STL16N60M2

N-channel 600 V, 0.290 Ω typ., 8 A MDmesh™ M2 Power MOSFET in a PowerFLAT™ 5x6 HV package

Datasheet - production data

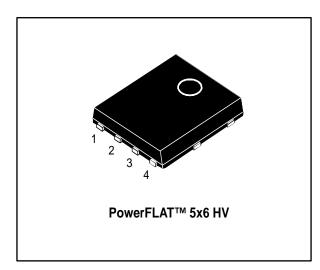
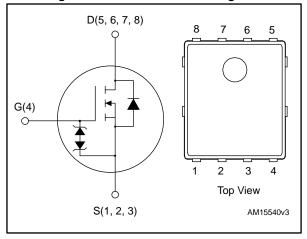



Figure 1: Internal schematic diagram

Features

Order code	V _{DS} @ T _{Jmax}	R _{DS(on)} max.	I _D	
STL16N60M2	650 V	0.355 Ω	8 A	

- Extremely low gate charge
- Excellent output capacitance (C_{OSS}) profile
- 100% avalanche tested
- Zener-protected

Applications

Switching applications

Description

This device is an N-channel Power MOSFET developed using MDmesh™ M2 technology. Thanks to its strip layout and an improved vertical structure, the device exhibits low on-resistance and optimized switching characteristics, rendering it suitable for the most demanding high efficiency converters.

Table 1: Device summary

Order code	Marking	Package	Packing	
STL16N60M2	16N60M2	PowerFLAT™ 5x6 HV	Tape and reel	

Contents STL16N60M2

Contents

1	Electric	al ratings	3
2	Electric	cal characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Packag	e mechanical data	9
	4.1	PowerFLAT™ 5x6 HV package information	10
	4.2	Packing information	12
5	Revisio	n history	14

STL16N60M2 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{GS}	Gate-source voltage	± 25	V
I _D	Drain current (continuous) at T _C = 25 °C	8 ⁽¹⁾	Α
I _D	Drain current (continuous) at T _C = 100 °C	5	Α
I _{DM} ⁽²⁾	Drain current (pulsed)	32	Α
P _{TOT}	Total dissipation at T _C = 25 °C	52	W
dv/dt ⁽³⁾	Peak diode recovery voltage slope	15	V/ns
dv/dt ⁽⁴⁾	MOSFET dv/dt ruggedness	50	V/ns
T _{stg}	Storage temperature	- 55 to 150	°C
T _j	Max. operating junction temperature	150	

Notes:

Table 3: Thermal data

Symbol	Symbol Parameter		Unit
R _{thj-case}	Thermal resistance junction-case max	2.40	°C/W
R _{thj-pcb}	Thermal resistance junction-pcb max ⁽¹⁾	59	°C/W

Notes:

Table 4: Avalanche characteristics

Symbol Parameter		Value	Unit
I _{AR}	Avalanche current, repetetive or not repetetive (pulse width limited by T _{jmax})	2	Α
E _{AS}	Single pulse avalanche energy (starting T _j = 25 °C, I _D = I _{AR} , V _{DD} = 50 V)		mJ

⁽¹⁾The value is limited by package.

 $^{^{(2)}}$ Pulse width limited by safe operating area.

 $^{^{(3)}}I_{SD} \leq 8$ A, di/dt ≤ 400 A/µs; V_{DS peak} < V_{(BR)DSS}, V_{DD} = 80% V_{(BR)DSS}

 $^{^{(4)}}V_{DS} \le 480 \text{ V}$

⁽¹⁾When mounted on 1 inch² FR-4, 2 Oz copper board

Electrical characteristics STL16N60M2

2 Electrical characteristics

(T_C= 25 °C unless otherwise specified)

Table 5: On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$	600			٧
	Zaro goto voltago Droin	$V_{GS} = 0 \text{ V}, V_{DS} = 600 \text{ V}$			1	μΑ
I _{DSS}	Zero gate voltage Drain current	$V_{GS} = 0 \text{ V}, V_{DS} = 600 \text{ V},$ $T_{C} = 125 \text{ °C}$			100	μΑ
I _{GSS}	Gate-body leakage current	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 25 \text{ V}$			±10	μΑ
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2	3	4	V
R _{DS(on)}	Static drain-source on- resistance	V _{GS} = 10 V, I _D = 4 A		0.290	0.355	Ω

Table 6: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		1	704	ı	pF
Coss	Output capacitance	V _{DS} = 100 V, f = 1 MHz,	1	38	ı	pF
C _{rss}	Reverse transfer capacitance	$V_{GS} = 0 V$	-	1.2	-	pF
Coss eq. (1)	Equivalent output capacitance	$V_{DS} = 0 \text{ V to } 480 \text{ V},$ $V_{GS} = 0 \text{ V}$	-	140	-	pF
R _G	Intrinsic gate resistance	f = 1 MHz open drain	-	5.3	-	Ω
Q_g	Total gate charge	V _{DD} = 480 V, I _D = 12 A,	1	19	ı	nC
Q_{gs}	Gate-source charge	V _{GS} = 10 V (see <i>Figure 15</i> :	- 1	3.3	•	nC
Q_{gd}	Gate-drain charge	"Gate charge test circuit")	-	9.5	-	nC

Notes:

Table 7: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 300 \text{ V}, I_D = 6 \text{ A}$	-	10.5	-	ns
t _r	Rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$ (see Figure 14: "Switching times	-	9.5	-	ns
t _{d(off)}	Turn-off-delay time	test circuit for resistive load"	-	58	-	ns
t _f	Fall time	and Figure 19: "Switching time waveform")	-	18.5	-	ns

 $^{^{(1)}}C_{oss\ eq.}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

Table 8: Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		8	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		32	А
V _{SD} ⁽²⁾	Forward on voltage	V _{GS} = 0 V, I _{SD} = 8 A	1		1.6	V
t _{rr}	Reverse recovery time		-	316		ns
Q _{rr}	Reverse recovery charge	I _{SD} = 12 A, di/dt = 100 A/μs, V _{DD} = 60 V (see Figure 16: "Test circuit for inductive load switching and diode recovery times")	-	3.25		μC
I _{RRM}	Reverse recovery current	load switching and diode recovery times)		20.5		А
t _{rr}	Reverse recovery time		-	455		ns
Qrr	Reverse recovery charge	I_{SD} = 12 A, di/dt = 100 A/µs, V_{DD} = 60 V, T_{j} = 150 °C (see Figure 16: "Test circuit for inductive load switching and diode		4.8		μC
I _{RRM}	Reverse recovery current	recovery times")	-	21		Α

Notes:

Table 9: Gate-source Zener diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)GSO}$	Gate-source breakdown voltage	$I_{GS} = \pm 1 \text{ mA}, I_{D} = 0 \text{ A}$	30	1	ı	V

⁽¹⁾Pulse width is limited by safe operating area

 $^{^{(2)}\}text{Pulse}$ test: pulse duration = 300 $\mu\text{s},$ duty cycle 1.5%

2.1 Electrical characteristics (curves)

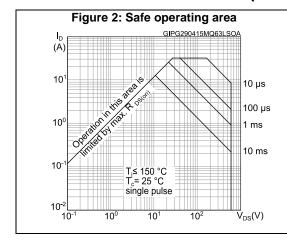


Figure 3: Thermal impedance

ZthPowerFlat $5x6_19$ 0.2

10⁻¹

0.1

0.05

0.02

0.01

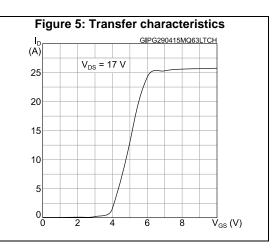
Zth = k RthJ-c $\delta = t_p/\tau$ 10⁻³

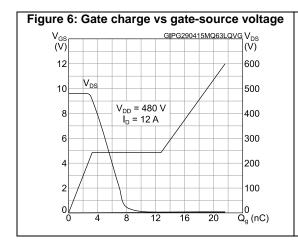
10⁻⁶

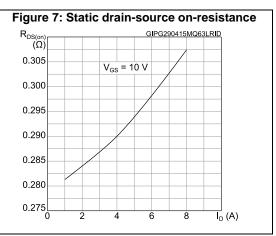
10⁻⁵

10⁻⁴

10⁻³


10⁻⁶


10⁻⁵


10⁻⁴

10⁻³

10⁻¹

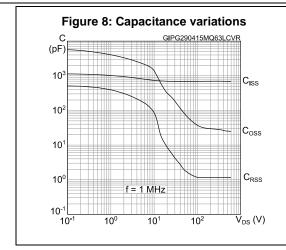
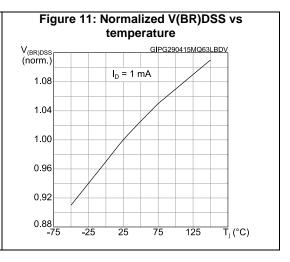
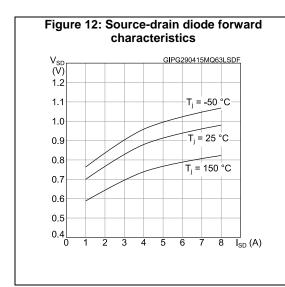


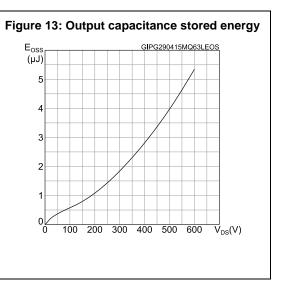
Figure 10: Normalized on-resistance vs temperature

R_{DS(on)} GIPG290415MQ63LRON
(norm.)
2.2

1.8

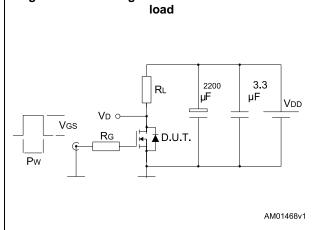

1.4


1.0


0.6

0.2

-75
-25
25
75
125
T_j (°C)



Test circuits STL16N60M2

3 Test circuits

Figure 14: Switching times test circuit for resistive

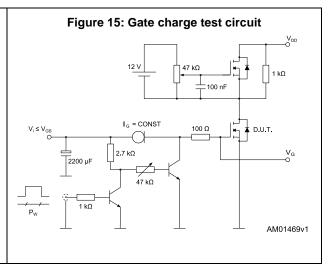


Figure 16: Test circuit for inductive load switching and diode recovery times

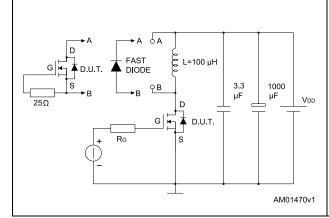
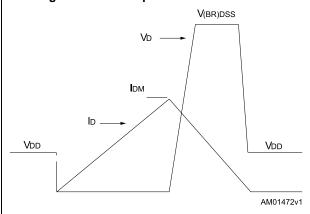
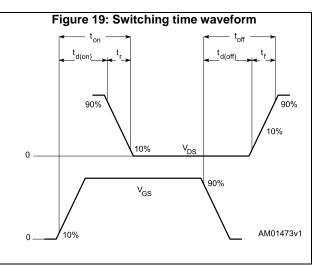




Figure 17: Unclamped inductive load test circuit

Figure 18: Unclamped inductive waveform

577

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 PowerFLAT™ 5x6 HV package information

Figure 20: PowerFLAT™ 5x6 HV package outline

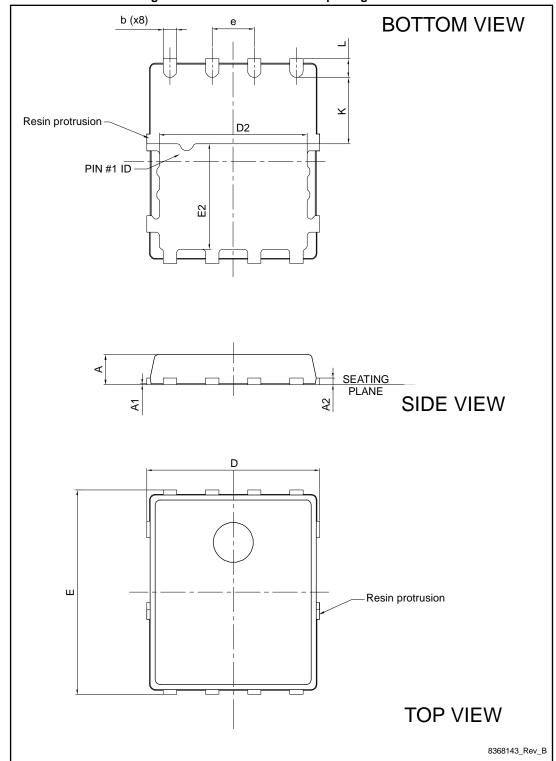
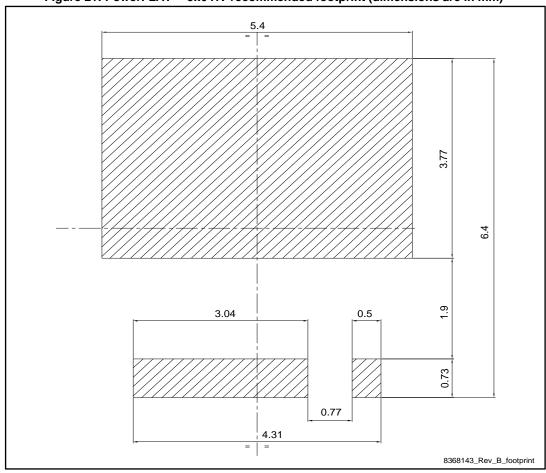



Table 10: PowerFLAT™ 5x6 HV mechanical data

Dim.		mm	
Dim.	Min.	Тур.	Max.
Α	0.80		1.00
A1	0.02		0.05
A2		0.25	
b	0.30		0.50
D	5.00	5.20	5.40
Е	5.95	6.15	6.35
D2	4.30	4.40	4.50
E2	3.10	3.20	3.30
е		1.27	
L	0.50	0.55	0.60
K	1.90	2.00	2.10

Figure 21: PowerFLAT™ 5x6 HV recommended footprint (dimensions are in mm)

4.2 Packing information

Figure 22: PowerFLAT™ 5x6 tape (dimensions are in mm)

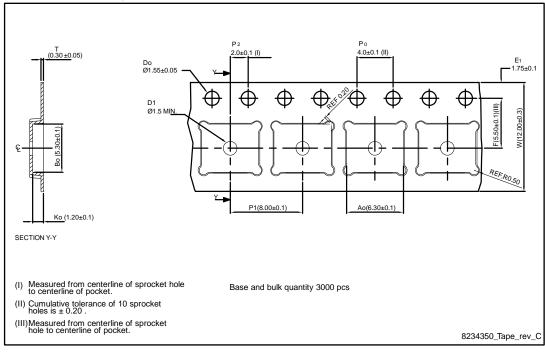
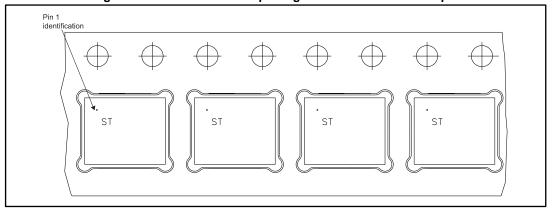



Figure 23: PowerFLAT™ 5x6 package orientation in carrier tape

8234350_Reel_rev_C

Figure 24: PowerFLAT™ 5x6 reel W3 11.9/15.4 A 330 (+0/-4.0) ESD LOGO All dimensions are in millimeters

Revision history STL16N60M2

5 Revision history

Table 11: Document revision history

Date	Revision	Changes
18-May-2015	1	First release.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics: STL16N60M2