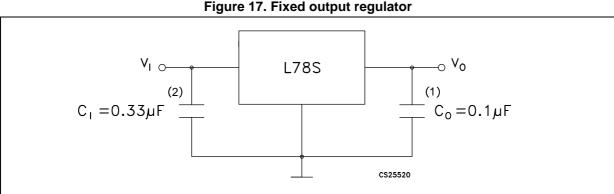


Figure 17. Fixed output regulator

- 1. Although no output capacitor is need for stability, it does improve transient response.
- 2. Required if regulator is located an appreciable distance from power supply filter.

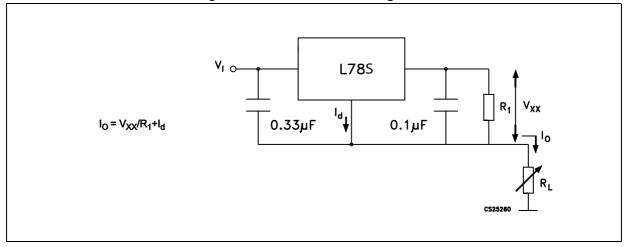
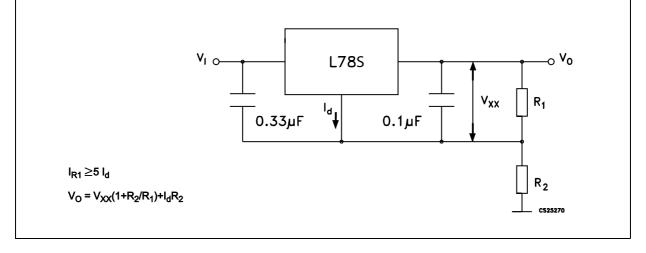



Figure 18. Constant current regulator

Figure 19. Circuit for increasing output voltage

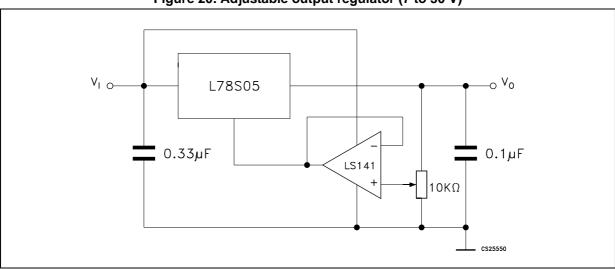
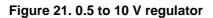



Figure 20. Adjustable output regulator (7 to 30 V)

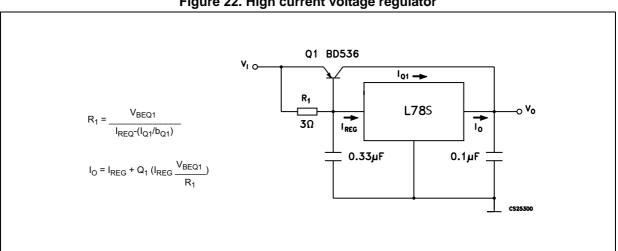
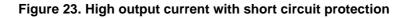
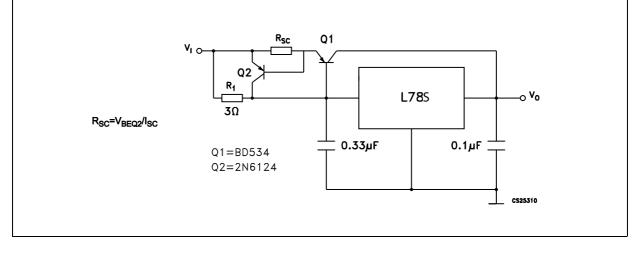




Figure 22. High current voltage regulator

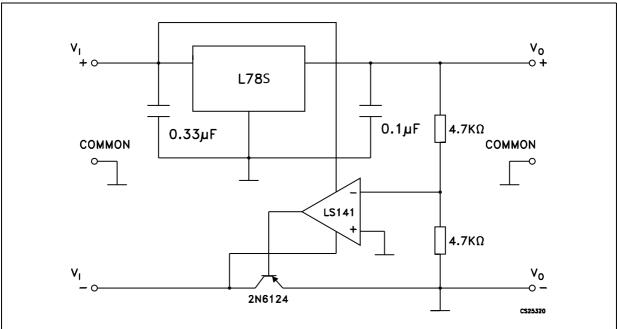
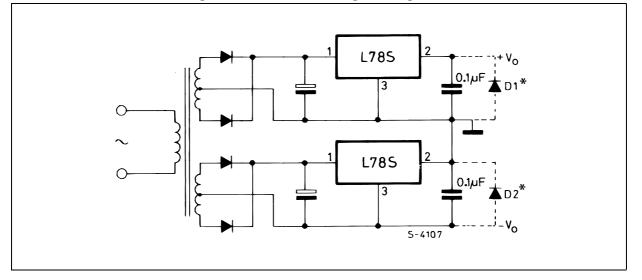



Figure 24. Tracking voltage regulator

Figure 25. Positive and negative regulator

57

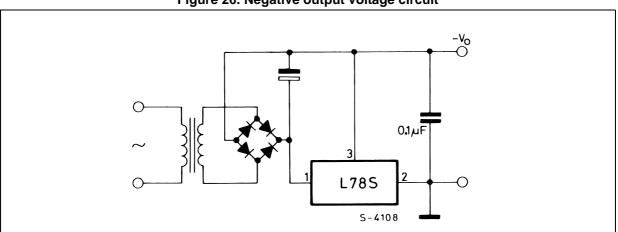
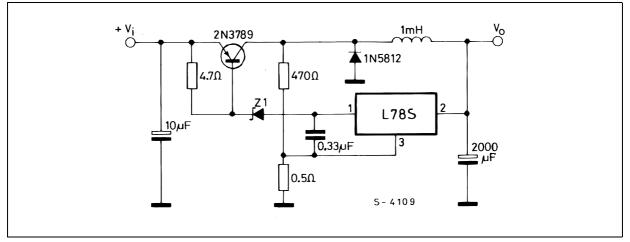
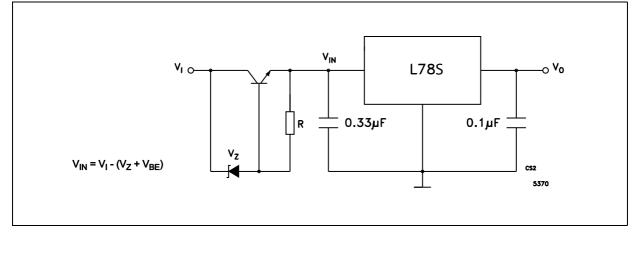




Figure 26. Negative output voltage circuit



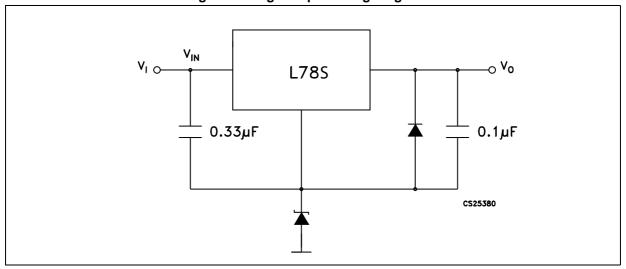

Figure 28. High input voltage circuit

Figure 30. High output voltage regulator

Figure 31. High input and output voltage

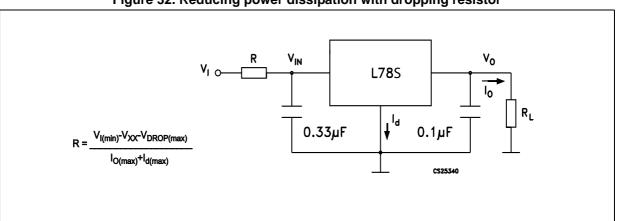
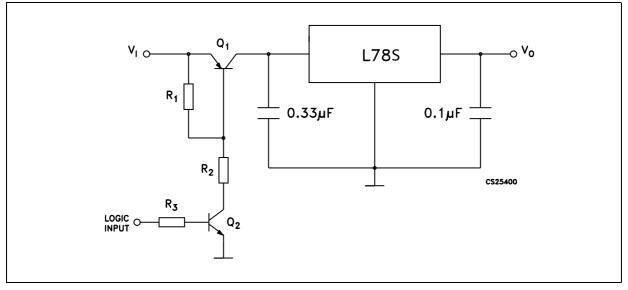
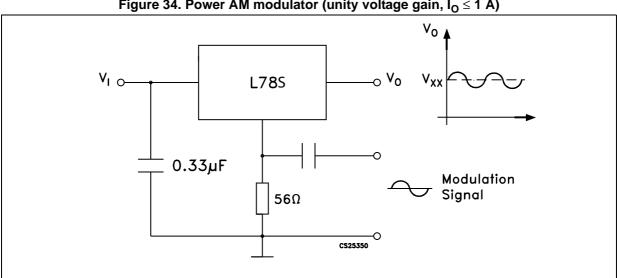
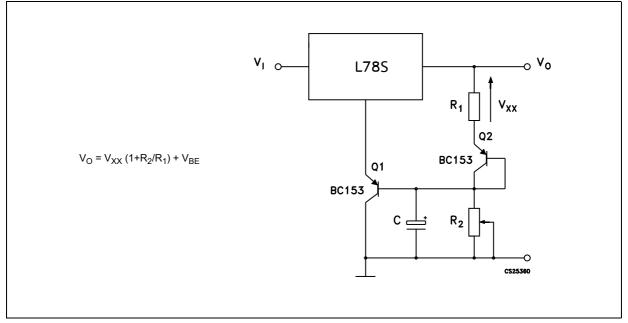




Figure 33. Remote shutdown



Note: The circuit performs well up to 100 kHz.

Figure 35. Adjustable output voltage with temperature compensation

 Q_2 is connected as a diode in order to compensate the variation of the Q_1 V_{BE} with the Note: temperature. C allows a slow rise time of the V_0 .

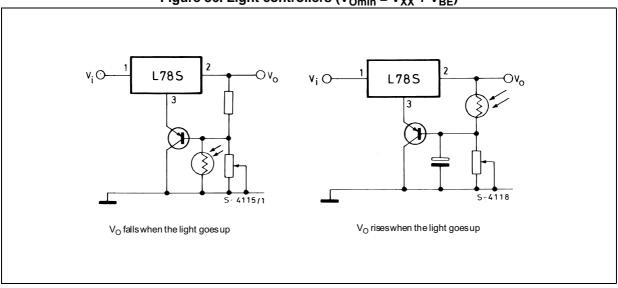
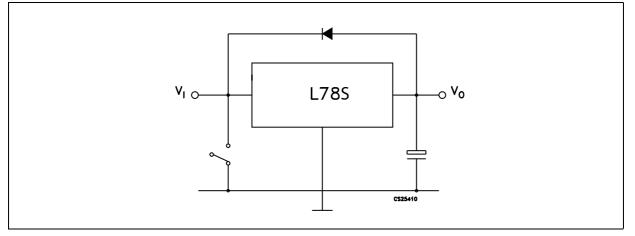
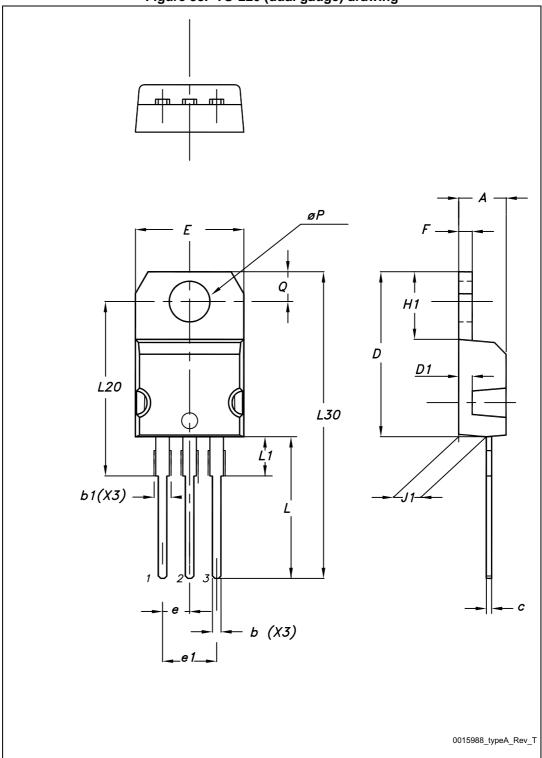



Figure 36. Light controllers ($V_{Omin} = V_{XX} + V_{BE}$)

 Application with high capacitance loads and an output voltage greater than 6 volts need an external diode (see *Figure 30 on page 24*) to protect the device against input short circuit. In this case the input voltage falls rapidly while the output voltage decrease slowly. The capacitance discharges by means of the Base-Emitter junction of the series pass transistor in the regulator. If the energy is sufficiently high, the transistor may be destroyed. The external diode by-passes the current from the IC to ground.


7 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

28/35

Figure 38. TO-220 (dual gauge) drawing

Dim		mm	
Dim. —	Min.	Тур.	Max.
A	4.40		4.60
b	0.61		0.88
b1	1.14		1.70
с	0.48		0.70
D	15.25		15.75
D1		1.27	
E	10		10.40
е	2.40		2.70
e1	4.95		5.15
F	1.23		1.32
H1	6.20		6.60
J1	2.40		2.72
L	13		14
L1	3.50		3.93
L20		16.40	
L30		28.90	
ØР	3.75		3.85
Q	2.65		2.95

Table 12. TO-220 (dual gauge) mechanical data

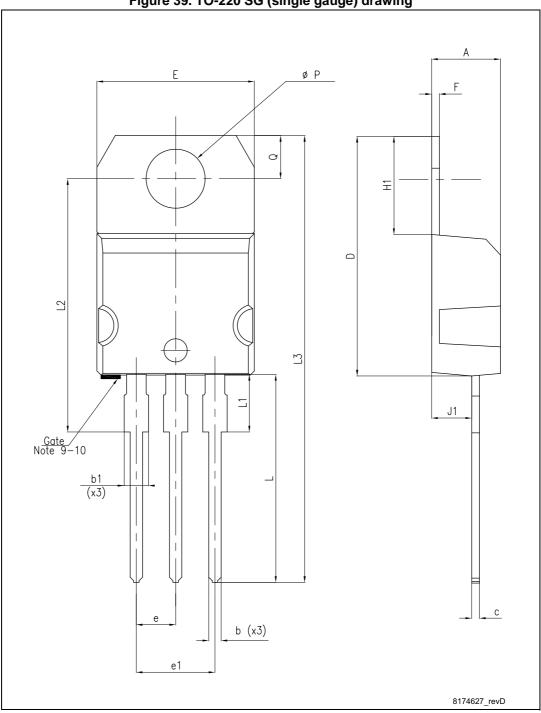


Figure 39. TO-220 SG (single gauge) drawing

D .	Table 13. 10-220 50 (mm	
Dim.	Min.	Тур.	Max.
A	4.40		4.60
b	0.61		0.88
b1	1.14		1.70
С	0.48		0.70
D	15.25		15.75
E	10		10.40
е	2.40		2.70
e1	4.95		5.15
F	0.51		0.60
H1	6.20		6.60
J1	2.40		2.72
L	13		14
L1	3.50		3.93
L20		16.40	
L30		28.90	
ØР	3.75		3.85
Q	2.65		2.95

Table 13. TO-220 SG (single gauge) mechanical data

8 Packaging mechanical data

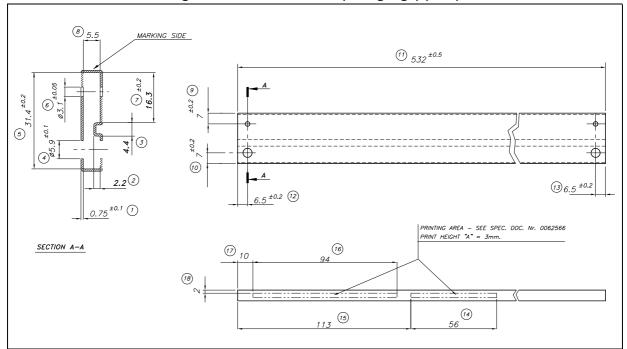
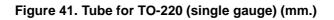
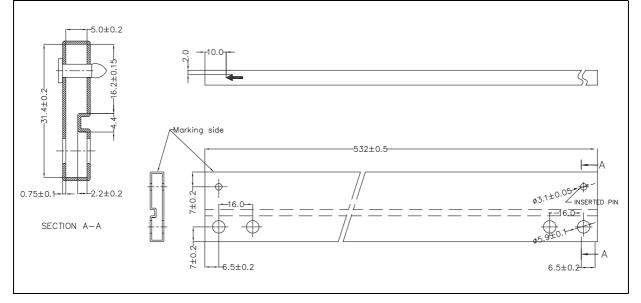




Figure 40. Tube for TO-220 (dual gauge) (mm.)

9 Revision history

Date	Date Revision Changes	
07-Sep-2006	2	Order codes updated.
20-Mar-2008	3	Added: Table 1 on page 1.
22-Mar-2010	4	Added: Table 20 on page 32, Figure 38 on page 33, Figure 39 on page 34, Figure 40 and Figure 41 on page 33.
08-Feb-2012	5	Added: order codes L78S05CV-DG, L78S12CV-DG and L78S15CV-DG <i>Table 13 on page 35</i> .
09-Mar-2012	6	Added: order codes L78S09CV-DG Table 13 on page 35.
15-May-2012	7	Added: order codes L78S75CV-DG and L78S10CV-DG Table 13 on page 35.
10-Mar-2014	8	 Part numbers L78Sxx and L78SxxC changed to L78S. Modified the title, the features and the description in cover page. Removed TO-3 package. Updated Table 1: Device summary, Section 2: Pin configuration, Section 3: Maximum ratings, Section 4: Test circuits, Section 5: Electrical characteristics, Section 6: Typical performance, Section 7: Package mechanical data, Section 9: Order codes. Added Section 8: Packaging mechanical data. Minor text changes.

Table 14. Document revision history

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

> ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2014 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

