Operational Amplifier, Railto-Rail Output, 3 MHz BW

The NCx2007x series operational amplifiers provide rail-to-rail output operation, 3 MHz bandwidth, and are available in single, dual, and quad configurations. Rail-to-rail operation enables the user to make optimal use of the entire supply voltage range while taking advantage of 3 MHz bandwidth. The NCx2007x can operate on supply voltages as low as 2.7 V over the temperature range of -40°C to 125°C. At a 2.7 V supply, the high bandwidth provides a slew rate of 2.8 V/µs while only consuming 405 µA of quiescent current per channel. The wide supply range allows the NCx2007x to run on supply voltages as high as 36 V, making it ideal for a broad range of applications. Since this is a CMOS device, high input impedance and low bias currents make it ideal for interfacing to a wide variety of signal sensors. The NCx2007x devices are available in a variety of compact packages. Automotive qualified options are available under the NCV prefix.

Features

- Rail-To-Rail Output
- Wide Supply Range: 2.7 V to 36 V
- Wide Bandwidth: 3 MHz typical at $V_S = 2.7 V$
- High Slew Rate: 2.8 V/ μ s typical at V_S = 2.7 V
- Low Supply Current: 405 μ A per channel at V_S = 2.7 V
- Low Input Bias Current: 5 pA typical
- Wide Temperature Range: -40°C to 125°C
- Available in a variety of packages
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

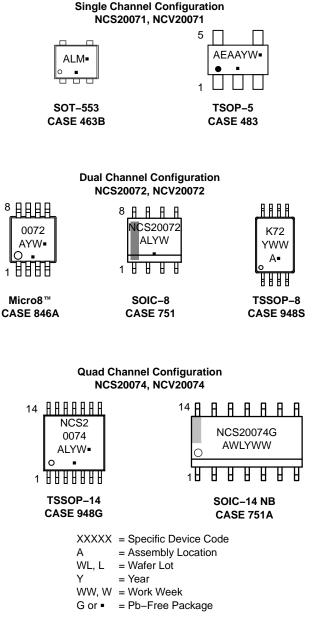
Applications

- · Current Sensing
- Signal Conditioning
- Automotive

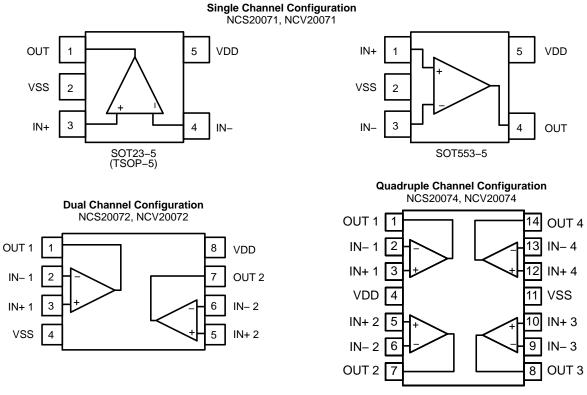
End Products

- Notebook Computers
- Portable Instruments
- Power Supplies

SOIC-14 NB **CASE 751A**


DEVICE MARKING INFORMATION

See general marking information in the device marking section on page 2 of this data sheet.


ORDERING INFORMATION

See detailed ordering and shipping information on page 4 of this data sheet.

MARKING DIAGRAMS

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Configuration	Automotive	Marking	Package	Shipping [†]
NCS20071SN2T1G			AEA	TSOP-5 (Pb-Free)	3000 / Tape and Reel
NCS20071XV53T2G	Qianta	No	AL	SOT553–5 (Pb–Free)	4000 / Tape and Reel
NCV20071SN2T1G*	Single	No. a	AEA	TSOP-5 (Pb-Free)	3000 / Tape and Reel
NCV20071XV53T2G*		Yes	AL	SOT553–5 (Pb–Free)	4000 / Tape and Reel
NCS20072DMR2G			0072	Micro8 (MSOP8) (Pb–Free)	4000 / Tape and Reel
NCS20072DR2G		No	NCS20072	SOIC-8 (Pb-Free)	2500 / Tape and Reel
NCS20072DTBR2G			K72	TSSOP-8 (Pb-Free)	2500 / Tape and Reel
NCV20072DMR2G*	Dual		0072	Micro8 (MSOP8) (Pb–Free)	4000 / Tape and Reel
NCV20072DR2G*			NCS20072	SOIC-8 (Pb-Free)	2500 / Tape and Reel
NCV20072DTBR2G*			K72	TSSOP-8 (Pb-Free)	2500 / Tape and Reel
NCS20074DR2G		No	NCS20074	SOIC-14 (Pb-Free)	2500 / Tape and Reel
NCS20074DTBR2G		No	NCS2 0074	TSSOP-14 (Pb-Free)	2500 / Tape and Reel
NCV20074DR2G*	Quad	No. 5	NCS20074	SOIC-14 (Pb-Free)	2500 / Tape and Reel
NCV20074DTBR2G*	7	Yes	NCS2 0074	TSSOP-14 (Pb-Free)	2500 / Tape and Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP

Capable.

ABSOLUTE MAXIMUM RATINGS (Note 1)

	Rating	Symbol	Limit	Unit
Supply Voltage (V _{DD} – V _{SS}) (Note 4)	VS	40	V
Input Voltage		V _{CM}	V_{SS} – 0.2 to V_{DD} + 0.2	V
Differential Input Voltage (N	put Voltage (Note 2) V_{ID} $\pm V_{s}$			
Maximum Input Current		I _{IN}	±10	mA
Maximum Output Current (Note 3)	Ι _Ο	±100	mA
Continuous Total Power Dis	ssipation (Note 4)	n (Note 4) P _D 200		mW
Maximum Junction Temper	ature	TJ	150	°C
Storage Temperature Rang	e	T _{STG}	-65 to 150	°C
Mounting Temperature (Infr	ared or Convection – 20 sec)	T _{mount}	260	°C
ESD Capability (Note 5)	Human Body Model Machine Model – NCx20071 Machine Model – NCx20072, NCx20074 Charged Device Model – NCx20071, NCx20072 Charged Device Model – NCx20074	HBM MM CDM CDM	2000 200 150 2000 (C6) 1000 (C6)	V
Latch–Up Current (Note 6)		I _{LU}	100	mA
Moisture Sensitivity Level (Note 7)	MSL	Level 1	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Refer to ELECTRICAL CHĂRACTERISTICS and APPLICATION INFORMATION for Safe Operating Area.

- Maximum input current must be limited to ±10 mA. Series connected resistors of at least 500 Ω on both inputs may be used to limit the maximum input current to ±10 mA.
- 3. Total power dissipation must be limited to prevent the junction temperature from exceeding the 150°C limit.
- 4. Continuous short circuit operation to ground at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150°C. Output currents in excess of the maximum output current rating over the long term may adversely affect reliability. Shorting output to either VDD or VSS will adversely affect reliability.
- This device series incorporates ESD protection and is tested by the following methods: ESD Human Body Model tested per JEDEC standard JS-001 (AEC-Q100-002) ESD Machine Model tested per JEDEC standard JESD22-A115 (AEC-Q100-003) ESD Charged Device Model tested per JEDEC standard JESD22-C101 (AEC-Q100-011)
- Latch-up Current tested per JEDEC standard JESD78 (AEC-Q100-004)
 Moisture Sensitivity Level tested per IPC/JEDEC standard J-STD-020A

THERMAL INFORMATION

Parameter	Symbol	Package	Single Layer Board (Note 8)	Multi–Layer Board (Note 9)	Unit
		SOT23-5 / TSOP5	265	195	
		SOT553-5	325	244	
		Micro8 / MSOP8	236	167	
Junction-to-Ambient	θ_{JA}	SOIC-8	190	131	°C/W
		TSSOP-8	253	194	
		SOIC-14	142	101	
		TSSOP-14	179	128	

8. Values based on a 1S standard PCB according to JEDEC51–3 with 1.0 oz copper and a 300 mm² copper area

9. Values based on a 1S2P standard PCB according to JEDEC51-7 with 1.0 oz copper and a 100 mm² copper area

OPERATING RANGES

Parameter	Symbol	Min	Max	Unit
Operating Supply Voltage (Single Supply)	Vs	2.7	36	V
Operating Supply Voltage (Split Supply)	VS	±1.35	±18	V
Differential Input Voltage (Note 10)	V _{ID}		Vs	V
Input Common Mode Voltage Range	V _{CM}	V _{SS}	V _{DD} – 1.35	V
Ambient Temperature	T _A	-40	125	°C

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

10. Maximum input current must be limited to \pm 10 mA. See Absolute Maximum Ratings for more information.

ELECTRICAL CHARACTERISTICS AT $V_S = 2.7 V$

 $T_A = 25^{\circ}C$; $R_L \ge 10 \text{ k}\Omega$; $V_{CM} = V_{OUT} = \text{mid-supply unless otherwise noted}$. All limits are guaranteed by testing or statistical analysis. **Boldface** limits apply over the specified temperature range, $T_A = -40^{\circ}C$ to $125^{\circ}C$. (Notes 11, 12)

Parameter	Symbol	С	onditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS							
			NCx20071		1.3	±3.5	
lanut Offerst Valteres		r	NCX20071			±4.5	mV
Input Offset Voltage	Vos	NCv20	072 NCv20074		1.3	±3	mv
		NCX20	072, NCx20074			±4	
Offset Voltage Drift	$\Delta V_{OS} / \Delta T$	$T_A = 2$	25°C to 125°C		2		μV/°C
Input Bias Current (Note 12)					5	200	~ ^
Input bias Current (Note 12)	I _{IB}					1500	рА
lanut Offent Current (Nate 10)		NCx20071, NCx20072			2	75	
	I _{OS}					500	~^
Input Offset Current (Note 12)		NCx20074			2	75	рА
						200	
Channel Constantion	XTLK	DC	NCx20072		100		
Channel Separation	AILK	DC	NCx20074		115		dB
Differential Input Resistance	R _{ID}				5		GΩ
Common Mode Input Resistance	R _{IN}				5		GΩ
Differential Input Capacitance	C _{ID}				1.5		pF
Common Mode Input Capacitance	C _{CM}				3.5		pF
Common Made Dejection Datia	CMDD	V_{CM} = V_{SS} + 0.2 V to V_{DD} – 1.35 V		90	110		40
ommon Mode Rejection Ratio	CMRR			69	I		dB

OUTPUT CHARACTERISTICS

Open Leen Veltage Cain	٨		96	118		dB
Open Loop Voltage Gain	A _{VOL}		86			uв
Output Ourront Conshility (Note 12)	1	Op amp sinking current		70		mA
Output Current Capability (Note 13)	IO Op amp sourcing current			50		ША
Output Voltogo Lligh	M			0.006	0.15	V
Output Voltage High	V _{OH}	Voltage output swing from positive rail			0.22	v
	M	Voltage output output from pagetive roll		0.005	0.15	V
Output Voltage Low	V _{OL}	Voltage output swing from negative rail			0.22	v

AC CHARACTERISTICS

Unity Gain Bandwidth	UGBW	C _L = 25 pF			3		MHz
Slew Rate at Unity Gain	SR	$C_L = 20 \text{ pF}, \text{ R}_L = 2 \text{ k}\Omega$			2.8		V/μs
Phase Margin	φm	C _L = 25 pF			50		0
Gain Margin	A _m	C _L =	C _L = 25 pF		14		dB
		$V_{O} = 1 \text{ Vpp},$ Gain = 1, C _L = 20 pF	Settling time to 0.1%		0.6		μs
Settling Time	t _S		Settling time to 0.01%		1.2		

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

11. Refer to ABSOLUTE MAXIMUM RATINGS and APPLICATION INFORMATION for Safe Operating Area.

12. Performance guaranteed over the indicated operating temperature range by design and/or characterization.

ELECTRICAL CHARACTERISTICS AT V_S = 2.7 V

 $T_A = 25^{\circ}C$; $R_L \ge 10 \text{ k}\Omega$; $V_{CM} = V_{OUT} = \text{mid-supply}$ unless otherwise noted. All limits are guaranteed by testing or statistical analysis. **Boldface** limits apply over the specified temperature range, $T_A = -40^{\circ}C$ to $125^{\circ}C$. (Notes 11, 12)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
NOISE CHARACTERISTICS						
Total Harmonic Distortion plus Noise	THD+N	$V_{IN} = 0.5 Vpp, f = 1 kHz, Av = 1$		0.05		%
		f = 1 kHz		30		nV/√ Hz
Input Referred Voltage Noise	e _n	f = 10 kHz		20		
Input Referred Current Noise	i _n	f = 1 kHz		90		fA/√Hz
SUPPLY CHARACTERISTICS						

SUPPLY CHARACTERISTICS

Power Supply Rejection Ratio	PSRR	SRR No Load		114	135		dB
	FORK		Juan	100			uВ
Power Supply Quiescent Current	I _{DD}	NCx20071	No load		420	625	
			no loau			765	
		NCx20072, NCx20074 Per channel, no load	Der channel, no lood		405	525	μΑ
					625		

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

11. Refer to ABSOLUTE MAXIMUM RATINGS and APPLICATION INFORMATION for Safe Operating Area.

12. Performance guaranteed over the indicated operating temperature range by design and/or characterization.

13. Power dissipation must be limited to prevent junction temperature from exceeding 150°C. See Absolute Maximum Ratings for more information.

ELECTRICAL CHARACTERISTICS AT V_S = 5 V

 $T_A = 25^{\circ}C$; $R_L \ge 10 \text{ k}\Omega$; $V_{CM} = V_{OUT} = \text{mid-supply unless otherwise noted}$. All limits are guaranteed by testing or statistical analysis. **Boldface** limits apply over the specified temperature range, $T_A = -40^{\circ}C$ to $125^{\circ}C$. (Notes 14, 15)

Parameter	Symbol	Conditions		Min	Тур	Max	Unit
INPUT CHARACTERISTICS							
		NI	0.00074		1.3	±3.5	
Input Offeet Veltere	V	NCx20071				±4.5	mV
Input Offset Voltage	V _{OS}	NOvoo	70 NO:00074		1.3	±3	mv
		NCx20072, NCx20074				±4	
Offset Voltage Drift	$\Delta V_{OS} / \Delta T$	$T_A = 25^{\circ}C$ to 125 $^{\circ}C$			2		μV/°C
Input Dice Current (Note 15)					5	200	n A
Input Bias Current (Note 15)	I _{IB}					1500	рА
		NCx20071, NCx20072			2	75	pА
Input Offact Current (Note 15)						500	
Input Offset Current (Note 15)	los	NO 2007/			2	75	
		IN	Cx20074			200	1
Ohannal Constitut	VTLK	DO	NCx20072		100		٦D
Channel Separation	XTLK	DC	NCx20074		115		dB
Differential Input Resistance	R _{ID}		•		5		GΩ
Common Mode Input Resistance	R _{IN}				5		GΩ
Differential Input Capacitance	C _{ID}				1.5		pF
Common Mode Input Capacitance	C _{CM}				3.5		pF

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

14. Refer to ABSOLUTE MAXIMUM RATINGS and APPLICATION INFORMATION for Safe Operating Area.

15. Performance guaranteed over the indicated operating temperature range by design and/or characterization.

ELECTRICAL CHARACTERISTICS AT $V_S = 5 V$

 $T_A = 25^{\circ}C$; $R_L \ge 10 \text{ k}\Omega$; $V_{CM} = V_{OUT} = \text{mid-supply unless otherwise noted}$. All limits are guaranteed by testing or statistical analysis. **Boldface** limits apply over the specified temperature range, $T_A = -40^{\circ}C$ to $125^{\circ}C$. (Notes 14, 15)

Parameter	Symbol	Cond	litions	Min	Тур	Мах	Unit
INPUT CHARACTERISTICS							
				102	125		
Common Mode Rejection Ratio	CMRR	$V_{CM} = V_{SS} + 0.2$	V to V _{DD} – 1.35 V	80			dB
OUTPUT CHARACTERISTICS							-
Onen Leon Veltere Cein	^			96	120		٩D
Open Loop Voltage Gain	A _{VOL}			86			dB
Output Current Conshility (Note 16)	1	Op amp sin	king current		50		
Output Current Capability (Note 16)	Ι _Ο	Op amp sou	rcing current		60		mA
	M		na from positivo roil		0.013	0.20	v
Output Voltage High	V _{OH}	voltage output swil	ng from positive rail			0.25	V
Output Voltage Low	V		a from pogotivo roil		0.01	0.10	v
Oulput voltage Low	V _{OL}	voltage output swir	ng from negative rail			0.15	V
AC CHARACTERISTICS							
Unity Gain Bandwidth	UGBW	C _L = 25 pF			3		MHz
Slew Rate at Unity Gain	SR	C _L = 20 pF	$C_L = 20 \text{ pF}, R_L = 2 \text{ k}\Omega$		2.7		V/μs
Phase Margin	ϕ_{m}	C _L =	25 pF		50		0
Gain Margin	A _m	C _L =	25 pF		14		dB
Settling Time	+	V _O = 3 Vpp,	Settling time to 0.1%		1.2		
	t _S	Gain = 1, C_L = 20 pF	Settling time to 0.01%		5.6		μs
NOISE CHARACTERISTICS							
Total Harmonic Distortion plus Noise	THD+N	V _{IN} = 2.5 Vpp, f	⁺ = 1 kHz, Av = 1		0.009		%
Input Referred Voltage Noise	0	f = 1	kHz		30		nV/√Hz
input Referred voltage Noise	e _n	f = 10	0 kHz		20		110/11/2
Input Referred Current Noise	i _n	f = 1	kHz		90		fA/√Hz
SUPPLY CHARACTERISTICS							
Power Supply Rejection Ratio	PSRR	No.	and	114	135		dB
	FORK	PSRR No Load		100			ųБ
		NCx20071	No load		430	635	
Power Supply Quiescent Current	I	NCX20071	No Ioau			775	μA
rower supply Quiescent Current	I _{DD}				410	530	μΑ

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Per channel, no load

NCx20072, NCx20074

630

14. Refer to ABSOLUTE MAXIMUM RATINGS and APPLICATION INFORMATION for Safe Operating Area.

15. Performance guaranteed over the indicated operating temperature range by design and/or characterization.

ELECTRICAL CHARACTERISTICS AT $V_S = 10 V$

 $T_A = 25^{\circ}C$; $R_L \ge 10 \text{ k}\Omega$; $V_{CM} = V_{OUT}$ = mid-supply unless otherwise noted. All limits are guaranteed by testing or statistical analysis. Boldface limits apply over the specified temperature range, $T_A = -40^{\circ}C$ to 125°C. (Notes 17, 18)

Parameter	Symbol	C	onditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						•	
Innut Offeet Veltege	M	NCx20071			1.3	±3.5	mV
Input Offset Voltage	V _{OS}	N	ICX20071			±4.5	mV
Input Offset Voltage	Vaa		072, NCx20074		1.3	±3	mV
input Onset voltage	V _{OS}	NCX20	072, NCX20074			±4	mV
Offset Voltage Drift	$\Delta V_{OS} / \Delta T$	$T_A = 25^{\circ}C$ to $125^{\circ}C$			2		μV/°C
Input Rise Current (Note 19)	l				5	200	n۸
Input Bias Current (Note 18)	Ι _{IB}					1500	рА
		NCx20071, NCx20072			2	75	pA
						500	
Input Offset Current (Note 18)	los	NCx20074			2	75	
						200	
Channel Constation	XTLK	DC	NCx20072		100		٩D
Channel Separation	AILK	DC NCx20074			115		dB
Differential Input Resistance	R _{ID}				5		GΩ
Common Mode Input Resistance	R _{IN}				5		GΩ
Differential Input Capacitance	C _{ID}				1.5		pF
Common Mode Input Capacitance	C _{CM}				3.5		pF
Common Mode Dejection Datio		$V_{CM} = V_{SS} + 0.2 V$ to $V_{DD} - 1.35 V$		110	130		٩D
Common Mode Rejection Ratio	CMRR			87			dB

OUTPUT CHARACTERISTICS

Open Loop Voltage Gain	Δ		98	120		dB
Open Loop voltage Gain	A _{VOL}		88			uБ
Output Current Capability (Note 19)	1	Op amp sinking current		50		mA
	IO	Op amp sourcing current	rrent 65			
	V _{OH}			0.023	0.08	V
Output Voltage High		Voltage output swing from positive rail			0.10	v
	V _{OL}	Voltage output output from pagetive roll		0.022	0.3	V
Output Voltage Low		Voltage output swing from negative rail			0.35	V

AC CHARACTERISTICS

Unity Gain Bandwidth	UGBW	C _L = 25 pF		3	MHz
Slew Rate at Unity Gain	SR	$C_L = 20 \text{ pF}, R_L = 2 \text{ k}\Omega$		2.6	V/µs
Phase Margin	φm	C _L = 25 pF		50	0
Gain Margin	A _m	C _L = 25 pF		14	dB
Cottling Time		V _O = 8.5 Vpp,	Settling time to 0.1%	3.4	
Settling Time	t _S	$V_O = 8.5 Vpp,$ Gain = 1, C _L = 20 pF	Settling time to 0.01%	6.8	μs

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

17. Refer to ABSOLUTE MAXIMUM RATINGS and APPLICATION INFORMATION for Safe Operating Area.

18. Performance guaranteed over the indicated operating temperature range by design and/or characterization.

ELECTRICAL CHARACTERISTICS AT V_S = 10 V

 $T_A = 25^{\circ}C$; $R_L \ge 10 \text{ k}\Omega$; $V_{CM} = V_{OUT} = \text{mid-supply}$ unless otherwise noted. All limits are guaranteed by testing or statistical analysis. Boldface limits apply over the specified temperature range, $T_A = -40^{\circ}C$ to 125°C. (Notes 17, 18)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
NOISE CHARACTERISTICS						
Total Harmonic Distortion plus Noise	THD+N	V _{IN} = 7.5 Vpp, f = 1 kHz, Av = 1		0.004		%
Input Referred Voltage Noise		f = 1 kHz		30		nV/√ Hz
	e _n	f = 10 kHz		20		
Input Referred Current Noise	i _n	f = 1 kHz		90		fA/√Hz
SUPPLY CHARACTERISTICS						

SUPPLY CHARACTERISTICS

Power Supply Rejection Ratio	PSRR	No L	ood	114	135		dB
	FORK		100			uВ	
Power Supply Quiescent Current		NCx20071	No load		430	645	
						785	
	IDD		Denskarsel verkend		416	540	μA
		NCx20072, NCx20074 Per c	Per channel, no load			640	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

17. Refer to ABSOLUTE MAXIMUM RATINGS and APPLICATION INFORMATION for Safe Operating Area.

18. Performance guaranteed over the indicated operating temperature range by design and/or characterization.

19. Power dissipation must be limited to prevent junction temperature from exceeding 150°C. See Absolute Maximum Ratings for more information.

ELECTRICAL CHARACTERISTICS AT V_S = 36 V

 $T_A = 25^{\circ}C$; $R_L \ge 10 \text{ k}\Omega$; $V_{CM} = V_{OUT} = \text{mid-supply unless otherwise noted}$. All limits are guaranteed by testing or statistical analysis. Boldface limits apply over the specified temperature range, $T_A = -40^{\circ}C$ to $125^{\circ}C$. (Notes 20, 21)

Parameter	Symbol	Conditions		Min	Тур	Max	Unit
INPUT CHARACTERISTICS						-	-
			NO:00074		1.3	±3.5	mV
lanut Offerst \/elterse		NCx20071				±4.5	mV
Input Offset Voltage	V _{OS}	NCx20072, NCx20074			1.3	±3	mV
						±4	mV
Offset Voltage Drift	$\Delta V_{OS} / \Delta T$	T _A =	25°C to 125°C		2		μV/°C
					5	200	
Input Bias Current (Note 21)	I _{IB}	NCx20	071, NCx20072			2000	pА
		I	NCx20074			1500	
		NCx20071, NCx20072			2	75	_
lanut Offerst Current (Nets 24)						1000	
Input Offset Current (Note 21)	I _{OS}		NO:00074		2	75	рА
		I	NCx20074			200	
Ohannal Cananatian		50	NCx20072		100		٦Ŀ
Channel Separation	XTLK	DC NCx20074			115		dB
Differential Input Resistance	R _{ID}		-		5		GΩ
Common Mode Input Resistance	R _{IN}				5		GΩ

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

20. Refer to ABSOLUTE MAXIMUM RATINGS and APPLICATION INFORMATION for Safe Operating Area.

21. Performance guaranteed over the indicated operating temperature range by design and/or characterization.

ELECTRICAL CHARACTERISTICS AT V_S = 36 V $T_A = 25^{\circ}C$; $R_L \ge 10 \text{ k}\Omega$; $V_{CM} = V_{OUT} = \text{mid-supply unless otherwise noted}$. All limits are guaranteed by testing or statistical analysis. Boldface limits apply over the specified temperature range, $T_A = -40^{\circ}C$ to 125°C. (Notes 20, 21)

Parameter	Symbol	Conc	ditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS							
Differential Input Capacitance	C _{ID}				1.5		pF
Common Mode Input Capacitance	C _{CM}				3.5		pF
		NCx20071	$V_{CM} = V_{SS} + 0.2 \text{ V to}$ $V_{DD} - 1.35 \text{ V}$	118	135		
		NC22007 1	V _{DD} – 1.35 V	95			
Common Made Dejection Datio	CMRR	NCx20072	$V_{CM} = V_{SS} + 0.2 V to$	120	145		dB
Common Mode Rejection Ratio			V _{DD} – 1.35 V	95			uв
	NCx20074	$V_{CM} = V_{SS} + 0.2 \text{ V to}$ $V_{DD} - 1.35 \text{ V}$	120	145			
		NCX20074	V _{DD} – 1.35 V	85			

OUTPUT CHARACTERISTICS

Open Loop Voltage Gain	٨			98	120		dB
Open Loop vollage Gain	A _{VOL}			88			uВ
Output Current Capability (Note 22)		Op amp sinking current			50		mA
Output Current Capability (Note 22)	Ι _Ο	Op amp sou	ircing current		65		mA
	V _{OH}	Voltage output swing from positive rail	NCx20071		0.074	0.15	
						0.22	
			NCx20072		0.074	0.10	V
Output Voltage High						0.15	v
			NC00074		0.074	0.10	
			NCx20074			0.12	
	M				0.065	0.3	V
Output Voltage Low	V _{OL}	Voltage output swing from negative rail				0.35	v

AC CHARACTERISTICS

Unity Gain Bandwidth	UGBW	C _L = 25 pF		3	MHz
Slew Rate at Unity Gain	SR	C_L = 20 pF, R_L = 2 k Ω		2.4	V/μs
Phase Margin	φm	C _L = 25 pF		50	0
Gain Margin	A _m	C _L = 25 pF		14	dB
Cottling Time		V _O = 10 Vpp,	Settling time to 0.1%	3.2	
Settling Time	t _S	V _O = 10 Vpp, Gain = 1, C _L = 20 pF	Settling time to 0.01%	7	μs

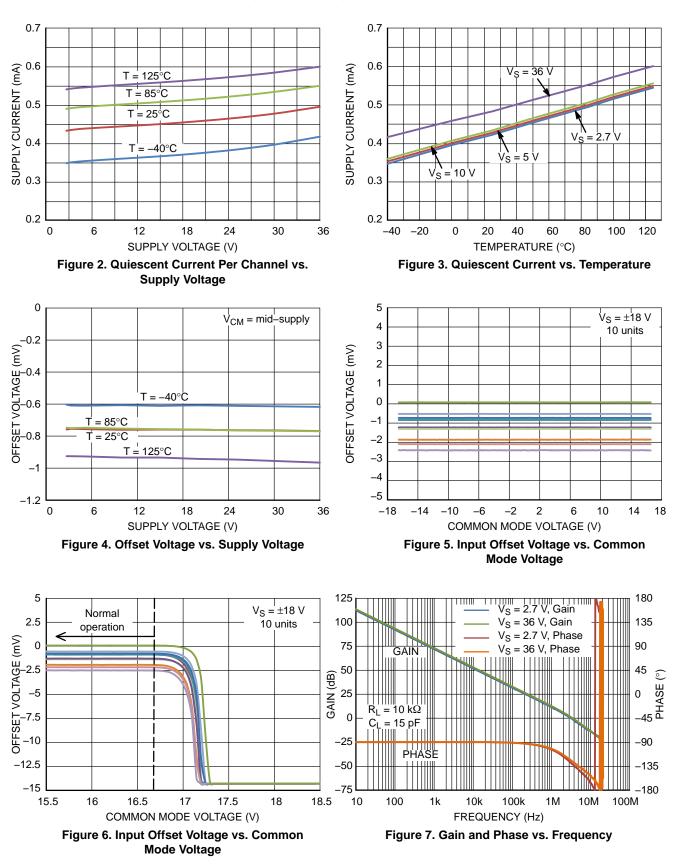
NOISE CHARACTERISTICS

Total Harmonic Distortion plus Noise	THD+N	V _{IN} = 28.5 Vpp, f = 1 kHz, Av = 1	0.001	%	
Input Referred Voltage Noise	<u>^</u>	f = 1 kHz	30	nV/√ Hz	
Input Referred Voltage Noise	e _n	f = 10 kHz	20		
Input Referred Current Noise	i _n	f = 1 kHz	90	fA/√Hz	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

20. Refer to ABSOLUTE MAXIMUM RATINGS and APPLICATION INFORMATION for Safe Operating Area.

21. Performance guaranteed over the indicated operating temperature range by design and/or characterization.


ELECTRICAL CHARACTERISTICS AT V_S = 36 V $T_A = 25^{\circ}C$; $R_L \ge 10 \text{ k}\Omega$; $V_{CM} = V_{OUT} = \text{mid-supply unless otherwise noted}$. All limits are guaranteed by testing or statistical analysis. Boldface limits apply over the specified temperature range, $T_A = -40^{\circ}C$ to 125°C. (Notes 20, 21)

Parameter	Symbol	Conditions		Min	Тур	Max	Unit
SUPPLY CHARACTERISTICS							
Dower Supply Dejection Datio	PSRR	No Load		114	135		dB
Power Supply Rejection Ratio	PORK	No Load					uБ
		NCx20071	No load		480	700	
			100 1080			840	
Device Complex Onice cost Compart	IDD		Der ekennel ne leed		465	570	
Power Supply Quiescent Current		NCx20072	Per channel, no load			700	μΑ
		NCx20074 Per channel, no load	Der ekennel as lead		465	600	
					700		

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

20. Refer to ABSOLUTE MAXIMUM RATINGS and APPLICATION INFORMATION for Safe Operating Area.

21. Performance guaranteed over the indicated operating temperature range by design and/or characterization.

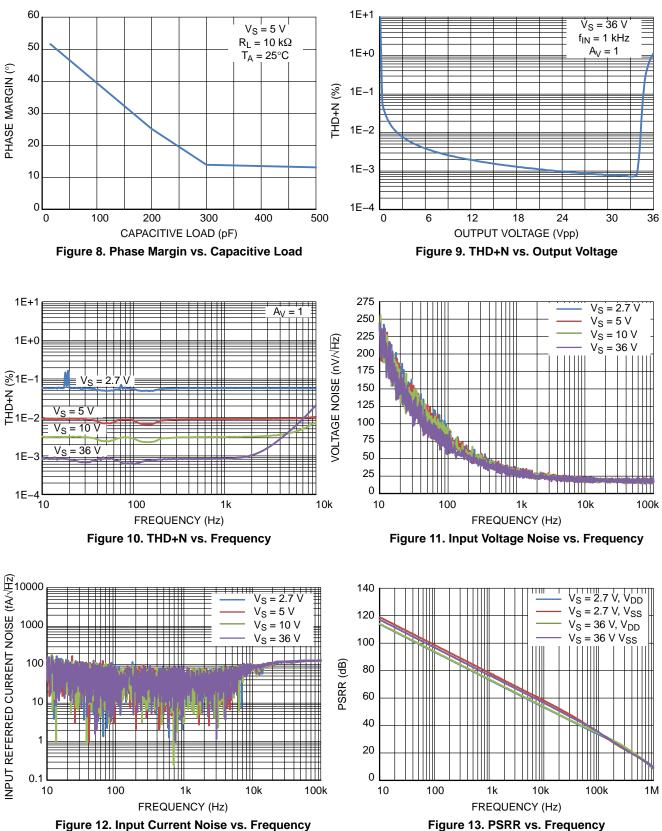
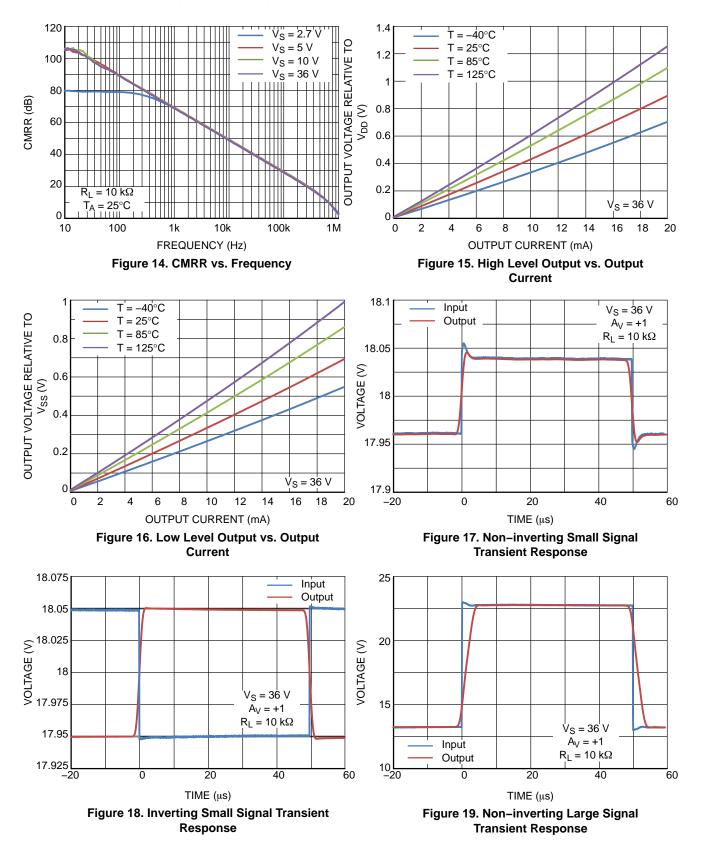
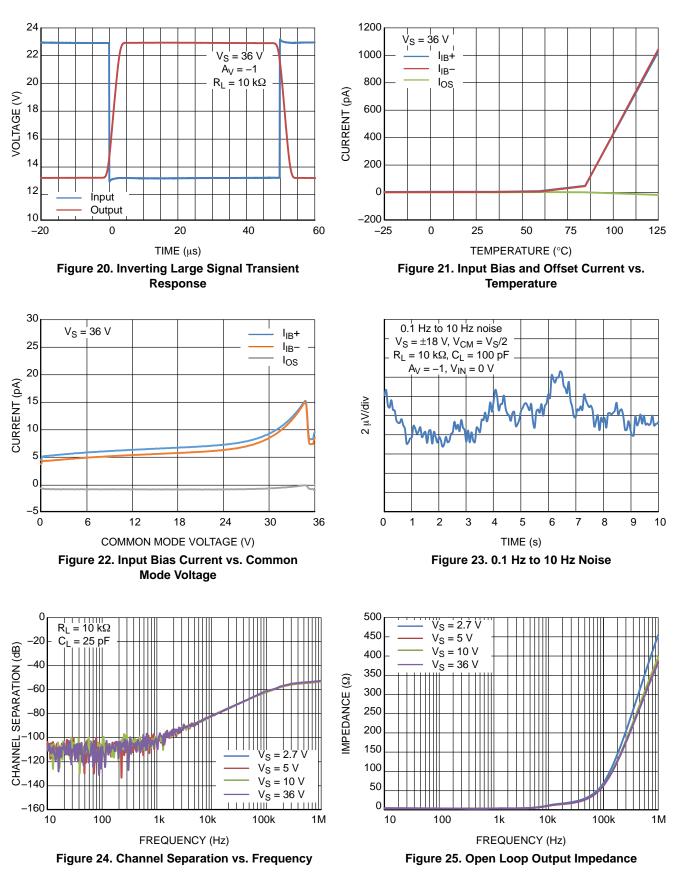




Figure 13. PSRR vs. Frequency

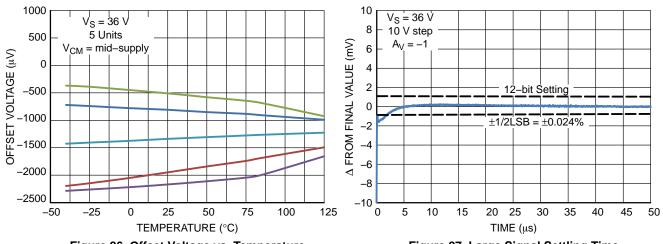


Figure 26. Offset Voltage vs. Temperature

Figure 27. Large Signal Settling Time

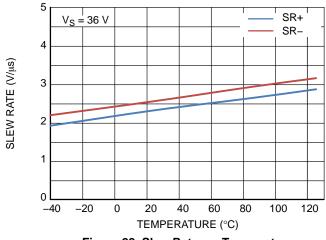


Figure 28. Slew Rate vs. Temperature

APPLICATIONS INFORMATION

Input Circuit

The NCS2007x input stage has a PMOS input pair and ESD protection diodes. The input pair is internally connected by back–to–back Zener diodes with a reverse voltage of 5.5 V. To protect the internal circuitry, the input current must be limited to 10 mA. When operating the

NCS2007x at differential voltages greater than $V_{ID} = 26$ V, series resistors can be added externally to limit the input current flowing between the input pins. Adding 500 Ω resistors in series with the input prevents the current from exceeding 10 mA over the entire operating range up to 36 V.

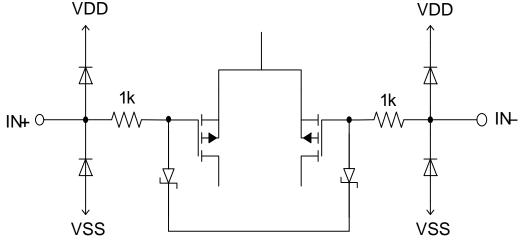
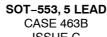


Figure 29. Differential Input Pair

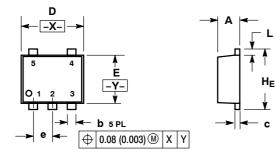
Output

The NCS2007x has a class AB output stage with rail-to-rail output swing.

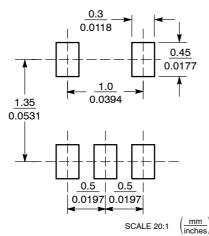
High output currents can cause the junction temperature to exceed the 150°C absolute maximum rating. In the case of a short circuit where the output is connected to either supply rail, the amount of current the op amp can source and sink is described by the output current capability parameter listed in the Electrical Characteristics. The junction temperature at a given power dissipation, P, can be calculated using the following formula:


 $T_J = T_A + P \ x \ \theta_{JA}$

The thermal resistance between junction and ambient, θ_{JA} , is provided in the Thermal Information section of this datasheet.



SCALE 4:1



ISSUE C

RECOMMENDED **SOLDERING FOOTPRINT***

NOTES

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2 3.

DIMENSIONING AND TOLERANOUS PER AND THANK, 199 CONTROLLING DIMENSION: MILLIMETERS MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.

	м	ILLIMETE	RS	INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.50	0.55	0.60	0.020	0.022	0.024	
b	0.17	0.22	0.27	0.007	0.009	0.011	
С	0.08	0.13	0.18	0.003	0.005	0.007	
D	1.55	1.60	1.65	0.061	0.063	0.065	
Е	1.15	1.20	1.25	0.045	0.047	0.049	
е		0.50 BSC			0.020 BSC)	
Г	0.10	0.20	0.30	0.004	0.008	0.012	
HE	1.55	1.60	1.65	0.061	0.063	0.065	

GENERIC **MARKING DIAGRAM***

XXM•

XX = Specific Device Code M = Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

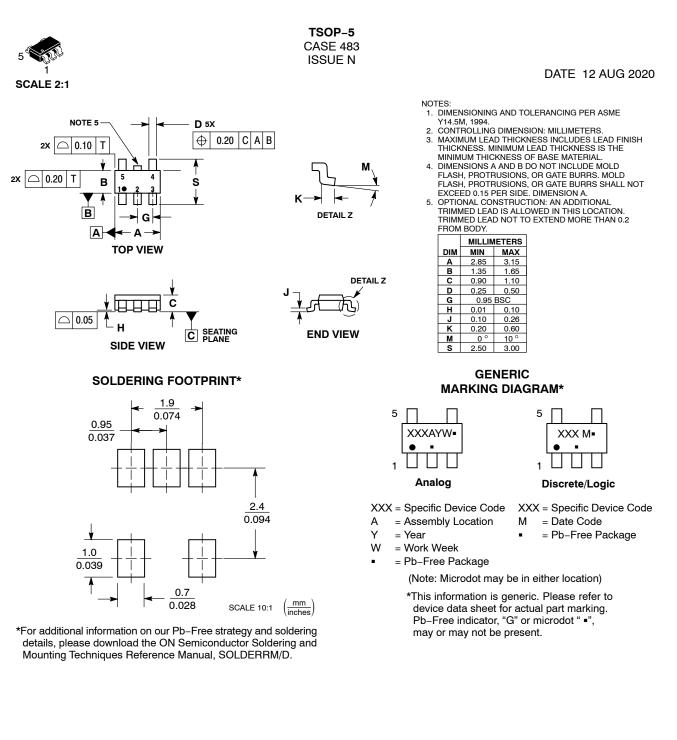
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLE 1:	STYLE 2:	STYLE 3:	STYLE 4:	STYLE 5:
PIN 1. BASE	PIN 1. CATHODE	PIN 1. ANODE 1	PIN 1. SOURCE 1	PIN 1. ANODE
2. EMITTER	2. COMMON ANODE	2. N/C	2. DRAIN 1/2	2. EMITTER
3. BASE	3. CATHODE 2	3. ANODE 2	3. SOURCE 1	3. BASE
4. COLLECTOR	4. CATHODE 3	4. CATHODE 2	4. GATE 1	4. COLLECTOR
5. COLLECTOR	5. CATHODE 4	5. CATHODE 1	5. GATE 2	5. CATHODE
STYLE 6:	STYLE 7:	STYLE 8:	STYLE 9:	
PIN 1. EMITTER 2	PIN 1. BASE	PIN 1. CATHODE	PIN 1. ANODE	
2. BASE 2	2. EMITTER	2. COLLECTOR	2. CATHODE	
3. EMITTER 1	3. BASE	3. N/C	3. ANODE	
4. COLLECTOR 1	4. COLLECTOR	4. BASE	4. ANODE	
5. COLLECTOR 2/BASE 1	5. COLLECTOR	5. EMITTER	5. ANODE	

DOCUMENT NUMBER: 98AON11127D Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed **ON SEMICONDUCTOR STANDARD** STATUS: versions are uncontrolled except when stamped "CONTROLLED COPY" in red. **NEW STANDARD: DESCRIPTION:** SOT-553, 5 LEAD PAGE 1 OF 2

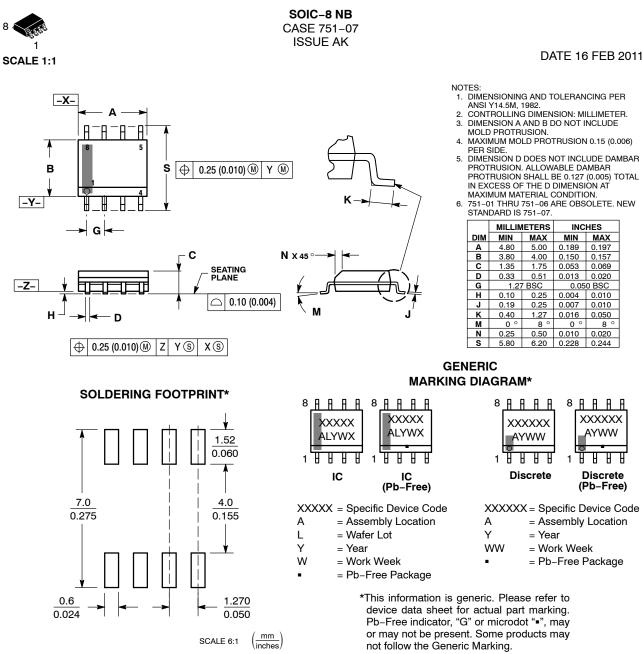
DOCUMENT NUMBER: 98AON11127D

PAGE 2 OF 2


ISSUE	REVISION	DATE			
А	ADDED STYLES 3–9. REQ. BY D. BARLOW	11 NOV 2003			
В	ADDED NOMINAL VALUES AND UPDATED GENERIC MARKING DIAGRAM. REQ. BY HONG XIAO	27 MAY 2005			
С	UPDATED DIMENSIONS D, E, AND HE. REQ. BY J. LETTERMAN.	20 MAR 2013			

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

© Semiconductor Components Industries, LLC, 2013 March, 2013 – Rev. C


Downloaded from Arrow.com.

DOCUMENT NUMBER:	98ARB18753C Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TSOP-5 PAGE 1 OF		PAGE 1 OF 1
ON Semiconductor reserves the right the suitability of its products for any pa	to make changes without further notice to an articular purpose, nor does ON Semiconducto	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation r assume any liability arising out of the application or use of any product or cidental damages. ON Semiconductor does not convey any license under	or guarantee regarding r circuit, and specifically

onsemí

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	ON: SOIC-8 NB PAGE		PAGE 1 OF 2	
the right to make changes without furth purpose, nor does onsemi assume a	er notice to any products herein. onsemi making ny liability arising out of the application or use	LLC dba onsemi or its subsidiaries in the United States and/or other cour es no warranty, representation or guarantee regarding the suitability of its pr of any product or circuit, and specifically disclaims any and all liability, inc e under its patent rights nor the rights of others.	roducts for any particular	

SOIC-8 NB CASE 751-07 **ISSUE AK**

ŝ

ę

ŝ

S

STYLE 1: PIN 1. EMITTER COLLECTOR 2. COLLECTOR З. 4. EMITTER EMITTER 5. BASE 6. 7 BASE EMITTER 8. STYLE 5: PIN 1. DRAIN 2. DRAIN 3. DRAIN DRAIN 4. GATE 5. 6. GATE SOURCE 7. 8. SOURCE STYLE 9: PIN 1. EMITTER, COMMON COLLECTOR, DIE #1 COLLECTOR, DIE #2 2. З. EMITTER, COMMON 4. 5. EMITTER, COMMON 6 BASE, DIE #2 BASE, DIE #1 7. 8. EMITTER, COMMON STYLE 13: PIN 1. N.C. 2. SOURCE 3 GATE 4. 5. DRAIN 6. DRAIN DRAIN 7. DRAIN 8. STYLE 17: PIN 1. VCC 2. V2OUT V10UT З. TXE 4. 5. RXE 6. VFF 7. GND 8. ACC STYLE 21: PIN 1. CATHODE 1 2. CATHODE 2 3 CATHODE 3 CATHODE 4 4. 5. CATHODE 5 6. COMMON ANODE COMMON ANODE 7. 8. CATHODE 6 STYLE 25: PIN 1. VIN 2 N/C З. REXT 4. GND 5. IOUT 6. IOUT IOUT 7. 8. IOUT STYLE 29: BASE, DIE #1 PIN 1. 2 EMITTER, #1 BASE, #2 З. EMITTER, #2 4. 5 COLLECTOR, #2 COLLECTOR, #2

STYLE 2: PIN 1. COLLECTOR, DIE, #1 2. COLLECTOR, #1 COLLECTOR, #2 3. 4 COLLECTOR, #2 BASE, #2 5. EMITTER, #2 6. 7 BASE #1 EMITTER, #1 8. STYLE 6: PIN 1. SOURCE 2. DRAIN 3. DRAIN SOURCE 4. SOURCE 5. 6. GATE GATE 7. 8. SOURCE STYLE 10: GROUND PIN 1. BIAS 1 OUTPUT 2. З. GROUND 4. 5. GROUND 6. BIAS 2 INPUT 7. 8. GROUND STYLE 14: PIN 1. N-SOURCE 2. N-GATE P-SOURCE 3 P-GATE 4. P-DRAIN 5. 6. P-DRAIN N-DRAIN 7. N-DRAIN 8. STYLE 18: PIN 1. ANODE 2. ANODE SOURCE 3. GATE 4. 5. DRAIN 6 DRAIN CATHODE 7. CATHODE 8. STYLE 22: PIN 1. I/O LINE 1 2. COMMON CATHODE/VCC COMMON CATHODE/VCC 3 I/O LINE 3 4. 5. COMMON ANODE/GND 6. I/O LINE 4 7. I/O LINE 5 COMMON ANODE/GND 8. STYLE 26: PIN 1. GND 2 dv/dt ENABLE З. 4. ILIMIT 5. SOURCE SOURCE 6. SOURCE 7. 8. VCC STYLE 30: PIN 1. DRAIN 1 2. DRAIN 1 GATE 2 З. SOURCE 2 4. SOURCE 1/DRAIN 2 SOURCE 1/DRAIN 2 5. 6.

2. 3. 4. 5. 6. 7.	DRAIN, DIE #1 DRAIN, #1 DRAIN, #2 DRAIN, #2 GATE, #2 SOURCE, #2 GATE, #1 SOURCE, #1
2. 3. 4. 5. 6. 7.	INPUT EXTERNAL BYPASS THIRD STAGE SOURCE GROUND DRAIN GATE 3 SECOND STAGE Vd FIRST STAGE Vd
2. 3. 4. 5. 6. 7.	: SOURCE 1 SOURCE 2 GATE 2 DRAIN 2 DRAIN 2 DRAIN 1 DRAIN 1
3. / 4. / 5. (6. (7. (
2. 3. 4. 5. 6. 7. 8.	SOURCE 1 GATE 1 SOURCE 2 GATE 2 DRAIN 2 MIRROR 2 DRAIN 1 MIRROR 1
2. 3. 4. 5.	5: LINE 1 IN COMMON ANODE/GND COMMON ANODE/GND LINE 2 IN LINE 2 OUT COMMON ANODE/GND COMMON ANODE/GND LINE 1 OUT
STYLE : PIN 1. 2. 3. 4. 5. 6. 7. 8.	ILIMIT OVLO UVLO INPUT+ SOURCE SOURCE SOURCE

DATE 16 FEB 2011

STYLE 4: PIN 1. 2. ANODE ANODE ANODE З. 4. ANODE ANODE 5. 6. ANODE 7 ANODE COMMON CATHODE 8. STYLE 8: PIN 1. COLLECTOR, DIE #1 2. BASE, #1 BASE #2 3. COLLECTOR, #2 4. COLLECTOR, #2 5. 6. EMITTER, #2 EMITTER, #1 7. 8. COLLECTOR, #1 STYLE 12: PIN 1. SOURCE SOURCE 2. 3. GATE 4. 5. DRAIN 6. DRAIN DRAIN 7. 8. DRAIN STYLE 16: PIN 1. EMITTER, DIE #1 2. BASE, DIE #1 EMITTER, DIE #2 3 BASE, DIE #2 4. 5. COLLECTOR, DIE #2 6. COLLECTOR, DIE #2 COLLECTOR, DIE #1 7. COLLECTOR, DIE #1 8. STYLE 20: PIN 1. SOURCE (N) GATE (N) SOURCE (P) 2. 3. 4. GATE (P) 5. DRAIN 6. DRAIN DRAIN 7. 8. DRAIN STYLE 24: PIN 1. BASE EMITTER 2. 3 COLLECTOR/ANODE COLLECTOR/ANODE 4. 5. CATHODE 6. CATHODE COLLECTOR/ANODE 7. 8. COLLECTOR/ANODE STYLE 28: PIN 1. SW_TO_GND 2. DASIC OFF DASIC_SW_DET З. 4. GND 5. 6. V MON VBULK 7. VBULK 8 VIN

DOCUMENT NUMBER:	98ASB42564B Electronic versions are uncontrolled except when accessed directly from the Document Reposite Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION:	SOIC-8 NB		PAGE 2 OF 2			
onsemi and ONSEMI, are tradema	onsemi and ONSEMi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves					

SOURCE 1/DRAIN 2

7.

8 GATE 1

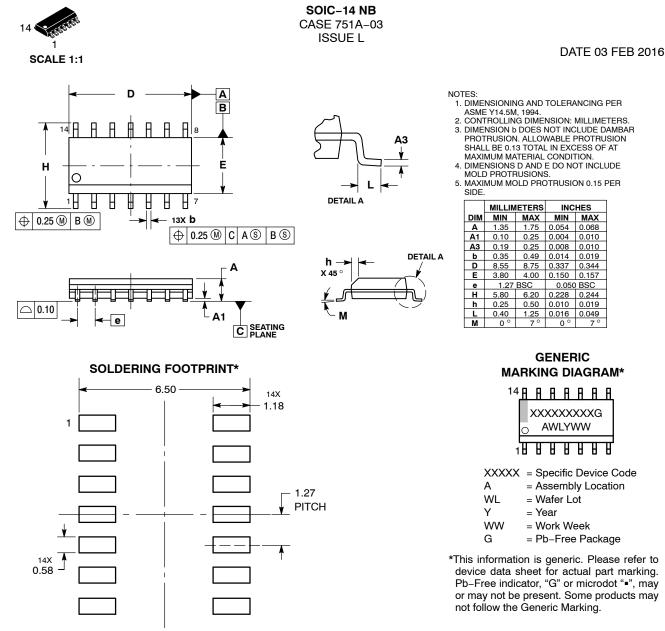
the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

6.

7.

8

COLLECTOR, #1


COLLECTOR, #1

DUSEM

0.068

0.019

0.344

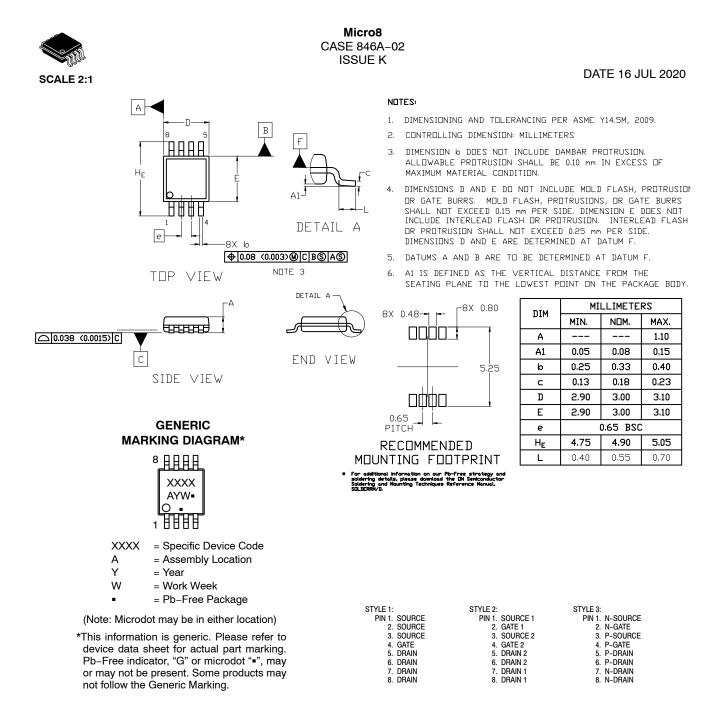
DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

Electronic versions are uncontrolled except when accessed directly from the Document Repository. DOCUMENT NUMBER: 98ASB42565B Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. **DESCRIPTION:** SOIC-14 NB PAGE 1 OF 2 onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

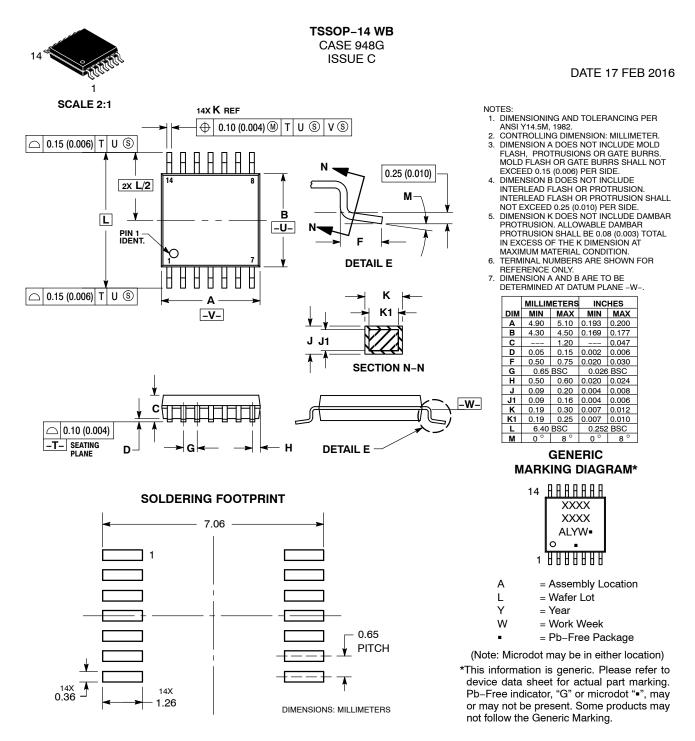
SOIC-14 CASE 751A-03 ISSUE L


DATE 03 FEB 2016

STYLE 1: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. NO CONNECTION 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. NO CONNECTION 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 2: CANCELLED	STYLE 3: PIN 1. NO CONNECTION 2. ANODE 3. ANODE 4. NO CONNECTION 5. ANODE 6. NO CONNECTION 7. ANODE 8. ANODE 9. ANODE 10. NO CONNECTION 11. ANODE 12. ANODE 13. NO CONNECTION 14. COMMON CATHODE	STYLE 4: PIN 1. NO CONNECTION 2. CATHODE 3. CATHODE 4. NO CONNECTION 5. CATHODE 6. NO CONNECTION 7. CATHODE 9. CATHODE 10. NO CONNECTION 11. CATHODE 12. CATHODE 13. NO CONNECTION 14. COMMON ANODE
STYLE 5: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. NO CONNECTION 7. COMMON ANODE 8. COMMON CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 6: PIN 1. CATHODE 2. CATHODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE 7. CATHODE 8. ANODE 9. ANODE 10. ANODE 11. ANODE 13. ANODE 14. ANODE	STYLE 7: PIN 1. ANODE/CATHODE 2. COMMON ANDDE 3. COMMON CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 7. ANODE/CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. COMMON CATHODE 12. COMMON ANODE 13. ANODE/CATHODE 14. ANODE/CATHODE	STYLE 8: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. ANODE/CATHODE 7. COMMON ANODE 8. COMMON ANODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. NO CONNECTION 12. ANODE/CATHODE 13. ANODE/CATHODE 14. COMMON CATHODE

DOCUMENT NUMBER:	98ASB42565B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOIC-14 NB		PAGE 2 OF 2		

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.



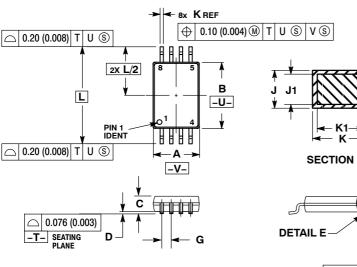
DOCUMENT NUMBER:	98ASB14087C Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION:	: MICRO8 PA		PAGE 1 OF 1			
ON Semiconductor reserves the right the suitability of its products for any pa	ON Semiconductor and ()) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the					

MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

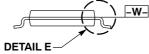
onsemí

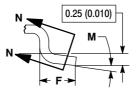
DOCUMENT NUMBER:	98ASH70246A Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	TSSOP-14 WB		PAGE 1 OF 1		
onsemi and ONSEMI. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation					

special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.


© Semiconductor Components Industries, LLC, 2019

SCALE 2:1




TSSOP-8 CASE 948S-01 ISSUE C

DATE 20 JUN 2008

SECTION N-N

DETAIL E

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI

- VIMENSIONING AND TOLENANDING FER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH.
- PROTRUSION SHALL NOT EXCEED 0.15
 (0.006) PER SIDE.
 JIMENSION B DOES NOT INCLUDE INTERLEAD
 FLASH OR PROTRUSION. INTERLEAD FLASH OR
 PROTRUSION SHALL NOT EXCEED 0.25 (0.010)
 DED SIDE. PER SIDE
- 5. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
- 6. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	2.90	3.10	0.114	0.122
В	4.30	4.50	0.169	0.177
С		1.10		0.043
D	0.05	0.15	0.002	0.006
F	0.50	0.70	0.020	0.028
G	0.65 BSC		0.026 BSC	
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40 BSC		0.252	BSC
Μ	0 °	8°	0°	8 °

GENERIC **MARKING DIAGRAM***

C	XXX	
	YWW	
	A •	
	•	

XXX = Specific Device Code А

- = Assembly Location
- = Year

Y

- WW = Work Week
- = Pb-Free Package -

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

DOCUMENT NUMBER:	98AON00697D	Electronic versions are uncontrolle		
STATUS:	ON SEMICONDUCTOR STANDARD	accessed directly from the Document F versions are uncontrolled except w		
NEW STANDARD:		"CONTROLLED COPY" in red.		
DESCRIPTION:	TSSOP-8		PAGE 1 OF 2	

DOCUMENT NUMBER: 98AON00697D

PAGE 2 OF 2

ISSUE	REVISION	DATE
0	RELEASED FOR PRODUCTION.	18 APR 2000
А	ADDED MARKING DIAGRAM INFORMATION. REQ. BY V. BASS.	13 JAN 2006
В	CORRECTED MARKING DIAGRAM PIN 1 LOCATION AND MARKING. REQ. BY C. REBELLO.	13 MAR 2006
С	REMOVED EXPOSED PAD VIEW AND DIMENSIONS P AND P1. CORRECTED MARKING INFORMATION. REQ. BY C. REBELLO.	20 JUN 2008

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

© Semiconductor Components Industries, LLC, 2008 June, 2008 – Rev. 01C

Downloaded from Arrow.com.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative