+1.2V to +5.5V, $\pm 15 \mathrm{kV}$ ESD-Protected, $0.1 \mu \mathrm{~A}$, 35Mbps, 8-Channel Level Translators

Abstract

General Description The MAX3000E/MAX3001E/MAX3002-MAX3012 8 -channel level translators provide the level shifting necessary to allow data transfer in a multivoltage system. Externally applied voltages, V_{CC} and V_{L}, set the logic levels on either side of the device. Logic signals present on the V L side of the device appear as a higher voltage logic signal on the VCC side of the device, and vice-versa. The MAX3000E/MAX3001E/MAX3002/MAX3003 use an architecture specifically designed to be bidirectional without the use of a directional pin. The MAX3000E/MAX3001E/MAX3002/MAX3004-MAX3012 feature an EN input that, when low, reduces the $V_{C C}$ and VL supply currents to $<2 \mu \mathrm{~A}$. The MAX3000E/MAX3001E also have $\pm 15 \mathrm{kV}$ ESD protection on the I/O Vcc side for greater protection in applications that route signals externally. The MAX3000E operates at a guaranteed data rate of 230 kbps . The MAX3001E operates at a guaranteed data rate of 4 Mbps . The MAX3002-MAX3012 operate at a guaranteed data rate of 20Mbps over the entire specified operating voltage range. The MAX3000E/MAX3001E/MAX3002-MAX3012 accept V_{L} voltages from +1.2 V to +5.5 V and VCC voltages from +1.65 V to +5.5 V , making them ideal for data transfer between low-voltage ASICs/PLDs and higher voltage systems. The MAX3000E/MAX3001E/MAX3002MAX3012 are available in 20 -bump UCSPTM, 20 -pin TQFN ($5 \mathrm{~mm} \times 5 \mathrm{~mm}$), and 20 -pin TSSOP packages.

Applications

CMOS Logic-Level Translation
Cellphones
SPITM and MICROWIRE ${ }^{\text {TM }}$ Level Translation
Low-Voltage ASIC Level Translation
Smart Card Readers
Cellphone Cradles
Portable POS Systems
Portable Communication Devices
Low-Cost Serial Interfaces
GPS
Telecommunications Equipment
UCSP is a trademark of Maxim Integrated Products, Inc.
SPI is a trademark of Motorola, Inc
MICROWIRE is a trademark of National Semiconductor

Features

- Guaranteed Data Rate Options 230kbps (MAX3000E) 4Mbps (MAX3001E) 20Mbps (MAX3002-MAX3012)
- Bidirectional Level Translation Without Using a Directional Pin (MAX3000E/MAX3001E/MAX3002/ MAX3003)
- Unidirectional Level Translation (MAX3004-MAX3012)
- Operation Down to +1.2 V on V_{L}
- $\pm 15 k V$ ESD Protection on I/O Vcc Lines (MAX3000E/MAX3001E)
- Ultra-Low 0.1 1 A Supply Current in Shutdown
- Low Quiescent Current (<10رA)
- UCSP, TQFN, and TSSOP Packages

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX3000EEUP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 TSSOP
MAX3000EEBP-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	4×5 UCSP

Ordering Information continued at end of data sheet.
Note: All devices operate over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operating temperature range.

Typical Operating Circuit

Pin Configurations and Functional Diagrams appear at end of data sheet.

For pricing, delivery, and ordering information, please contact Maxim Direct

MAX3000E/MAX3001E/MAX3002-MAX3012
 +1.2V to +5.5V, $\pm 15 \mathrm{kV}$ ESD-Protected, $0.1 \mu \mathrm{~A}$, 35Mbps, 8-Channel Level Translators

ABSOLUTE MAXIMUM RATINGS

(All voltages referenced to GND.)

Operating Temperature Ranges MAX3001EAUP \qquad $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ MAX300_EE_P. \qquad MAX30_ _E_P \qquad $0^{\circ} \mathrm{C}$

Junction Temperature $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Storage Temperature Range \qquad $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) \qquad .$+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=+1.65 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+1.2 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{C}}, \mathrm{EN}=\mathrm{V}_{\mathrm{L}}(\mathrm{MAX} 3000 \mathrm{E} / \mathrm{MAX3001E/MAX3002/MAX3004-MAX3012})$, $\mathrm{EN} \mathrm{A} / \mathrm{B}=\mathrm{V}_{\mathrm{L}}$ or 0

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
POWER SUPPLIES						
VL Supply Range	VL		1.2		VCC	V
VCC Supply Range	VCC		1.65		5.50	V
Supply Current from VCC	IQvCC	$I / O V_{C C-}=0, I / O V_{L_{-}}=0$ or $\mathrm{I} / \mathrm{O} \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{I} / \mathrm{O} \mathrm{V}_{\mathrm{L}}=\mathrm{V}_{\mathrm{L}}$, MAX3000E/MAX3002-MAX3012		0.1	10	$\mu \mathrm{A}$
		$\begin{aligned} & I / O V_{C C-}=0, I / O V_{L_{-}}=0 \\ & \text { or } / / O V_{C C_{-}}=V_{C C}, I / O V_{L_{-}}=V_{L} \text {, } \\ & M A X 3001 E \end{aligned}$		0.1	50	
Supply Current from V ${ }_{\text {L }}$	IQVL	$\mathrm{I} / \mathrm{O} \mathrm{V}_{\mathrm{CC}}{ }^{-}=0, \mathrm{I} / \mathrm{O} \mathrm{V}_{\mathrm{L}_{-}}=0$ or $\mathrm{I} / \mathrm{O} \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{I} / \mathrm{O} \mathrm{V}_{\mathrm{L}}=\mathrm{V}_{\mathrm{L}}$, MAX3000E/MAX3002-MAX3012		0.1	10	$\mu \mathrm{A}$
		$\begin{aligned} & I / O V_{C C}=0, I / O V_{L_{-}}=0 \\ & \text { or } / / O V_{C C_{-}}=V_{C C}, I / O V_{L_{-}}=V_{L} \text {, } \\ & \text { MAX3001E } \end{aligned}$		0.1	50	
VCc Shutdown Supply Current	ISHDN-VCC	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{EN}=0,$ MAX3000E/MAX3001E/MAX3002/ MAX3004-MAX3012		0.1	2	$\mu \mathrm{A}$
		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{EN} \mathrm{~A} / \mathrm{B}=0,$ MAX3003		0.1	2	
VL Shutdown Supply Current	ISHDN-VL	$T_{A}=+25^{\circ} \mathrm{C}, E N=0,$ MAX3000E/MAX3001E/MAX3002/ MAX3004-MAX3012		0.1	2	$\mu \mathrm{A}$
		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{EN} \mathrm{~A} / \mathrm{B}=0, \\ & \mathrm{MAX} 3003 \end{aligned}$		0.1	2	

MAX3000E/MAX3001E/MAX3002-MAX3012
 +1.2V to +5.5V, $\pm 15 \mathrm{kV}$ ESD-Protected, $0.1 \mu \mathrm{~A}$, 35Mbps, 8-Channel Level Translators

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{C C}=+1.65 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+1.2 \mathrm{~V}$ to V_{CC}, $\mathrm{EN}=\mathrm{V}_{\mathrm{L}}(\mathrm{MAX} 3000 \mathrm{E} / \mathrm{MAX} 3001 \mathrm{E} / \mathrm{MAX3002} / \mathrm{MAX} 3004-\mathrm{MAX} 3012)$, $\mathrm{EN} \mathrm{A} / \mathrm{B}=\mathrm{V}_{\mathrm{L}}$ or 0 (MAX3003), $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $T_{\text {MAX }}$. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+1.65 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+1.2 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
I/O VCC_ Three-State Output Leakage Current		$T_{A}=+25^{\circ} \mathrm{C}, E N=0,$ MAX3000E/MAX3001E/MAX3002/ MAX3004-MAX3012		0.1	2	$\mu \mathrm{A}$
		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{EN} \mathrm{~A} / \mathrm{B}=0, \\ & \mathrm{MAX} 3003 \end{aligned}$		0.1	2	
I/O VL_Three-State Output Leakage Current		EN A/B = 0, MAX3003		0.1	2	$\mu \mathrm{A}$
I/O VL_Pulldown Resistance During Shutdown		$\mathrm{EN}=0,$ MAX3000E/MAX3001E/MAX3002/ MAX3004-MAX3012	4.59		8.30	k Ω
EN or EN A/B Input Leakage Current		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			1	$\mu \mathrm{A}$
LOGIC-LEVEL THRESHOLDS						
I/O VL_ Input-Voltage High Threshold	$\mathrm{V}_{\mathrm{IHL}}$				$2 / 3 \times V_{L}$	V
I/O VL_ Input-Voltage Low Threshold	VILL		$1 / 3 \times V_{\text {L }}$			V
I/O VCC_ Input-Voltage High Threshold	VIHC				$/ 3 \times \mathrm{VCC}$	V
I/O VCC_ Input-Voltage Low Threshold	VILC		$1 / 3 \times V_{C C}$			V
EN, EN A/B Input-Voltage High Threshold	V_{IH}				VL- 0.4	V
EN, EN A/B Input-Voltage Low Threshold	VIL		0.4			V
I/O VL_ Output-Voltage High	VOHL	$\begin{aligned} & \mathrm{I} / \mathrm{O} \mathrm{~V}_{\mathrm{L}_{-}} \text {source current }=20 \mu \mathrm{~A}, \mathrm{I} / \mathrm{O} \mathrm{~V}_{\mathrm{CC}}^{-} \geq \\ & \mathrm{V}_{\mathrm{CC}}-0.0 \mathrm{~V} \end{aligned}$	VL - 0.4			V
I/O VL_ Output-Voltage Low	Voll	$\begin{aligned} & \mathrm{I} / \mathrm{O} \mathrm{~V}_{\mathrm{L}} \text { s sink current }=20 \mu \mathrm{~A}, \\ & \mathrm{I} / \mathrm{O}_{\mathrm{CC}} \leq 0.4 \mathrm{~V} \end{aligned}$			0.4	V
I/O VCC_ Output-Voltage High	VOHC	$\begin{aligned} & \text { I/O VCC_ source current }=20 \mu \mathrm{~A}, \mathrm{I} / \mathrm{O}_{\mathrm{L}_{-}} \geq \\ & \mathrm{V}_{\mathrm{L}}-0.4 \mathrm{~V} \end{aligned}$	$V_{\text {CC }}-0.4$			V
I/O Vcc_ Output-Voltage Low	Volc	$\begin{aligned} & \mathrm{I} / \mathrm{O} \mathrm{~V}_{\mathrm{CC}} \text { sink current }=20 \mu \mathrm{~A}, \\ & \mathrm{I} / \mathrm{O} \mathrm{~L}_{-} \leq 0.4 \mathrm{~V} \end{aligned}$			0.4	V
ESD PROTECTION						
I/O VCC_		Human Body Model, MAX3000E/MAX3001E		± 15		kV

MAX3000E/MAX3001E/MAX3002-MAX3012
 +1.2V to +5.5V, $\mathbf{4} 5 \mathrm{kV}$ ESD-Protected, $0.1 \mu \mathrm{~A}$, 35Mbps, 8-Channel Level Translators

TIMING CHARACTERISTICS

$\left(V_{C C}=+1.65 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+1.2 \mathrm{~V}$ to V_{C}, $\mathrm{EN}=\mathrm{V}_{\mathrm{L}}\left(\mathrm{MAX} 3000 \mathrm{E} / \mathrm{MAX3001E/MAX3002/MAX3004-MAX3012)} \mathrm{EN} \mathrm{A} / \mathrm{B}=,\mathrm{V}_{\mathrm{L}}\right.$ or 0 (MAX3003), $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX. }}$. Typical values are at $\mathrm{V}_{\mathrm{C}}=+1.65 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+1.2 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
I/O VCC_ Rise Time	trvcc	$\text { RS }=50 \Omega, C V C C=50 \mathrm{pF}, \text { MAX3000E },$ Figures 1a, 1b	400	800	1200	ns
		Rs $=50 \Omega$, Cvcc $=50 \mathrm{pF}, \mathrm{MAX} 3001 \mathrm{E}$, Figures 1a, 1b		25	50	
		$R S=50 \Omega, C v c c=50 p F$, MAX3002-MAX3012, Figures 1a, 1b			15	
I/O Vcc_ Fall Time	$\mathrm{t}_{\text {FVCC }}$	Rs $=50 \Omega$, Cvcc $=50 \mathrm{pF}, \mathrm{MAX} 3000 \mathrm{E}$, Figures 1a, 1b	400	800	1200	ns
		$R_{S}=50 \Omega, C_{V C C}=50 \mathrm{pF}, \mathrm{MAX} 3001 \mathrm{E}$, Figures 1a, 1b		25	50	
		$\begin{aligned} & \text { RS }=50 \Omega, \text { CVCC }=50 \mathrm{pF}, \\ & \text { MAX3002-MAX3012, Figures 1a, 1b } \end{aligned}$			15	
I/O VL_ Rise Time	trVL	$\begin{aligned} & \mathrm{RS}=50 \Omega, \mathrm{CVL}=50 \mathrm{pF}, \mathrm{MAX} 3000 \mathrm{E}, \\ & \text { Figures } 2 \mathrm{a}, 2 \mathrm{~b} \end{aligned}$	400	800	1200	ns
		$\mathrm{RS}_{\mathrm{S}}=50 \Omega, \mathrm{CVL}=50 \mathrm{pF}, \mathrm{MAX} 3001 \mathrm{E},$ Figures 2a, 2b		25	50	
		$\begin{aligned} & \mathrm{RS}=50 \Omega, C V L=15 \mathrm{pF}, \\ & \text { MAX3002-MAX3012, Figures 2a, 2b } \end{aligned}$			15	
I/O VL_ Fall Time	tFVL	$\begin{aligned} & \mathrm{RS}=50 \Omega, \mathrm{CVL}=50 \mathrm{pF}, \mathrm{MAX} 3000 \mathrm{E}, \\ & \text { Figures } 2 \mathrm{a}, 2 \mathrm{~b} \end{aligned}$	400	800	1200	ns
		$\mathrm{RS}_{\mathrm{S}}=50 \Omega, \mathrm{CVL}=50 \mathrm{pF}, \mathrm{MAX} 3001 \mathrm{E},$ Figures 2a, 2b		25	65	
		$\begin{aligned} & \mathrm{RS}=50 \Omega, \mathrm{CVL}=15 \mathrm{pF}, \\ & \text { MAX3002-MAX3012, Figures 2a, 2b } \end{aligned}$			15	
Propagation Delay (Driving I/O VL_)	I/OVL-VCC	$R S=50 \Omega, C v c c=50 p F, \text { MAX3000E, }$ Figures 1a, 1b			1000	ns
		Rs $=50 \Omega$, Cvcc $=50 \mathrm{pF}, \mathrm{MAX} 3001 \mathrm{E}$, Figures 1a, 1b			50	
		$\begin{aligned} & \text { RS }=50 \Omega, \text { CVCC }=50 \mathrm{pF} \\ & \text { MAX3002-MAX3012, Figures 1a, 1b } \end{aligned}$			20	
Propagation Delay (Driving I/O Vcc_)	I/Ovcc-vL	$\text { RS }=50 \Omega, C V L=50 p F, M A X 3000 E,$ Figures 2a, 2b			1000	ns
		$\mathrm{RS}_{\mathrm{S}}=50 \Omega, \mathrm{CVL}=50 \mathrm{pF}, \mathrm{MAX} 3001 \mathrm{E},$ Figures 2a, 2b			50	
		$\begin{aligned} & \mathrm{RS}=50 \Omega, C V L=15 \mathrm{pF}, \\ & \text { MAX3002-MAX3012, Figures 2a, 2b } \end{aligned}$			20	

Note 1: All units are 100% production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Limits over the operating temperature range are guaranteed by design and not production tested
Note 2: For normal operation, ensure that $\mathrm{V}_{\mathrm{L}}<\mathrm{V}_{\mathrm{CC}}$. During power-up, $\mathrm{V}_{\mathrm{L}}>\mathrm{V}_{\mathrm{C}}$ does not damage the device.

MAX3000E/MAX3001E/MAX3002-MAX3012
 +1.2V to +5.5V, $\pm 15 \mathrm{kV}$ ESD-Protected, 0.1 $\mu \mathrm{A}$, 35Mbps, 8-Channel Level Translators

TIMING CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=+1.65 \mathrm{~V}\right.$ to +5.5 V , $\mathrm{V}_{\mathrm{L}}=+1.2 \mathrm{~V}$ to V_{C}, $\mathrm{EN}=\mathrm{V}_{\mathrm{L}}\left(\mathrm{MAX} 3000 \mathrm{E} / \mathrm{MAX3001E/MAX3002/MAX3004-MAX3012)} \mathrm{EN} \mathrm{A} / \mathrm{B}=,\mathrm{V}_{\mathrm{L}}\right.$ or 0 (MAX3003), $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$. Typical values are at $\mathrm{V}_{\mathrm{C}}=+1.65 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+1.2 \mathrm{~V}$, and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP MAX	UNITS
Channel-to-Channel Skew	tSKEW	$\begin{aligned} & \text { RS }=50 \Omega, \text { CVCC }=50 \mathrm{pF}, \mathrm{CVL}=50 \mathrm{pF}, \\ & \text { MAX3000E } \end{aligned}$		500	ns
		$\begin{aligned} & \text { RS }=50 \Omega, C V C C=50 \mathrm{pF}, \mathrm{CVL}=50 \mathrm{pF}, \\ & \text { MAX } 3001 \mathrm{E} \end{aligned}$		10	
		$\begin{aligned} & \text { RS }=50 \Omega, C V C C=50 \mathrm{pF}, \mathrm{CVL}=15 \mathrm{pF}, \\ & \text { MAX3002-MAX3012 } \end{aligned}$		5	
Part-to-Part Skew	tPPSKEW	$\begin{aligned} & \mathrm{RS}_{S}=50 \Omega, \mathrm{CVCC}=50 \mathrm{pF}, \mathrm{CVL}_{\mathrm{VL}}=50 \mathrm{pF}, \\ & \Delta \mathrm{~T}_{\mathrm{A}}=+20^{\circ} \mathrm{C}, \text { MAX3000E (Note 3) } \end{aligned}$		800	ns
		$\begin{aligned} & \mathrm{RS}=50 \Omega, \mathrm{CvCC}=50 \mathrm{pF}, \mathrm{CvL}=50 \mathrm{pF}, \\ & \Delta \mathrm{~T}_{\mathrm{A}}=+20^{\circ} \mathrm{C}, \text { MAX3001E (Note 3) } \end{aligned}$		30	
		$\begin{aligned} & \text { RS }=50 \Omega, C V C C=50 \mathrm{pF}, \mathrm{CVL}=15 \mathrm{pF}, \\ & \Delta \mathrm{~T}_{\mathrm{A}}=+20^{\circ} \mathrm{C}, \mathrm{MAX} 3002-\mathrm{MAX} 3012 \text { (Note 3) } \end{aligned}$		10	
Propagation Delay from I/O VL_ to I/O VCC_ after EN	ten-vcc	CVCC $=50 \mathrm{pF}$, MAX $3000 \mathrm{E} / \mathrm{MAX} 3001 \mathrm{E}$, MAX3002-MAX3012, Figure 3		2	$\mu \mathrm{s}$
Propagation Delay from I/O VCC_ to I/O VL_ after EN	ten-VL	CVL $=50 \mathrm{pF}$, MAX3000E/MAX3001E/ MAX3002/MAX3004-MAX3012, Figure 4		2	$\mu \mathrm{s}$
		$C_{V L}=15 \mathrm{pF}$, MAX3003, Figure 4		2	
Maximum Data Rate		$\begin{aligned} & \text { RS }=50 \Omega, C V C C=50 \mathrm{pF}, \mathrm{CVL}=50 \mathrm{pF}, \\ & \text { MAX3000E } \end{aligned}$	230		kbps
		$\begin{aligned} & \mathrm{RS}=50 \Omega, \mathrm{CvCC}=50 \mathrm{pF}, \mathrm{CVL}=50 \mathrm{pF}, \\ & \text { MAX3001E } \end{aligned}$	4		Mbps
		$\begin{aligned} & \mathrm{Rs}=50 \Omega, \mathrm{CvCC}=50 \mathrm{pF}, \mathrm{CvL}=15 \mathrm{pF}, \\ & \text { MAX3002-MAX3012 } \end{aligned}$	20		

Note 3: V_{CC} from device 1 must equal V_{CC} of device 2; V_{L} from device 1 must equal V_{L} of device 2.

MAX3000E/MAX3001E/MAX3002-MAX3012
 +1.2V to +5.5V, $\mathbf{4} 5 \mathrm{kV}$ ESD-Protected, $0.1 \mu \mathrm{~A}$, 35Mbps, 8-Channel Level Translators

TIMING CHARACTERISTICS—MAX3002-MAX3012

 TMAX.) (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP MAX	UNITS
$\mathbf{+ 1 . 2 V} \leq \mathrm{V}_{\mathrm{L}} \leq \mathrm{V}_{\mathbf{C C}} \leq \mathbf{+ 3 . 3} \mathrm{V}$					
I/O VCC_ Rise Time	trvCC			15	ns
I/O VCC_ Fall Time	tFVCC			15	ns
I/O V $\mathrm{L}_{\text {_ }}$ Rise Time	trVL			15	ns
I/O VL_ Fall Time	tFVL			15	ns
Propagation Delay	I/OvL-vcc	Driving I/O VL_		15	ns
	I/Ovcc-vL	Driving I/O VCC_		15	
Channel-to-Channel Skew	tSKEW	Each translator equally loaded		5	ns
Maximum Data Rate			20		Mbps
$\mathbf{+ 2 . 5 V} \leq \mathrm{V}_{\mathrm{L}} \leq \mathrm{V}_{\mathbf{C c}} \leq \mathbf{+ 3 . 3} \mathrm{V}$					
I/O VCC_ Rise Time	trvCC			8.5	ns
I/O VCC_ Fall Time	tFVCC			8.5	ns
I/O VL_ Rise Time	trVL			8.5	ns
I/O VL_ Fall Time	tFVL			8.5	ns
Propagation Delay	I/OvL-vcc	Driving I/O VL_		8.5	ns
	I/Ovcc-vL	Driving I/O VCC_		8.5	
Channel-to-Channel Skew	tSkEW	Each translator equally loaded		10	ns
Maximum Data Rate			35		Mbps
$\mathbf{+ 1 . 8 V} \leq \mathrm{V}_{\mathrm{L}} \leq \mathrm{V}_{\mathbf{C c}} \leq \mathbf{+ 2 . 5} \mathrm{V}$					
I/O VCC_ Rise Time	trvcc			10	ns
I/O VCC_ Fall Time	tFVCC			10	ns
I/O VL_ Rise Time	trVL			10	ns
I/O VL_ Fall Time	tFVL			10	ns
Propagation Delay	I/OvL-vcc	Driving I/O VL_		15	ns
	I/Ovcc-vL	Driving I/O VCC_		10	
Channel-to-Channel Skew	tSKEW	Each translator equally loaded		5	ns
Maximum Data Rate			30		Mbps

MAX3000E/MAX3001E/MAX3002-MAX3012
 +1.2V to +5.5V, $\pm 15 \mathrm{kV}$ ESD-Protected, 0.1 $\mu \mathrm{A}$, 35Mbps, 8-Channel Level Translators

Typical Operating Characteristics
($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Vcc SUPPLY CURRENT vs. TEMPERATURE (DRIVING I/O VCc, $\mathbf{V}_{\mathbf{C c}}=\mathbf{3 . 3 V}, \mathbf{V}_{\mathrm{L}}=\mathbf{1 . 8 V}$)

Vcc SUPPLY CURRENT vs. CAPACITIVE LOAD ON I / O VCC (DRIVING I/O VL, VCC $=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=1.8 \mathrm{~V}$)

VL SUPPLY CURRENT vs. CAPACITIVE LOAD ON
$\mathrm{I} / \mathrm{V} \mathbf{V C C}\left(\right.$ DRIVING I/O VL, $\left.\mathbf{V}_{\mathbf{C C}}=\mathbf{3 . 3 V}, \mathrm{V}_{\mathrm{L}}=\mathbf{1 . 8 V}\right)$

MAX3000E
RISE/FALL TIME vs. CAPACITIVE LOAD ON
$\mathrm{I} / \mathrm{O} \mathrm{V}_{\mathbf{C c}}$ (DRIVING I/O $\mathrm{V}_{\mathrm{L}}, \mathrm{V}_{\mathbf{c c}}=\mathbf{3 . 3 V}, \mathrm{V}_{\mathbf{L}}=\mathbf{1 . 8 V}$)

MAX3000E/MAX3001E/MAX3002-MAX3012 +1.2V to +5.5V, $\mathbf{4} 5 \mathrm{kV}$ ESD-Protected, $0.1 \mu \mathrm{~A}$, 35Mbps, 8-Channel Level Translators

Typical Operating Characteristics (continued)
($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)
MAX3001E
RISE/FALL TIME vs. CAPACITIVE LOAD ON $\mathrm{I} / \mathrm{O} \mathrm{V}_{\mathbf{c c}}$ (DRIVING I/O VL, $\mathbf{V}_{\mathbf{c c}}=\mathbf{3 . 3 V}, \mathrm{V}_{\mathrm{L}}=\mathbf{1 . 8 V}$)

MAX3000E
RISE/FALL TIME vs. CAPACITIVE LOAD ON $1 / 0 V_{L}$ (DRIVING I/O VCC, $V_{C C}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=1.8 \mathrm{~V}$)

MAX3002-MAX3012
RISE/FALL TIME vs. CAPACITIVE LOAD ON $\mathrm{I} / \mathrm{O} \mathrm{V}_{\mathrm{L}}$ (DRIVING I/O $\mathrm{V}_{\mathbf{C c}}, \mathrm{V}_{\mathbf{C C}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=1.8 \mathrm{~V}$)

MAX3002-MAX3012
RISE/FALL TIME vs. CAPACITIVE LOAD ON I/O VCC (DRIVING I/O VL, $\mathbf{V}_{\mathbf{C C}}=\mathbf{3 . 3 V}, \mathbf{V}_{\mathrm{L}}=\mathbf{1 . 8 V}$)

MAX3001E
RISE/FALL TIME vs. CAPACITIVE LOAD ON $\mathrm{I} / \mathrm{V}_{\mathrm{L}}$ (DRIVING I/O VCC, $\mathrm{V}_{\mathbf{C C}}=\mathbf{3 . 3 V}, \mathrm{V}_{\mathrm{L}}=1.8 \mathrm{~V}$)

MAX3000E
PROPAGATION DELAY vs. CAPACITIVE LOAD ON $\mathrm{I} / \mathrm{O} \mathrm{V}_{\mathbf{C C}}$ (DRIVING I/O $\mathrm{V}_{\mathrm{L}}, \mathrm{V}_{\mathbf{C C}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=1.8 \mathrm{~V}$)

MAX3000E/MAX3001E/MAX3002-MAX3012
 +1.2V to +5.5V, $\pm 15 \mathrm{kV}$ ESD-Protected, 0.1 $\mu \mathrm{A}$, 35Mbps, 8-Channel Level Translators

Typical Operating Characteristics (continued)

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

MAX3001E
PROPAGATION DELAY vs. CAPACITIVE LOAD ON I/O VCC (DRIVING I/O VL, VCC $=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=1.8 \mathrm{~V}$)

MAX3001E
PROPAGATION DELAY vs. CAPACITIVE LOAD ON $\mathrm{I} / \mathrm{O} \mathrm{V}_{\mathrm{L}}$ (DRIVING I/O VCC, $\mathrm{V}_{\mathbf{C c}}=\mathbf{3 . 3 V}, \mathrm{V}_{\mathrm{L}}=1.8 \mathrm{~V}$)

MAX3002-MAX3012
PROPAGATION DELAY vs. CAPACITIVE LOAD ON

MAX3000E
PROPAGATION DELAY vs. CAPACITIVE LOAD ON I/O VL (DRIVING I/O VCc, VCC = 3.3V, $\mathbf{V}_{\mathbf{L}}=1.8 \mathrm{~V}$)

MAX3002-MAX3012 PROPAGATION DELAY vs. CAPACITIVE LOAD ON $\mathrm{I} / \mathrm{O} \mathrm{V}_{\mathrm{L}}$ (DRIVING I/O $\mathrm{V}_{\mathbf{C C}}, \mathrm{V}_{\mathbf{C C}}=\mathbf{3 . 3 V}, \mathrm{V}_{\mathrm{L}}=1.8 \mathrm{~V}$)

MAX3001E RAIL-TO-RAIL DRIVING (DRIVING I/O VL, $V_{C C}=3.3 V, V_{L}=1.8 \mathrm{~V}$, $C V_{\text {cc }}=50 \mathrm{pF}$, DATA RATE $=4 \mathrm{Mbps}$)

40ns/div

MAX3002-MAX3012 RAIL-TO-RAIL DRIVING (DRIVING I/O VL, $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=1.8 \mathrm{~V}$, $\mathbf{C V}$ CC $=50 \mathrm{pF}$, DATA RATE $=20 \mathrm{Mbps}$)

MAX3000E/MAX3001E/MAX3002-MAX3012 +1.2V to $+5.5 \mathrm{~V}, \pm 15 \mathrm{kV}$ ESD-Protected, $0.1 \mu \mathrm{~A}$, 35Mbps, 8-Channel Level Translators

Pin Description
MAX3000E/MAX3001E/MAX3002

PIN			NAME	FUNCTION
TSSOP	UCSP	TQFN		
1	B1	19	I/O VL1	Input/Output 1, Referenced to V_{L}
2	A1	20	V_{L}	Logic Input Voltage, $+1.2 \mathrm{~V} \leq \mathrm{V}_{\mathrm{L}} \leq \mathrm{V}_{\mathrm{CC}}$. Bypass V_{L} to GND with a $0.1 \mu \mathrm{~F}$ capacitor.
3	A2	1	I/O VL2	Input/Output 2, Referenced to VL
4	B2	2	$\mathrm{I} / \mathrm{O} \mathrm{V}_{\mathrm{L}}$	Input/Output 3, Referenced to V_{L}
5	A3	3	I/O VL4	Input/Output 4, Referenced to V_{L}
6	B3	4	I/O VL5	Input/Output 5, Referenced to V_{L}
7	A4	5	I/O VL6	Input/Output 6, Referenced to V_{L}
8	B4	6	I/O VL7	Input/Output 7, Referenced to V_{L}
9	A5	7	I/O VL8	Input/Output 8, Referenced to V_{L}
10	B5	8	EN	Enable Input. If EN is pulled low, I/O VCC1 to I/O VCC8 are in three-state, while I/O VL1 to I/O VL8 have internal $6 \mathrm{k} \Omega$ pulldown resistors. Drive EN high (V_{L}) for normal operation.
11	C5	9	GND	Ground
12	D5	10	I/O VCC8	Input/Output 8, Referenced to VCC
13	C4	11	I/O VCC7	Input/Output 7, Referenced to VCc
14	D4	12	I/O VCC6	Input/Output 6, Referenced to VCC
15	C3	13	I/O VCC5	Input/Output 5, Referenced to VCC
16	D3	14	I/O V CC 4	Input/Output 4, Referenced to VCC
17	C2	15	I/O VCC3	Input/Output 3, Referenced to V Cc
18	D2	16	I/O VCC2	Input/Output 2, Referenced to VCC
19	D1	17	VCC	$V_{C C}$ Input Voltage, $+1.65 \mathrm{~V} \leq \mathrm{V}_{C C} \leq+5.5 \mathrm{~V}$. Bypass $\mathrm{V}_{C C}$ to GND with a $0.1 \mu \mathrm{~F}$ capacitor.
20	C1	18	I/O V CC 1	Input/Output 1, Referenced to VCC
-	-	EP	EP	Exposed Pad. Connect to GND.

MAX3000E/MAX3001E/MAX3002-MAX3012
 +1.2 V to +5.5V, $\pm 15 \mathrm{kV}$ ESD-Protected, $0.1 \mu \mathrm{~A}$, 35Mbps, 8-Channel Level Translators

Pin Description (continued)
MAX3003

PIN			NAME	FUNCTION
TSSOP	UCSP	TQFN		
1	B1	19	I/O VL1A	Input/Output 1A, Referenced to V_{L}
2	A1	20	V_{L}	Logic Input Voltage, $+1.2 \mathrm{~V} \leq \mathrm{V}_{\mathrm{L}} \leq \mathrm{V}_{\mathrm{CC}}$. Bypass V_{L} to GND with a $0.1 \mu \mathrm{~F}$ capacitor.
3	A2	1	I/O VL2A	Input/Output 2A, Referenced to V_{L}
4	B2	2	I/O VL3A	Input/Output 3A, Referenced to VL
5	A3	3	I/O VL4A	Input/Output 4A, Referenced to V_{L}
6	B3	4	I/O VL1B	Input/Output 1B, Referenced to V_{L}
7	A4	5	I/O VL2B	Input/Output 2B, Referenced to V_{L}
8	B4	6	I/O VL3B	Input/Output 3B, Referenced to V_{L}
9	A5	7	I/O VL4B	Input/Output 4B, Referenced to V_{L}
10	B5	8	EN A/B	Enable Input. If EN A/B is pulled low, channels 1 B through 4 B are active, and channels $1 A$ through 4A are in three-state. If EN A/B is driven high to V_{L}, channels $1 A$ through 4A are active, and channels 1B through 4B are in three-state.
11	C5	9	GND	Ground
12	D5	10	I/O V Cc 4 B	Input/Output 4B, Referenced to V ${ }_{\text {CC }}$
13	C4	11	I/O VCC3B	Input/Output 3B, Referenced to V CC
14	D4	12	I/O V Cc 2 B	Input/Output 2B, Referenced to V_{CC}
15	C3	13	I/O Vcc1B	Input/Output 1B, Referenced to VCC
16	D3	14	I/O V Cc 4 A	Input/Output 4A, Referenced to V CC
17	C2	15	I/O Vcc3A	Input/Output 3A, Referenced to V ${ }_{\text {CC }}$
18	D2	16	I/O Vcc2A	Input/Output 2A, Referenced to VCC
19	D1	17	VCC	$\mathrm{V}_{C C}$ Input Voltage, $+1.65 \mathrm{~V} \leq \mathrm{V}_{C C} \leq+5.5 \mathrm{~V}$. Bypass $\mathrm{V}_{C C}$ to GND with a $0.1 \mu \mathrm{~F}$ capacitor.
20	C1	18	I/O V ${ }_{\text {cc }} 1 \mathrm{~A}$	Input/Output 1A, Referenced to V CC
-	-	EP	EP	Exposed Pad. Connect to GND.

MAX3000E/MAX3001E/MAX3002-MAX3012 +1.2 V to +5.5V, $\pm 15 \mathrm{kV}$ ESD-Protected, $0.1 \mu \mathrm{~A}$, 35Mbps, 8-Channel Level Translators

Pin Description (continued)
MAX3004-MAX3012

NAME	FUNCTION (Note 1)
$V_{C C}$	$\mathrm{V}_{C C}$ Input Voltage, $+1.65 \mathrm{~V}<\mathrm{V}_{C C}<+5.5 \mathrm{~V}$. Bypass $\mathrm{V}_{C C}$ to GND with a $0.1 \mu \mathrm{~F}$ capacitor.
VL	Logic Input Voltage, $+1.2 \mathrm{~V} \leq \mathrm{V}_{\mathrm{L}} \leq \mathrm{V}_{\mathrm{CC}}$. Bypass V_{L} to GND with a $0.1 \mu \mathrm{~F}$ capacitor.
GND	Ground
$\begin{gathered} \text { EN } \\ (\text { MAX3004 }) \end{gathered}$	Enable Input. If EN is pulled low, $\mathrm{OV}_{\mathrm{CC}} 1-\mathrm{OV}_{\mathrm{CC}} 8$ are in three-state, while $\mathrm{IV}_{\mathrm{L}} 1-\mathrm{IV} \mathrm{V} 8$ have $6 \mathrm{k} \Omega$ pulldown resistors. Drive EN high (V_{L}) for normal operation.
$\begin{gathered} \mathrm{EN} \\ (\text { MAX } 3005) \end{gathered}$	Enable Input. If EN is pulled low, $\mathrm{IV}_{\mathrm{C}} 1$ and $\mathrm{OV}_{\mathrm{CC}} 2-\mathrm{OV} \mathrm{V}_{\mathrm{C}} 8$ are in three-state, while $\mathrm{OV}_{\mathrm{L}} 1$ and $\mathrm{IV}_{\mathrm{L}} 2-\mathrm{IV}$ 8 8 have $6 \mathrm{k} \Omega$ pulldown resistors. Drive EN high (VL) for normal operation.
$\begin{gathered} E N \\ (\text { MAX3006 }) \end{gathered}$	Enable Input. If EN is pulled low, IVCC1, IVCC2, and $\mathrm{OV}_{\mathrm{C}} 3-\mathrm{OV}_{\mathrm{C}} 8$ are in three-state, while $\mathrm{OV}_{\mathrm{L}} 1, \mathrm{OV}_{\mathrm{L}} 2$, and IVL3-IVL8 have $6 \mathrm{k} \Omega$ pulldown resistors. Drive EN high (VL) for normal operation.
$\begin{gathered} E N \\ (M A X 3007) \end{gathered}$	Enable Input. If EN is pulled low, IVCc1, IVcc2, IVCc3, and $\mathrm{OV}_{\mathrm{Cc}} 4-\mathrm{OV}_{\mathrm{Cc}} 8$ are in three-state, while $\mathrm{OV}_{\mathrm{L}} 1$, OVL2, OVL3, and IVL4-IVL8 have $6 \mathrm{k} \Omega$ pulldown resistors. Drive EN high (V_{L}) for normal operation.
$\begin{gathered} E N \\ (\text { MAX3008 }) \end{gathered}$	Enable Input. If EN is pulled low, $\mathrm{IV}_{C C} 1-\mathrm{IV}_{\mathrm{C}} 4$ and $\mathrm{OV}_{\mathrm{CC}} 5-\mathrm{OV}_{C} 8$ are in three-state, while $\mathrm{OV}_{\mathrm{L}} 1-O V_{\mathrm{L}} 4$ and IVL5-IVL8 have $6 \mathrm{k} \Omega$ pulldown resistors. Drive EN high (VL) for normal operation.
$\begin{gathered} \mathrm{EN} \\ (\text { MAX } 3009) \end{gathered}$	Enable Input. If EN is pulled low, IVCC1-IVCC5, $\mathrm{OV}_{C C} 6, \mathrm{OV}_{C C} 7$, and $\mathrm{OV}_{\mathrm{CC}} 8$ are in three-state, while $\mathrm{OV}_{\mathrm{L}} 1-\mathrm{OV} \mathrm{L} 5, \mathrm{IV} \mathrm{L} 6, \mathrm{IV} \mathrm{L} 7$, and IVL8 have $6 \mathrm{k} \Omega$ pulldown resistors. Drive EN high (VL) for normal operation.
$\begin{gathered} \mathrm{EN} \\ (\text { MAX3010 }) \end{gathered}$	Enable Input. If EN is pulled low, IVCC1-IVCC6, $\mathrm{OV}_{C C} 7$, and $\mathrm{OV}_{\mathrm{CC}} 8$ are in three-state, while $\mathrm{OV}_{\mathrm{L}} 1-\mathrm{OV}$ L6, IV L7, and IVL8 have $6 \mathrm{k} \Omega$ pulldown resistors. Drive EN high (VL) for normal operation.
EN (MAX3011)	Enable Input. If EN is pulled low, IVCC1-IVCC7 and OVCC8 are in three-state, while OVL1-OVL7 and IVL8 have $6 \mathrm{k} \Omega$ pulldown resistors. Drive EN high (VL) for normal operation.
$\begin{gathered} E N \\ (\text { MAX3012 }) \end{gathered}$	Enable Input. If EN is pulled low, IVCC1-IVCC8 are in three-state, while $\mathrm{OV}_{\mathrm{L}} 1-\mathrm{OV}$ L 8 have $6 \mathrm{k} \Omega$ pulldown resistors. Drive EN high (VL) for normal operation.
IVL1-IVL8	Inputs Referenced to V_{L}, Numbers 1 to 8
OVL1-OVL8	Outputs Referenced to VL, Numbers 1 to 8
IVCC1-IVCC8	Inputs Referenced to $\mathrm{V}_{\text {cc }}$, Numbers 1 to 8
OVCc1-OVCc8	Outputs Referenced to VCC, Numbers 1 to 8

Note 1: For specific pin numbers, see the Pin Configurations.

MAX3000E/MAX3001E/MAX3002-MAX3012
 +1.2V to +5.5V, $\pm 15 \mathrm{kV}$ ESD-Protected, $0.1 \mu \mathrm{~A}$, 35Mbps, 8-Channel Level Translators

Test Circuits/Timing Diagrams

Figure 1a. Driving I/O VL

Figure 2a. Driving I/O VCC

Figure 1b. Timing for Driving I/O VL

Figure 2b. Timing for Driving I/O VCC

MAX3000E/MAX3001 E/MAX3002-MAX3012 +1.2V to +5.5V, $\pm 15 \mathrm{kV}$ ESD-Protected, $0.1 \mu A$, 35Mbps, 8-Channel Level Translators

Test Circuits/Timing Diagrams (continued)

Figure 3. Propagation Delay from I/O VL to I/O VCC After EN

ten-vl IS WHICHEVER IS LARGER BETWEEN t'en-vL AND t"En-vL
Figure 4. Propagation Delay from I/O VCC to I/O V V_{L} After EN

MAX3000E/MAX3001E/MAX3002-MAX3012 +1.2V to +5.5V, $\pm 15 \mathrm{kV}$ ESD-Protected, $0.1 \mu \mathrm{~A}$, 35Mbps, 8-Channel Level Translators

Detailed Description

The MAX3000E/MAX3001E/MAX3002-MAX3012 logiclevel translators provide the level shifting necessary to allow data transfer in a multivoltage system. Externally applied voltages, V_{C} and V_{L}, set the logic levels on either side of the device. Logic signals present on the V_{L} side of the device appear as a higher voltage logic signal on the Vcc side of the device, and vice-versa. The MAX3000E/MAX3001E/MAX3002/MAX3003 are bidirectional level translators allowing data translation in either direction ($\mathrm{V}_{\mathrm{L}} \leftrightarrow \mathrm{V}_{\mathrm{CC}}$) on any single data line. These devices use an architecture specifically designed to be bidirectional without the use of a direction pin. The MAX3004-MAX3012 unidirectional level translators level shift data in one direction ($\mathrm{V}_{\mathrm{L}} \rightarrow \mathrm{V}_{\mathrm{CC}}$ or VCC $\rightarrow V_{L}$) on any single data line. The MAX3000E/MAX3001E/ MAX3002-MAX3012 accept VL from +1.2 V to +5.5 V . All devices have V Cc ranging from +1.65 V to +5.5 V , making them ideal for data transfer between low-voltage ASICs/PLDs and higher voltage systems
The MAX3000E/MAX3001E/MAX3002/MAX3004MAX3012 feature an output enable mode that reduces $V_{\text {CC }}$ supply current to less than $2 \mu \mathrm{~A}$, and V_{L} supply current to less than $2 \mu \mathrm{~A}$ when in shutdown. The MAX3000E/MAX3001E have $\pm 15 \mathrm{kV}$ ESD protection on the VCC side for greater protection in applications that route signals externally. The MAX3000E operates at a guaranteed data rate of 230kbps; the MAX3001E operates at a guaranteed data rate of 4 Mbps and the MAX3002-MAX3012 are guaranteed with a data rate of 20Mbps of operation over the entire specified operating voltage range.

Level Translation

For proper operation, ensure that $+1.65 \mathrm{~V} \leq \mathrm{VCC} \leq+5.5 \mathrm{~V}$, $+1.2 \mathrm{~V} \leq \mathrm{V}_{\mathrm{L}} \leq+5.5 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{L}} \leq \mathrm{V}_{\mathrm{CC}}$. During power-up sequencing, $V_{L} \geq V_{C C}$ does not damage the device. During power-supply sequencing, when VCC is floating and V_{L} is powering up, up to 10 mA current can be sourced to each load on the V_{L} side, yet the device does not latch up.
The maximum data rate also depends heavily on the load capacitance (see the Typical Operating Characteristics), output impedance of the driver, and the operational voltage range (see the Timing Characteristics table).

Input Driver Requirements

The MAX3001E/MAX3002-MAX3012 architecture is based on a one-shot accelerator output stage. See Figure 5. Accelerator output stages are always in three-
state except when there is a transition on any of the translators on the input side, either I/O VL or I/O VCC

When there is such a transition, the accelerator stages become active, charging (discharging) the capacitances at the I/Os. Due to its bidirectional nature, both stages become active during the one-shot pulse. This can lead to some current feeding into the external source that is driving the translator. However, this behavior helps to speed up the transition on the driven side.
For proper full-speed operation, the output current of a device that drives the inputs of the MAX3000E/ MAX3001E/MAX3002-MAX3012 should meet the following requirements:

- MAX3000E (230kbps): $\mathrm{i}>1 \mathrm{~mA}, \mathrm{R}_{\mathrm{drv}}<1 \mathrm{k} \Omega$
- MAX3001E (4Mbps):
i > $10^{7} \times V \times(C+10 p F)$
- MAX3002-MAX3012 (20Mbps):
i $>10^{8} \times V \times(C+10 p F)$
where i is the driver output current, V is the logic-supply voltage (i.e., V_{L} or $V_{C C}$) and C is the parasitic capacitance of the signal line.

Enable Output Mode (EN, EN A/B)

The MAX3000E/MAX3001E/MAX3002 and the MAX3004MAX3012 feature an EN input, and the MAX3003 has an EN A/B input. Pull EN low to set the MAX3000E/ MAX3001E/MAX3002/MAX3004-MAX3012s' I/O VCC1 through I/O VCC8 in three-state output mode, while I/O VL1 through I/O VL8 have internal 6k pulldown resistors. Drive EN to logic-high (VL) for normal operation. The MAX3003 is intended for bus multiplexing or bus switching applications. Drive EN A/B low to place channels 1B through 4B in active mode, while channels 1A through 4A are in three-state mode. Drive EN A/B to logic-high $\left(V_{L}\right)$ to enable channels 1A through 4A, while channels 1B through 4B remain in three-state mode.

土15kV ESD Protection

As with all Maxim devices, ESD-protection structures are incorporated on all pins to protect against electrostatic discharges encountered during handling and assembly. The I/O VCc lines have extra protection against static discharge. Maxim's engineers have developed state-of-the-art structures to protect these pins against ESD of $\pm 15 \mathrm{kV}$ without damage. The ESD structures withstand high ESD in all states: normal operation, three-state output mode, and powered down. After an ESD event, Maxim's E versions keep working without latchup, whereas competing products can latch and must be powered down to remove latchup.

MAX3000E/MAX3001E/MAX3002-MAX3012 +1.2V to +5.5V, $\pm 15 \mathrm{kV}$ ESD-Protected, $0.1 \mu \mathrm{~A}$, 35Mbps, 8-Channel Level Translators

Figure 5. MAX3001E/MAX3002-MAX3012 Simplified Functional Diagram (1 I/O Line)

ESD protection can be tested in various ways. The I/O VCC lines of the MAX3000E/MAX3001E are characterized for protection to $\pm 15 \mathrm{kV}$ using the Human Body Model.

ESD Test Conditions
ESD performance depends on a variety of conditions. Contact Maxim for a reliability report that documents test setup, test methodology, and test results.

Human Body Model

Figure 7a shows the Human Body Model and Figure 7b shows the current waveform it generates when discharged into a low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of interest, which is then discharged into the test device through a $1.5 \mathrm{k} \Omega$ resistor.

Machine ModeI

The Machine Model for ESD tests all pins using a 200pF storage capacitor and zero discharge resistance. Its objective is to emulate the stress caused by contact that occurs with handling and assembly during manufacturing. Of course, all pins require this protection during manufacturing, not just inputs and outputs. Therefore, after PCB assembly, the Machine Model is less relevant to I/O ports.

Figure 6. Typical IIN vs. VIN

MAX3000E/MAX3001E/MAX3002-MAX3012
 +1.2V to +5.5V, $\mathbf{4} 5 \mathrm{kV}$ ESD-Protected, $0.1 \mu \mathrm{~A}$, 35Mbps, 8-Channel Level Translators

Applications Information

Power-Supply Decoupling
To reduce ripple and the chance of transmitting incorrect data, bypass V_{L} and $V_{C C}$ to ground with a $0.1 \mu \mathrm{~F}$ capacitor. To ensure full $\pm 15 \mathrm{kV}$ ESD protection, bypass VCC to ground with a $1 \mu \mathrm{~F}$ capacitor. Place all capacitors as close to the power-supply inputs as possible.
$\mathbf{I}^{\mathbf{2}} \mathbf{C}$ Level Translation
For I2C level translation for ${ }^{2}{ }^{2} \mathrm{C}$ applications, please refer to the MAX3372E-MAX3379E/MAX3390E-MAX3393E datasheet.

Unidirectional vs. Bidirectional Level
Translator
The MAX3000E/MAX3001E/MAX3002/MAX3003 bidirectional translators can operate as a unidirectional device to translate signals without inversion. The MAX3004-MAX3012 unidirecitional level translators, level-shift data in one direction ($\mathrm{V}_{\mathrm{L}} \rightarrow \mathrm{V}_{\mathrm{CC}}$ or $\mathrm{V}_{\mathrm{CC}} \rightarrow \mathrm{V}_{\mathrm{L}}$) on any single data line (see the Ordering Information.) These devices provide the smallest solution (UCSP package) for unidirectional level translation without inversion.

MAX3000E/MAX3001E/MAX3002-MAX3012 +1.2V to $+5.5 \mathrm{~V}, \pm 15 \mathrm{kV}$ ESD-Protected, $0.1 \mu \mathrm{~A}$, 35Mbps, 8-Channel Level Translators

Figure 7a. Human Body ESD Test Model

Figure 7b. Human Body Current Waveform

Selector Guide

PART	EN	EN A/B	Tx/Rx*	DATA RATE	ESD PROTECTION (kV)
MAX3000E	$\sqrt{ }$	-	8/8	230kbps	± 15
MAX3001E	$\sqrt{ }$	-	8/8	4Mbps	± 15
MAX3002	\checkmark	-	8/8	**	± 2
MAX3003	-	\checkmark	8/8	**	± 2
MAX3004	\checkmark	-	8/0	**	± 2
MAX3005	$\sqrt{ }$	-	7/1	**	± 2
MAX3006	\checkmark	-	6/2	**	± 2
MAX3007	$\sqrt{ }$	-	5/3	**	± 2
MAX3008	$\sqrt{ }$	-	4/4	**	± 2
MAX3009	$\sqrt{ }$	-	3/5	**	± 2
MAX3010	\checkmark	-	2/6	**	± 2
MAX3011	\checkmark	-	1/7	**	± 2
MAX3012	\checkmark	-	0/8	**	± 2

${ }^{*} T_{x}=V L \rightarrow V_{C C} ; R x=V_{C C} \rightarrow V_{L}$
**See Table 1.

Table 1. Data Rate

$\mathbf{V}_{\mathbf{L}} \leftrightarrow \mathbf{V} \mathbf{C c}$ (V)	MAX3002-MAX3012 GUARANTEED DATA RATE (Mbps)
$1.2 \leftrightarrow 5.5$	40
$1.2 \leftrightarrow 3.3$	20
$2.5 \leftrightarrow 3.3$	35
$1.8 \leftrightarrow 2.5$	30
$1.2 \leftrightarrow 2.5$	20
$1.2 \leftrightarrow 1.8$	20

MAX3000E/MAX3001E/MAX3002-MAX3012
+1.2V to +5.5V, $\pm 15 \mathrm{kV}$ ESD-Protected, $0.1 \mu \mathrm{~A}$, 35Mbps, 8-Channel Level Translators

MAX3000E/MAX3001 E/MAX3002 Functional Diagram

MAX3000E/MAX3001E/MAX3002-MAX3012 +1.2 V to +5.5V, $\pm 15 \mathrm{kV}$ ESD-Protected, $0.1 \mu \mathrm{~A}$, 35Mbps, 8-Channel Level Translators

MAX3003 Functional Diagram

MAX3000E/MAX3001E/MAX3002-MAX3012
 +1.2V to +5.5V, $\pm 15 \mathrm{kV}$ ESD-Protected, $0.1 \mu \mathrm{~A}$, 35Mbps, 8-Channel Level Translators

Pin Configurations

MAX3000E/MAX3001E/MAX3002-MAX3012 +1.2V to +5.5V, $\pm 15 \mathrm{kV}$ ESD-Protected, $0.1 \mu \mathrm{~A}$, 35Mbps, 8-Channel Level Translators

Pin Configurations (continued)

TOP VIEW

MAX3000E/MAX3001E/MAX3002-MAX3012
 +1.2V to +5.5V, $\pm 15 \mathrm{kV}$ ESD-Protected, 0.1 $\mu \mathrm{A}$, 35Mbps, 8-Channel Level Translators

Pin Configurations (continued)

Ordering Information (continued)

PART	TEMP RANGE	PIN-PACKAGE
MAX3001EEUP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 TSSOP
MAX3001EEBP-T*	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	4×5 UCSP
MAX3001EETP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 TQFN
MAX3001EAUP	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20 TSSOP
MAX3002EUP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 TSSOP
MAX3002EBP-T*	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	4×5 UCSP
MAX3002ETP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 TQFN
MAX3003EUP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 TSSOP
MAX3003EBP-T*	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	4×5 UCSP
MAX3003ETP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 TQFN
MAX3004EUP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 TSSOP
MAX3004EBP-T*	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	4×5 UCSP
MAX3005EUP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 TSSOP
MAX3005EBP-T*	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	4×5 UCSP
MAX3006EUP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 TSSOP
MAX3006EBP-T*	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	4×5 UCSP

PART	TEMP RANGE	PIN-PACKAGE
MAX3007EUP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 TSSOP
MAX3007EBP-T*	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	4×5 UCSP
MAX3008EUP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 TSSOP
MAX3008EBP-T*	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	4×5 UCSP
MAX3009EUP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 TSSOP
MAX3009EBP-T*	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	4×5 UCSP
MAX3010EUP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 TSSOP
MAX3010EBP-T*	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	4×5 UCSP
MAX3011EUP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 TSSOP
MAX3011EBP-T*	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	4×5 UCSP
MAX3012EUP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 TSSOP
MAX3012EBP-T*	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	4×5 UCSP

*Future product-contact factory for availability.
-T = Tape-and-reel package.

MAX3000E/MAX3001E/MAX3002-MAX3012

 +1.2V to +5.5V, $\pm 15 \mathrm{kV}$ ESD-Protected, $0.1 \mu \mathrm{~A}$, 35Mbps, 8-Channel Level TranslatorsPackage Information
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
20 TSSOP	U20-3	$\underline{21-0066}$
20 TQFN	T2055-4	$\underline{21-0140}$
4×5 UCSP	B20-1	$\underline{21-0095}$

MAX3000E/MAX3001E/MAX3002-MAX3012
 +1.2V to +5.5V, $\pm 15 \mathrm{kV}$ ESD-Protected, $0.1 \mu \mathrm{~A}$, 35Mbps, 8-Channel Level Translators

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
4	$12 / 06$	Added TQFN packages	$1,2,3,10,11,15$, $16,21,23-26$
5	$8 / 08$	Changed pin description and package drawing	$1,10,11,23$

maxim
integrated $_{\text {mw }}$

[^0]
Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Analog Devices Inc.:
$\underline{\text { MAX3000EEUP }+ \text { MAX3000EEUP }+ \text { T }}$

[^0]: Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

