Quad 2-Input AND Gate with LSTTL Compatible Inputs # **High-Performance Silicon-Gate CMOS** The MC74HCT08A is identical in pinout to the LS08. The device inputs are compatible with Standard CMOS or LSTTL outputs. # **Features** - Output Drive Capability: 10 LSTTL Loads - · Outputs Directly Interface to CMOS, NMOS and TTL - Operating Voltage Range: 2.0 V to 6.0 V - Low Input Current: 1 μA - · High Noise Immunity Characteristic of CMOS Devices - In Compliance With the JEDEC Standard No. 7A Requirements - Chip Complexity: 24 FETs or 6 Equivalent Gates - NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable - These are Pb-Free Devices Figure 1. Logic Diagram Pinout: 14-Lead Packages (Top View) Figure 2. Pinout # ON Semiconductor® http://onsemi.com # MARKING DIAGRAMS SOIC-14 D SUFFIX CASE 751A TSSOP-14 DT SUFFIX CASE 948G = Assembly Location WL, L = Wafer Lot YY, Y = Year WW, W = Work Week G or ■ = Pb-Free Package (Note: Microdot may be in either location) # **FUNCTION TABLE** | Inputs | | Output | |--------|---------|-------------| | Α | В | Υ | | LHH | — I — I | L
L
L | # ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet. # MAXIMUM RATINGS | Symbol | Parameter | Value | Unit | |------------------|--|------------------------------|------| | V _{CC} | DC Supply Voltage (Referenced to GND) | -0.5 to +7.0 | V | | V _{in} | DC Input Voltage (Referenced to GND) | -0.5 to V _{CC} +0.5 | V | | V _{out} | DC Output Voltage (Referenced to GND) | -0.5 to V _{CC} +0.5 | V | | I _{in} | DC Input Current, per Pin | ±20 | mA | | I _{out} | DC Output Current, per Pin | ±25 | mA | | Icc | DC Supply Current, V _{CC} and GND Pins | ±50 | mA | | PD | Power Dissipation in Still Air, SOIC Package [†] TSSOP Package [†] | 500
450 | mW | | T _{stg} | Storage Temperature | -65 to +150 | °C | | TL | Lead Temperature, 1 mm from Case for 10 Seconds
SOIC or TSSOP Package | 260 | °C | This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range GND \leq (V_{in} or V_{out}) \leq V_{CC} . Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open. Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. #### RECOMMENDED OPERATING CONDITIONS | Symbol | Parameter | | Max | Unit | |------------------------------------|--|-------------|--------------------|------| | V _{CC} | DC Supply Voltage (Referenced to GND) | | 6.0 | V | | V _{in} , V _{out} | DC Input Voltage, Output Voltage
(Referenced to GND) | | V _{CC} | V | | T _A | Operating Temperature, All Package Types | -55 | +125 | °C | | t _r , t _f | Input Rise and Fall Time $ V_{CC} = 2.0 \text{ V} $ (Figure 3) $ V_{CC} = 4.5 \text{ V} $ $ V_{CC} = 6.0 \text{ V} $ | 0
0
0 | 1000
500
400 | ns | [†]Derating - SOIC Package: - 7 mW/°C from 65°C to 125°C TSSOP Package: - 6.1 mW/°C from 65°C to 125°C # DC CHARACTERISTICS (Voltages Referenced to GND) | | | | Vcc | Guaranteed Limit | | | | |-----------------|---|--|---------------|------------------|------------|------------|------| | Symbol | Parameter | Condition | V | -55 to 25°C | ≤85°C | ≤125°C | Unit | | V _{IH} | Minimum High-Level Input Voltage | $V_{out} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V}$
$ I_{out} \le 20 \mu\text{A}$ | 4.5 to
5.5 | 2.0 | 2.0 | 2.0 | V | | V _{IL} | Maximum Low-Level Input Voltage | $V_{out} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V}$
$ I_{out} \le 20 \mu\text{A}$ | 4.5 to
5.5 | 0.8 | 0.8 | 0.8 | V | | V _{OH} | Minimum High-Level Output Voltage | $V_{in} = V_{IH} \text{ or } V_{IL}$
$ I_{out} \le 20 \mu A$ | 4.5
5.5 | 4.4
5.4 | 4.4
5.4 | 4.4
5.4 | V | | | | $V_{in} = V_{IH} \text{ or } V_{IL} \qquad I_{out} \le 4.0 \text{ mA}$ | 4.5 | 3.98 | 3.84 | 3.70 | | | V _{OL} | Maximum Low-Level Output Voltage | $V_{in} = V_{IH} \text{ or } V_{IL}$
$ I_{out} \le 20 \mu A$ | 4.5
5.5 | 0.1
0.1 | 0.1
0.1 | 0.1
0.1 | V | | | | $V_{in} = V_{IH} \text{ or } V_{IL} \qquad I_{out} \le 4.0 \text{ mA}$ | 4.5 | 0.26 | 0.33 | 0.40 | | | I _{in} | Maximum Input Leakage Current | V _{in} = V _{CC} or GND | 5.5 | ±0.1 | ±1.0 | ±1.0 | μΑ | | Icc | Maximum Quiescent Supply
Current (per Package) | $V_{in} = V_{CC}$ or GND $I_{out} = 0 \mu A$ | 5.5 | 1.0 | 10 | 40 | μА | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. # AC CHARACTERISTICS ($C_L = 50$ pF, Input $t_r = t_f = 6$ ns, $V_{CC} = 5.0$ V $\pm 10\%$) | | | Vcc | Guaranteed Limit | | | | |--|---|-----|------------------|----------|----------|------| | Symbol | Parameter | V | -55 to 25°C | ≤85°C | ≤125°C | Unit | | t _{PLH} ,
t _{PHL} | Maximum Propagation Delay, Input A or B to Output Y tplh (Figures 3 and 4) tphl | 5.0 | 15
17 | 19
21 | 22
26 | ns | | t _{TLH} ,
t _{THL} | Maximum Output Transition Time, Any Output (Figures 3 and 4) | 5.0 | 15 | 19 | 22 | ns | | C _{in} | Maximum Input Capacitance | | 10 | 10 | 10 | pF | | | | Typical @ 25°C, V _{CC} = 5.0 V, V _{EE} = 0 V | | |-----------------|---|--|----| | C _{PD} | Power Dissipation Capacitance (Per Buffer)* | 20 | pF | ^{*}Used to determine the no-load dynamic power consumption: PD = CPD VCC2f + ICC VCC. # ORDERING INFORMATION | Device | Package | Shipping [†] | |-------------------|-----------|-----------------------| | MC74HCT08ADG | SOIC-14 | 55 Units / Rail | | MC74HCT08ADR2G | (Pb-Free) | 2500/Tape & Reel | | MC74HCT08ADTR2G | TSSOP-14 | 0500/Tana 9 Daal | | NLV74HCT08ADTR2G* | (Pb-Free) | 2500/Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. ^{*}NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable. Figure 3. Switching Waveforms *Includes all probe and jig capacitance Figure 4. Test Circuit Figure 5. Expanded Logic Diagram (1/4 of the Device) # PACKAGE DIMENSIONS # NOTES: - DTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. - NOT EXCEED 0.25 (0.010) PER SIDE. 5. DIMENSION K DOES NOT INCLUDE 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. - 6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-. | | MILLIN | IETERS | INC | HES | | |-----|--------|--------|-----------|-------|--| | DIM | MIN | MAX | MIN | MAX | | | Α | 4.90 | 5.10 | 0.193 | 0.200 | | | В | 4.30 | 4.50 | 0.169 | 0.177 | | | C | | 1.20 | | 0.047 | | | O | 0.05 | 0.15 | 0.002 | 0.006 | | | F | 0.50 | 0.75 | 0.020 | 0.030 | | | G | 0.65 | BSC | 0.026 | BSC | | | Н | 0.50 | 0.60 | 0.020 | 0.024 | | | C | 0.09 | 0.20 | 0.004 | 0.008 | | | J1 | 0.09 | 0.16 | 0.004 | 0.006 | | | K | 0.19 | 0.30 | 0.007 | 0.012 | | | K1 | 0.19 | 0.25 | 0.007 | 0.010 | | | L | 6.40 | BSC | 0.252 BSC | | | | M | 0 ° | 8° | 0 ° | 8° | | # SOLDERING FOOTPRINT* *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. #### PACKAGE DIMENSIONS # SOIC-14 CASE 751A-03 ISSUE K #### NOTES: - DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS. - CONTROLLING DIMENSION: MILLIMETERS. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF AT MAXIMUM MATERIAL CONDITION. - DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSIONS. - 5. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE | | MILLIN | ILLIMETERS INCHE | | | |------------|----------|------------------|-------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 1.35 | 1.75 | 0.054 | 0.068 | | Α1 | 0.10 | 0.25 | 0.004 | 0.010 | | A 3 | 0.19 | 0.25 | 0.008 | 0.010 | | b | 0.35 | 0.49 | 0.014 | 0.019 | | D | 8.55 | 8.75 | 0.337 | 0.344 | | E | 3.80 | 4.00 | 0.150 | 0.157 | | е | 1.27 BSC | | 0.050 | BSC | | Н | 5.80 | 6.20 | 0.228 | 0.244 | | h | 0.25 | 0.50 | 0.010 | 0.019 | | L | 0.40 | 1.25 | 0.016 | 0.049 | | M | 0 ° | 7° | 0 ° | 7° | # 6.50 1 1.18 1 1.18 1 1.27 PITCH SOLDERING FOOTPRINT* DIMENSIONS: MILLIMETERS *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and a are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportun # PUBLICATION ORDERING INFORMATION # LITERATURE FULFILLMENT Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Europe, Middle East and Africa Technical Support Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative