

13. LEADING EDGE IMPULSE1 [[c]

14. LEADING EDGE IMPULSE2 [d]

15. TRAILING EDGE IMPULSE1 [$\epsilon]$

16. TRAILING EDGE IMPULSE2 [$\left.{ }^{[}\right]$

17. DELAYED IMPULSE [[]]

Functional Description

1. ON DELAY [0]

Timing commences when supply is present.R energizes t the end of the timing period.
2. CYCLIC OFF/ON \{OFF Start, (Sym, Asym)\} [] -ON and T-OFF can be same or different. The relay(R) keeps on 3.CYCLIC ON/OFF\{On Start,(Sym,Asym) \} [2]

This function is quite similar to the function ' 1 ' but initially the
elay (R) is ON for period T-ON after the power is applied
4.IMPULSE ON ENERGIZING [3]
fter power ON, R energizes and timing starts. R de-energizes after
5.ACCUMULATIVE DELAY ON SIGNAL [4]
ime commences as supply is present and switch B1 is ope
Cosing switch B1 pauses timing. Timing resumes when switch B1 is opened again. R energizes at the end of timing.
Important Note:

1. Output de-energizes when device enters into PROGRAM MODE and
starts new cycle after coming out of PROGRAM MODE
2. Loads which have current requirement $>1 \mathrm{~mA}$, can only be used as
Optional Load. For e.g. Contactor Coil, AC Relay Coil, etc.
. ACCUMULATIVE DELAY ON INVERTED SIGNAL [5]
Time commences as supply is present and switch B1 is closed. Opening switch B1 pauses timing. Timing res
again. R energizes at end of timing.

7. ACCUMULATIVE IMPULSE ON SIGNAL [5]

When supply is $O N, R$ energizes. When switch $B 1$ is closed timing is uspended and remains suspended till switch B1 is opened again. therrupting supply resets timer.
8. SIGNAL ON DELAY [[7]
Permanent supply required. Timing starts when switch B1 is closed. R nergizes at end of timing period and de-energizes when B1 is opened
9. INVERTED SIGNAL ON DELAY [B]

Timing will commence when supply is present and switch B1 is open.
Renergizes after timing. If B1 is closed during timing period, timing esets to the beginning of cycle
10. SIGNAL OFF DELAY [9] $]$, Timing commences after S is opened and then the relay de-energizes.

1. IMPULSE ON/OFF [${ }^{\text {a }]}$

Permanent supply is required. R energizes for the timing period
when $B 1$ is opened or closed. When timing commences, changing state
of $B 1$ does not affect R but resets timer. fi does not affet R but
12. SIGNAL OFF/ON [b b

Is state after time duration T.
13. LEADING EDGE IMPULSE 1 [$c]$
A permanent supply is needed. When $B 1$ is closed output relay

A permanent supply is needed. When B1 is closed, output relay
energizes until timing irrespective of any further action of B1.

14. LEADING EDGE IMPULSE $2[d]$

Permanent supply is required. when switch B1 is closed, and remains zes until timing is over. If B1 is opened
15.TRAILING EDGE IMPULSE 1 [E]

Permanent supply required. when $B 1$ is opened, R energizes and de-energizes when timing is over. If B1 is closed durin 16. TRAILING EDGE IMPULSE 2[F]

Permanent supply is required. When switch B1 is opened, R energizes and will de-energize when timing is over. If B1 is pulsed during timing period it will have no effect on R. 17. DELAYED IMPULSE [$£$]
orts. Relay energizes at the end relay de-energizes at the end of Tovective of signal level and

CONNECTIONS

OPTIONAL
LOAD $>1 \mathrm{~mA}$

SPDT Relay

$8 \mathrm{c}, 240 \mathrm{VAC}$
24 VDC

TECHNICAL SPECIFICATIONS		
CAT. No.	VodDTS1	VodDTD1
SUPPLY CHARACTERISTICS		
Nominal Supply (U)	24-240 VAC / DC ($50-60 \mathrm{~Hz},+/-2 \mathrm{~Hz}$)	
Limits	-15\% to +10\% of U	
Power Consumption (Max.)	$\sim 10 \mathrm{VA}$	
RELAY OUTPUT CHARACTERISTICS		
Contact Arrangement	$1 \mathrm{C} / 0$	2 NO
Contact Rating	$240 \mathrm{VAC} / 24 \mathrm{VDC}$ @ 8A (resistive)	$240 \mathrm{VAC} / 24 \mathrm{VDC}$ @ 8A (resistive)
Contact Material	Ag alloy	
Mechanical Life Expectancy	2×10^{7}	
Electrical Life Expectancy	1×10^{5}	
Switching Frequency (Max.)	1800 Operations / hr. @ rated load	
Status Indication on panel	Red LED - Relay ON	
FEATURE CHARACTERISTICS		
Modes Available	Refer "Timing diagrams of modes".	
Timing Ranges	$\frac{\mathrm{h}: \mathrm{m}}{9: 59} \quad \frac{\mathrm{~m}: \mathrm{s}}{9: 59}$	$\begin{array}{ccc}r & \frac{\min }{99} & \mathrm{sec} \\ 999 & 99.9 & 99.9\end{array}$
Repeat Accuracy	+/-0.5\% of selected range	
Variation in timing due to voltage change	+/-2\%	
Variation in timing due to temperature change	+/-5\%	
Temperature limits	Operating: $-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$	Storage: $-20^{\circ} \mathrm{C}$ to $+65{ }^{\circ} \mathrm{C}$
Humidity (Non - Condensing)	93 \% Rh	
Mounting	Base / Din - Rail (35 mm Sym.)	
Weight (Unpacked)	85 gms (approx).	
Initiate Time	40 ms .	
Reset Time	<200 ms.	
Isolation (Between Input and Output)	2.5 kV	
Degree of protection	IP30(Enclosure), IP20(Terminals)	
Utilization category AC-15 Ue Rated Voltage V Ie Rated Current I	$\begin{aligned} & 120 / 240 \\ & 3.0 / 1.5 \\ & \hline \end{aligned}$	
Utilization category DC-13 Ue Rated Voltage V Ie Rated Current I	$\begin{array}{r} 125 / 250 \\ 0.22 / 0.1 \\ \hline \end{array}$	
CERTIFICATIONS	CE, RoHS	
Vibration	IEC 60068-2-6	
Fast Transients	IEC 61000-4-4 Level IV Ed.2.0b-2004-07	
Surges	IEC 61000-4-5 Level IV Ed.2.0b-2005-11	
Voltage Dips, short interruptions and voltage variations	$\begin{aligned} & \hline \text { IEC 61000-4-29 (DC) Ed. 1.0b-2000-08 } \\ & \text { IEC 61000-4-11 (AC) Ed.2.0b-2004-11 } \\ & \hline \end{aligned}$	
Radiated Susceptibility	IEC 61000-4-3 Level III Ed.3.0b-2006-02	
EMC Conducted Emission	CISPR-14, Class-A	
EMC Radiated Emission	CISPR-14, Class-B	
ESD	Areas other than side surfaces are ESD sensitive	

\triangle Caution

1. Always follow instructions stated in this product leaflet
2. Before installation, check to ensure that the specifications agree with the intended application.
3. Installation to be done by skilled electrician.
4. Automation \& Control devices must
be properly installed so that they are protected against any risk of involuntary actuations.

FUNCTION		
	日.0.0	
	c880	TIME
RANGE	ms	UP/ Down
	SET ADJ	
	-	Led indication
	$\cdots{ }^{+}$	$\begin{aligned} & \text { FOR } \\ & \text { RELAY STATUS } \end{aligned}$

1. PRESET TIME: The Timer Duration selected by the user.
2. RUN TIME: In Down counting (\mathbf{v}) mode it indicates the remaining time while in Up counting ($\mathbf{\Delta}$) mode it indicates the elapsed time.
3. Up/Down ($\mathbf{\Delta V}$) blinks during the Timer Duration (T)

THE KEYS

KEY OPERATION RESULT

Apply Power \& Hold Program Mode

Nos the key for $>3 \mathrm{sec}$. OR
 Press both > 3 after power on

Press in Program mode Select, Edit parameter
Press in Program mode Edit blinking parameter
$\xrightarrow[\text { Press for }>3 \text { sec. }]{\substack{\text { Pest } \\ \text { during Timer operation }}}$ Reset Timer
during Timer operatio
Press for > 3 sec.
during Timer operation
Press during Timer Edit Preset Time operation during Timer operation

SERIES: DIGICON MULTI-FUNCTION DIGITAL TIMER

Eliso $^{\text {TM }}(6$ voDDTS1 RoHS \square

Features:
,

- 17 functions
- Wide operating voltage : 24 to $240 \mathrm{~V} \mathrm{AC/DC}$
- Multi Range : 0.1 sec to 999 hrs
- Up / Down counting modes

3 Digit LCD for Preset Time and Run Time
Clear LED indication of Relay status

- Key lock Function

IEC standards of EMI/EMC

- Compact size (17.5 mm single width module)

Note : Product innovation being a continuous process, we reserve the right to alter specification without any prior notice.

OVERALL DIMENSIONs

$0.54 \mathrm{~mm} . \mathrm{m}(5 \mathrm{Lb} . \mathrm{in})$			

Features：

8 function

Wide operating voltage ： 24 to $240 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$
Multi Range ： 0.1 sec to 999 hrs
Up／Down counting modes
（IED indictione and Run Time
－Key lock Function
－Conforms to IEC standards of EMI／EMC
－Compact size（ 17.5 mm single width
module）

1．PRESET TIME：The Timer Duration selected by the user．
2．RUN TIME：In Down counting（ $\boldsymbol{\nabla}$ ）mode it indicates the remaining time while in Up counting（ $\mathbf{\Delta}$ ）mode it indicates the elapsed time．

3．Up／Down（ $\Delta \boldsymbol{V}$ ）blinks during the Timer Duration（ T ）

THE KEYS

KEY OPERATION RESULT

Apply Power \＆Hold Program Mode the key for $>3 \mathrm{sec}$ ．
OR
Press both $>3 \mathrm{sec} \quad$ Program Mode after power on
Press in Program mode Select，Edit parameter
领
fils
Press for＞ 3 sec．
Reset Timer
$\xrightarrow{3 \text { AD }}$
Press for＞ 3 sec．Lock／Unlock Preset Time during Timer operation

Press during Timer Edit Preset Time duration Timer operation

Apply power \＆hold the Set key for＞ 3 sec
Press both ADJ \＆SET key for＞ 3 sec．Ater power ON．
Now follow the steps given below

Functional Description

1．ON DELAY［ A］
The Timer starts when both Power（ P ）and Signal（ S ） are applied．The relay is energized at the end of CYCLIC OFFION \｛OFF Start，（Sym Asym）is removed． T－ON and T－OFF can be same or different．The relay
keeps on changing its status till the power is removed
3．CYCLIC ON／OFF \｛ON Start，（Sym，Asym）\} [${ }^{\mathscr{E}}$ ］
This function is quite similar to the function＇ m^{\prime}＇but initially the relay is ON for period T－ON after the Power is applied
The Sutput relay is turned ON for Preset Time（ T ）whenever the Signal（S）is applied or removed．（Refer Note：2）
 Output relay becomes ON when Signal（S）is applied．The Timer
Duration（T）starts when Signal（S）is removed．At the end of Dimer Duration（T）the output relay goes OFF．Signal（S）， if applied during the Timer Duration（ T ）will re－trigger the Timer and the total duration will be extended
When Sigal［ ${ }^{\text {F }}$ ］
When Signal（ S ）is applied，the Timer starts and the output elay is energized．The output relay becomes OFF at the end 7．SIGNAL OFF／ON［ ${ }^{[}$
When Signal（ S ）is applied or removed，the relay changes its state after Timer Duration（T）（Refer Note：2） 3．ONE SHOT OUTPUT［H］
When Signal（ S ）is applied，the Timer Duration（ T ）starts At the end of Timer duration（ T ），the relay gets energized for approximately 1 sec ．（Refer Note ．2）

1．For Power－ON operation the terminal B1 and A1 must be permanently connected
2．In case of all modes except mode G a change in Signal（s）status during the Timing Duration（ T ），does not affect output status but resets timing and re－triggers timing．
3．Output de－energises when device enters PROGRAM MODE and starts new cycle after coming out of PROGRAM MODE．
4．Loads which have current requirement $>1 \mathrm{~mA}$ ，can only be used as Optional Load．For e．g．Contactor Coil，AC Relay Coil，etc．

CONNECTIONS

TECHNICAL SPECIFICATIONS

SERIES: DIGICON

MULTI - FUNCTION DIGITAL TIMER

Eliso ${ }^{\text {TM }}$

CAT. NOS.:

voddts

vODDTD
${ }^{4}$ Caution :

1. Always follow in
stated in this
2. Before installati
the specification, check to ensure that the specifications agree with the intended application.
3. Installation to be done by skilled electrician.
4. Automation \& Control devices must be properly installed so that they are protected against any risk of involuntary actuations.

OVERALL DIMENSIONS

N.B. :- Product innovation being a continuous process. We reserve the right to alter specification without any prior notice.

